最新高二数学上学期期末考试试卷含答案

合集下载

最新高二数学上学期期末考试试卷含答案

最新高二数学上学期期末考试试卷含答案

一、选择题(本大题共10小题,每小题3分,共30分) 1、下列四个命题: ①若22||a b a b >>,则 ,②若a >b c >d a -c >b -d ,,则,③若a >b ,c>d ,则a c>bd ④若00c c a b c ab>><>,,则 , 其中正确命题的个数有() A .1个 B .2个 C .3个 D .4个2、已知两直线:3230610x y x my +-=++=与互相平行,则它们之间的距离为()A .4B D 3、已知过两点P (-2,m ),Q (m ,4)的直线的倾斜角为1arctan 2,则实数m 的值为() A .2B .10C .-8D .04、经过三点的平面有( )A .1个B .无数多个C .1个或无数多个D .一个都没有 5、双曲线3x 2 -y 2 =3的渐近线方程是( )A .y = ±3xB .y = ±3x C .y =±31xD .y = ±33x 6、圆x 2 + y 2-2 x = 0和 x 2 + y 2 +4y = 0的位置关系是( )A .相离B .外切C .内切D .相交7、长轴在x 轴上,短半轴长为1,两准线之间的距离最近的椭圆的标准方程是( )A .1222=+y x B .1222=+y xC .1322=+y x D .1422=+y x8、已知F 1、F 2是双曲线16x 2 -9y 2 =144的焦点,P 为双曲线上一点,若 |PF 1||PF 2| =32, 则∠F 1PF 2 = ( )A .6π B .3πC .2π D .32π 9、设F 1、F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是 ()A .椭圆B .直线C .圆D .线段10、若点A 的坐标是(3,2),F 是抛物线y 2=2x 的焦点,点P在抛物线上移动,为使得|PA|+|PF|取得最小值,则P 点的坐标是( )A .(1,2)B .(2,1)C .(2,2)D .(0,1) 二、填空题 (本大题共5小题,每小题4分,共20分)11、在正方体ABCD-A 1B 1C 1D 1中,异面直线A 1B 和AC 所成的角的大小是。

2023最新高二数学上册期末考试试卷及答案

2023最新高二数学上册期末考试试卷及答案

2023最新高二数学上册期末考试试卷及答案试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)1、选择题(本大题共12个小题,每小题5分,共60分)1.已知命题p:∀x∈R,sinx≤1,则( C )A.p:∃x∈R,sinx≥1⌝B.p:∀x∈R,sinx≥1⌝C.p:∃x∈R,sinx>1⌝D.p:∀x∈R,sinx>1⌝2.等差数列{a n}中,a1+a2+a3=-24,a18+a19+a20=78,则此数列前20项和等于( B ).A .160B .180C .200D .2203.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°,则c 的值等于( C ).A .5B .13C .13D .374.若双曲线-=1的一条渐近线经过点(3,-4),则此双曲线x 2a 2y 2b 2的离心率为( D )A. B. C.D. 735443535.在△ABC中,能使sinA >成立的充分不必要条件是( C )32A .A∈ B .A∈ C .A∈(0,π3)(π3,2π3)(π3,π2)D .A∈(π2,5π6)6.△ABC 中,如果==,那么△ABC 是( B ).Aatan Bbtan Cc tan A .直角三角形B .等边三角形 C .等腰直角三角形D .钝角三角形7.如图,PA ⊥平面ABCD ,四边形ABCD 为正方形,E 是CD 的中点,F 是AD 上一点,当BF ⊥PE 时,AF ∶FD 的值为( B )A .1∶2B .1∶1C .3∶1D .2∶18.如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线A B 1夹角的余弦值为( A )A. B.5553C. D. 255359.当x >1时,不等式x +≥a 恒成立,则实数a 的取值范围是( D 11-x ).A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]10.若不等式组,所表示的平面区域被直线y =kx +分为⎪⎩⎪⎨⎧4≤ 34 ≥30≥y x y x x ++34面积相等的两部分,则k 的值是( A ).A .73B .37C .43D .3411.若关于x 的不等式2x 2-8x -4-a ≥0在1≤x ≤4内有解,则实数a 的取值范围是( A )A .a ≤-4B .a ≥-4C .a ≥-12D .a ≤-1212.定义域为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2(x -3)2,若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则a 的取值范围为 ( B )A.B. C. D. (0,22)(0,33)(0,55)(0,66)解析 由于定义为R 的偶函数f (x )满足:对∀x ∈R ,有f (x +2)=f (x )-f (1),得f (-1+2)=f (-1)-f (1)=0,即f (1)=0,故f (x +2)=f (x ),可知f (x )的周期T =2,图象以x =2为对称轴,作出f (x )的部分图象,如图,∵y =log a (x +1)的图象与f (x )的图象至少有三个交点,即有log a (2+1)>f (2)=-2且0<a <1,解得a ∈。

最新高二数学上学期期末考试试卷含答案

最新高二数学上学期期末考试试卷含答案

高二上期末考试模拟试题数学(测试时间:120分钟 满分150分)一. 选择题(12×5分=60分,每小题给出的四个选项中,只有一项是符合题目要求的,将正确结论的代号填入后面的表中)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题;每小题5分,共60分.在每小题给出的四个选项中,有一项是符合题目要求的.)1、设R b a ∈,,现给出下列5个条件:①2=+b a ;②2>+b a ;③222>+b a ;④1>ab ;⑤0log <b a ,其中能推出“a ,b 中至少有一个大于1”的条件为( )(A)②③④(B)②③④⑤(C)①②③⑤(D)②⑤2、若直线0=++c by ax 经过第一、二、三象限,则( )(A)0,0>>bc ab (B)0,0<>bc ab (C)0,0><bc ab (D)0,0<<bc ab3、若不等式组⎩⎨⎧<->-ax a x 2412的解集非空,则实数a 的取值范围是( )(A) (-1,3) (B)(-3,1) (C)(-∞,-1) (D)(-∞,-3)∪(1,+∞)4、“a >1”是直线0=-x a y 与直线a x y =-有且仅有两个交点的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件5、AB 是过抛物线y x =2的焦点弦,且4=AB ,则AB 的中点到直线01=+y 的距离是( )(A)25(B)2 (C)411(D)3 6、用一个与圆柱母线成︒60角的平面截圆柱,截口是一个椭圆,则此椭圆的离心率是( ) (A)22(B)21(C)23(D)337、已知25≥x , 则4254)(2-+-=x x x x f 有( )(A)最大值45(B)最小值45(C)最大值1 (D)最小值1 8、已知直线)2(2:-=-x k y l 与圆02222=--+y x y x 相切,则直线l 的一个方向向量v为 ( )(A)(2,-2) (B)(1,1) (C)(-3,2) (D)(1,21)9、已知函数42)6()(-+-=a x a x f 在⎥⎦⎤⎢⎣⎡1,54上0)(>x f 恒成立,则a 的取值范围是( ) (A)),722(+∞(B)),310(+∞(C)]6,722((D)]6,310( 10、如图,函数)(x f y =的图象是中心在原点,焦点在x 轴上的椭圆的两段弧,则不等式x x f x f +-<)()(的解集为 ( )(A ){}22,02|≤<<<-x x x 或(B ){}22,22|≤<-<≤-x x x 或 (C)⎭⎬⎫≤<⎩⎨⎧-<≤-222,222|x x x 或 (D ){}0,22|≠<<-x x x 且11、已知动点),(y x P 满足y x y x 43)2()1(1022+=-+-,则此动点P 的轨迹是( )(A)椭圆 (B)双曲线 (C)抛物线 (D)两相交直线12、已知椭圆的一个焦点和对应的准线分别是抛物线22x y =的焦点与准线,则椭圆短轴的右端点的轨迹方程是( )(A))0(212>-=x y x (B))0)(1(22>-=x y x(C))0)(81(412>-=x y x (D))0)(41(212>-=x y x第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题;每小题4分,共16分.把答案填在题中的横线上.)13、若直线)0,0022>>=+-b a by ax (始终平分圆014222=+-++y x y x 的圆周,则ba 11+的最小值为14、),(y x P 是椭圆12322=+y x 上的动点,则y x 2-的的取值范围是15、已知一椭圆的两焦点为)0,5(),0,5(21F F -,有一斜率为98-的直线被椭圆所截得的弦的中点为(2,1),则此椭圆方程为 16、给出下列四个命题①两条直线平行的充要条件是它们的斜率相等;②过点),(00y x 与圆222r y x =+相切的直线方程为200r y y x x =+;③平面内到两定点的距离之和等于常数的点的轨迹是椭圆;④抛物线上任意一点M 到焦点的距离等于该点M 到准线的距离。

高二数学上学期期末考试参考答案.doc

高二数学上学期期末考试参考答案.doc

高二数学上学期期末考试参考答案一、 选择题:1、(D ),2、(B ),3、(B ),4、(C ),5、(B ),6、(A ),7、(B ), 8、(D ), 9、(C ), 10、(A ), 11、(D ), 12、(B )。

二、 填空题:13、-10, 14、 8, 15、(x-5)2+(y-3)2=42, 16、1352222=+y x 三、 解答题: 17、证明:(a )422466()b a b a b +-+0)()())(()()()()222224422224224426246>+-=--=---=-+-=b a b a b a b a b a b b a a b a b b a a于是422466422466,0)()b a b a b a b a b a b a +>+>+-+即18、解:得15512<+-<-x x,432141320450651551552222<<<<⇒⎩⎨⎧<<><⇒⎪⎩⎪⎨⎧<+->+-⇒⎪⎩⎪⎨⎧<+-->+-x x x x x x x x x x x x x 或或所以原不等式的解集为{}4321|<<<<x x x 或19、解:设点M 的坐标为(x, y) , 点P 的坐标为(x ),00y ,则 x=x 44),(,2,2020220000=+=+=y x y x y x P y y 上所以在圆因为 (1) 将 x 44)1(2,2200=+==y x y y x 得代入方程 即1422=+y x ,所以点M 的轨迹是一个椭圆。

20、解:由抛物线的标准方程可知,抛物线焦点的坐标为F (1,0),所以直线AB 的方程为y=x-1 (1)将方程(1)代入抛物线方程y 化简为得,4)1(,422x x x =-= 223,223016212-=+==+-x x x x 得将x 222,222:),1(,2121-=+=y y x 得的值代入方程即A ,B 的坐标分别为(3+2222,223(),222,2--+) 所以8)24()24(22=+=AB21、解:设水池底面一边的长度为x 米,则另一边的长度为米x34800,又设水池总造价为L 元,根据题意,得297600,40,16002976004027202400001600.2720240000)1600(720240000)348003232(12034800150有最小值时即当L x x x xx xx xx L ===⨯⨯+=⨯+≥++=⨯⨯+⨯+⨯= 答:当水池的底面是边长为40米的正方形时,水池的总造价最低,最低总造价是297600元。

最新高二数学上学期期末考试试卷含答案

最新高二数学上学期期末考试试卷含答案

一、选择题:(本大题共10小题,每小题4分,共40分)1.设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N等于( )A.{3,4,5,6,7,8} B.{5,8} C. {3,5,7,8} D.{4,5,6,8}2.在等比数列{}n a中,已知1=2a,2=4a,那么4=a( ) A.6 B.8C.16 D.323.设向量7(5)=-,a,(4)6=--,b,则=a b( ) A.58-B.2-C.2 D.224.函数2siny x x=∈R,的最大值为( )A.2-B.1-C.1 D.25.lg 2516-2lg59+lg3281等于( )A.lg 2B.lg 3C.lg 4 D.lg 56.某几何体的三视图如右图所示,则该几何体是( ) A.棱柱B.圆柱C.棱锥D.圆锥7.执行如图所示的程序框图,输出的结果是( )(第7题图)A.3 B.9C.27 D.648.指数函数()01x且的图像必过定点( )y a a a=>≠A.()01,00,B.()C.()11,10,D.()9.经过点(02)P,且斜率为2的直线方程为( )A.220x y--=x y++=B.220C.220x y+-=x y-+=D.22010.在△ABC中,角A、B、C的对边分别为a b、、c,若1245,,,==b c A则a的长为( )A.1 B2C3.2二、填空题(本大题共4题,每题4分,共16分)11.若函数()2100 x x f x x x +⎧=⎨>⎩,,,,≤则()2f =. 12.已知向量a =(2,1),b =(1,5),则2+a b 的坐标为. 13.若cos α=-45,α是第三象限角,则sin ⎝ ⎛⎭⎪⎫α+π4=. 14.不等式223x x -++≥0的解集为.三、解答题(本大题共4题,共44分)15.(14分)已知函数1()f x x x =+,(Ⅰ) 证明()f x 在[1,)+∞上是增函数;(Ⅱ) 求()f x 在[1,4]上的最大值及最小值.16.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(1)求{a n}的通项公式a n;(2)求{a n}前n项和S n的最大值.17.如图,在四棱锥P-ABCD中,PC⊥平面ABCD, AB∥CD,DC⊥AC.(1)求证:DC⊥平面PAC;(2)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.18.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标.(2)求线段AB的中点M的轨迹C的方程.。

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)一、选择题(共40分,每小题2分)1. 一次函数y = 2x - 3的图象是直线,下列说法正确的是()。

A. 过点(-3, 3)B. 过点(0, -3)C. 过点(3, 0)D. 过点(0, 3)答案:C2. 已知函数y = ax² + bx + c的图象经过点(1, 4),则a + b + c的值为()。

A. 4B. 6C. 8D. 10答案:B3. 在直角坐标系中,已知点A(2, 3),点B在x轴上,且AB = 5,则点B的坐标为()。

A. (2, 0)B. (0, -3)C. (7, 0)D. (-3, 0)答案:A4. 设函数f(x) = 2x + 3,g(x) = x² - 4,则f(g(2))的值为()。

A. 3B. 7C. 9D. 11答案:C5. 函数y = x² - 6x + 8的图象是一条抛物线,下列说法正确的是()。

A. 开口向上B. 开口向下C. 与x轴平行D. 与y轴平行答案:A二、解答题(共60分)6. 解方程组:2x - y = 3x + y = 5解答:将第一式两边同时加上第二式得到:2x - y + x + y = 3 + 53x = 8x = 8/3将x的值代入第二式得到:8/3 + y = 5y = 5 - 8/3y = 15/3 - 8/3y = 7/3因此,方程组的解为x = 8/3,y = 7/3。

7. 某商品原价为120元,现在打8折出售,求出售价格。

解答:打8折即为原价乘以0.8,所以出售价格为120元 × 0.8 = 96元。

8. 某数的5倍减去6等于30,求这个数。

解答:设这个数为x,则根据题意可以列出方程:5x - 6 = 305x = 30 + 65x = 36x = 36/5因此,这个数为36/5。

9. 已知等差数列的首项为3,公差为4,求第10项。

解答:第10项可以通过首项加上9倍公差来计算:第10项 = 3 + 9 × 4= 3 + 36= 39因此,第10项为39。

最新高二数学上学期期末考试试卷含答案

一、选择题1、数列}{n a 的首项为2,且41-=-n n a a (n ≥2),则通项公式是: A 、n a n 46-= B 、24-=n a n C 、1+=n a n D 、n a n 24-=2、已知数列}{n a 的通项公式为nn n n a )5(43-+=,前n 项的和为n S ,则=∞→nn SlimA 、87- B 、7259-C 、0D 、54- 3、经过点(5、10)且与原点距离为5的直线的斜率是: A 、43B 、2C 、21D 、43或不存在 4、以原点圆心,且截直线01543=++y x 所得弦长为8的圆的方程是:A 、522=+y x B 、2522=+y x C 、422=+y x D 、1622=+y x 5、方程01)2()1(22=-++++m y m mx 所表示的图形是一个圆,则常数m 的值是:A 、2B 、-1C 、2或-1D 、不存在 6、直线02)()32(22=--+-+m y m m x m m 与直线01=--y x 平行,则m 的值是:A 、1B 、-1C 、1或-1D 、不存在7、椭圆1121622=+y x 上的点P 到右焦点距离为38,则P 点的横坐标是:A 、38B 、83C 、316D 、37 8、给出下列四条不等式:①2)1(-x >2)(x ②2)1(-x >x ③x ≥0 ④x >12)1(-x >x 2)1(-x >x以上不等式中与不等式x x >-1同解的有 A 、①③ B 、②④ C 、③ D 、④9、等差数列{}n a 中23=a ,公差1=d ,n S 为前n 项的和,要使+++321321S S S …+nS n 的值最大,则n 为: A 、7 B 、8 C 、9 D 、8或910、数列{}n a 满足21=a ,++=21a a a n …+1-n a (n ≥2),则20a 等于: A 、172 B 、182 C 、192 D 、220 二、填空题:11、直线x y 21=关于直线x y 2=对称的直线方程是__________12、不等式2<|12-x |<8的解集是_________________13、与直线0543=+-y x 垂直, 且与圆4)2()1(22=++-y x 相切的直线方程是_____。

最新高二数学上学期期末考试试卷含答案 (8)

第Ⅰ卷 选择题 (共50分)一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一选项是符合题目要求的) 1.等差数列}{n a 中,3a = 2 ,则该数列的前5项的和为( ) A .32B .20 C .16 D .10 2.抛物线y = -2x 2的准线方程是 ( )A .x=-21 B.x=21 .C .y=81D .y=-81 3.下列命题中,其“非”是真命题的是( )A .∀x ∈R ,x ²-22x +2≥ 0 ;B .∃x ∈R ,3x-5 = 0 ;C .一切分数都是有理数 ;D .对于任意的实数a,b,方程ax=b 都有唯一解 .4. 已知F 1、F 2是双曲线 12222=-by a x (a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( ) A .4+32 B.3+1 C.3—1 D.213+ 5.方程3)1(2)3(222+-=-++y x y x 表示的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线 6. 已知f(x) = x 2 + 2x f 1(1) , 则f1(0)=( )A.0 B.-4 C.-2 D.27.设x,y是正实数,且满足x + 4y = 40,则lgx+lgy的最大值是( )A.2 B.4 C.10D.408.已知数列{a n},那么“对任意的n∈N*,点P n(n,a n)都在直线y=2x+1上”是“{a n}为等差数列”的()A.必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分又不必要条件9.已知x , y满足约束条件⎪⎩⎪⎨⎧≥--≥-≥02200y x y x y , 则11+-=x y W 的取值范围为是( ) A.〔 —1,31〕 B.〔-21,31〕 C. 〔 -21,+∞) D. 〔-21,1)10.设F 1,F 2是x 2 +3y 2 = 3椭圆的焦点,点P 是椭圆上的点,若∠F 1PF 2=900,则这样的点P 有( )A .0个B .2个C .3个D .4个第Ⅱ卷 非选择题 (共100分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在答题卡的横线上) 11.函数y =xx -+12的定义域为 ________________ 12.过点P(-1,2 ) 且与曲线y=3x 2—4x+ 2在点M(1,1)处的切线平行的直线方程是13已知m,n,m+n 成等差数列,m,n,mn 成等比数列,则椭圆122=+ny m x 的离心率为_______________14.在△ABC 中∠A=600,b=1,S △ABC =3,则Aacos = 三、解答题:(本大题共 6 小题,共 80分。

河北省石家庄市2023-2024学年高二上学期期末考试 数学(含答案)

石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(答案在最后)(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为,则该圆的一般方程为()A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---= D.224440x y x y ++++=4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12B.24C.30D.325.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.146.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.27.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020B.2021C.2022D.20238.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.265C.7010D.3010二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF +=B.12PF F △面积的最大值是C.椭圆C 的离心率为63D.1PF PA +最小值为-11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为1312.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12nk += B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.15.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】化成斜截式方程得斜率为k =.【详解】将直线一般式方程化为斜截式方程得:y =+,所以直线的斜率为k =,所以根据直线倾斜角与斜率的关系得直线的倾斜角为120︒.故选:C2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-【答案】B 【解析】【分析】利用在平行四边形ABCD 中有AB DC =,计算即可.【详解】结合题意:设D 的坐标为(),,x y z ,因为()1,2,3A ,()2,1,0B -,()1,2,0C -,所以()1,3,3AB =--,()1,2,DC x y z =---- ,因为在平行四边形ABCD 中有AB DC =,所以11323x y z =--⎧⎪-=-⎨⎪-=-⎩,解得253x y z =-⎧⎪=⎨⎪=⎩,所以D 的坐标为()2,5,3-.故选:B.3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为)A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---=D.224440x y x y ++++=【答案】A 【解析】【分析】根据题意,设圆的半径为r ,求出圆心到直线0x y +=的距离,由直线与圆的位置关系可得r 的值,即可得圆的标准方程,变形可得答案.【详解】根据题意,设圆的半径为r ,圆心坐标为()2,2,到直线0x y +=的距离d ==,该圆被直线0x y +=截得的弦长为22216r =+=,则圆的方程为22221)6()(x y -+-=,变形可得224480x y x y +---=,故选:A.4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12 B.24 C.30D.32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.5.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.14【答案】D 【解析】【分析】根据题意,利用列举法求得所求事件中所包含的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】由题意,将一颗骰子先后抛掷2次,第一次所得点数m ,第二次所得点数n ,记为(),m n .1,2,3,4,5,6m =,1,2,3,4,5,6n =,共有6636⨯=种结果,其中满足2n m n <≤的有:(2,1),(3,2),(4,2),(4,3),(5,3),(5,4)(6,3),(6,4),(6,5),,共有9种结果,由古典概型的概率计算公式,可得满足2n m n <≤的概率为91364P ==.故选:D.6.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.2【答案】D 【解析】【分析】根据抛物线的定义及题意可知3x 0=x 0+2p,得出x 0求得p ,即可得答案.【详解】由题意,3x 0=x 0+2p ,∴x 0=4p ∴222p =∵p >0,∴p=2.故选D .【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.7.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020 B.2021C.2022D.2023【答案】C 【解析】【分析】根据题意,结合121a a ==,()*21N n n n a a a n ++=+∈,利用累加法,即可求解.【详解】由斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则2231375720520211a a a a a a a a a =+++++++++⋅⋅⋅+ 45720216792021a a a a a a a a =++++=++++ 8920212022a a a a =+++== .故选:C.8.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.5C.10D.10【答案】D 【解析】【分析】根据三棱锥A BCD -的对棱相等可以补成长方体AGBI HCJD -,计算长方体的长宽高,建立空间直角坐标系,利用空间向量的坐标运算即可求得异面直线AE ,CF 所成角的余弦值.【详解】解:三棱锥A BCD -中,由于3AB AC BD CD ====,4AD BC ==,则三棱锥A BCD -可以补在长方体AGBI HCJD -,则设长方体的长宽高分别为,,AG a AI b AH c ===,则2222222229,9,16a c AC a b AB b c AD +==+==+==,解得1,a b c ===,如图以C 为原点,,,CH CJ CG 分别为,,x y z轴建立空间直角坐标系,则((()()(1,0,,0,,0,0,0,1,,0,A B C D E ,所以(110,0,,4422AF AD ⎛⎫==-=- ⎪ ⎪⎝⎭,则(AE =-,(1,0,0,,1,,2222CF CA AF ⎛⎫⎛⎫=+=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以cos ,10AE CF AE CF AE CF⋅===-⋅,则异面直线AE ,CF所成角的余弦值为10.故选:D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立【答案】BC 【解析】【分析】由题意可知摸出的两球的编号可能都是奇数或都是偶数或恰好一个奇数一个偶数,共三种情况,由此可判断,,A B C 之间的互斥或对立的关系,再由古典概型求出(),(),()P AB P A P B 判断是否相互独立可得答案.【详解】由题意知,事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,即摸出的小球编号都为奇数或都为偶数,故事件A ,B 不互斥,故A 错误;事件C 为摸出的小球编号恰好只有一个奇数,即摸出的两球编号为一个奇数和一个偶数,其反面为摸出的小球编号都为奇数或都为偶数,故B ,C 是对立事件,故C 正确;事件A ,C 不会同时发生,故A ,C 是互斥事件,故B 正确;每次摸出两个小球,所有基本事件为:()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,()()()()2,6,3,4,3,5,3,6,()()()4,5,4,6,5,6,共有15个,所以由古典概型可得31()155P A ==,62()155P B ==,31()155P AB ==,所以()()()P AB P A P B ≠,故事件A 与B 不相互独立,故D 错误.故选:BC.10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF += B.12PF F △面积的最大值是C.椭圆C 的离心率为3D.1PF PA +最小值为-【答案】ACD 【解析】【分析】A 选项,根据椭圆定义求出答案;B 选项,数形结合得到当P 在上顶点或下顶点时,12PF F △面积最大,求出最大值;C 选项,由ce a=直接求解即可;D 选项,作出辅助线,结合椭圆定义得到()12PF PA PA PF +=+-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,得到答案.【详解】A 选项,由题意得2a b c ====,由椭圆定义可得122PF PF a +==A 正确;B 选项,当P 在上顶点或下顶点时,12PF F △面积最大,最大值为1212F F b bc ⋅==B 错误;C 选项,离心率3c e a ===,C 正确;D 选项,因为2211162+<,所以点()1,1A 在椭圆内,连接2PF ,由椭圆定义可知12PF PF +=,故12PF PF =,故()122PF PA PF PA PA PF +=-+=-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,最小值为2AF -==,所以1PF PA +最小值为D 正确.故选:ACD11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为13【答案】ACD 【解析】【分析】根据空间向量的基本定理,可判定A 错误;根据投影向量的求法,可判定B 正确;根据20a b ⋅=≠,可判定C 错误;根据线面角的空间的向量求法,可判定D 错误.【详解】对于A 中,设()(2,4,4)1,2,2(2,1,1)x y --=+-,可得222424x y x y x y -=-⎧⎪+=-⎨⎪+=⎩,此时,方程组无解,所以向量(2,4,4)--与向量,a b不共面,所以A 错误;对于B 中,由向量()1,2,2,(2,1,1)a b ==-,可得向量b 在向量a 上的投影向量为21244(1,2,2),,33999a ba aa ⋅⎛⎫⋅=⨯⋅= ⎪⎝⎭,所以B 正确;对于C 中,若两个不同的平面,αβ的法向量分别是,a b,因为20a b ⋅=≠ ,所以a 与b不垂直,所以平面α与平面β不垂直,所以C 错误;对于D 中,若平面α的法向量是a ,直线l 的方向向量是b,设直线l 与平面α所成角为θ,其中π02θ≤≤,则·sin cos ,a b a b a b θ===,所以cos 9θ==,所以D 错误.故选:ACD.12.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12n k +=B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-【答案】ABD 【解析】【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可.【详解】由题意可知,第1次得到数列1,3,2,此时1k =第2次得到数列1,4,3,5,2,此时3k =第3次得到数列1,5,4,7,3,8,5,7,2,此时7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k =第n 次得到数列1,123,,,,k x x x x ,2此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得:123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈ 用等比数列求和可得()33132n na -=+则()121331333322n n n a +++--=+=+23322n +=+又()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+所以133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误.123n nS a a a a =++++ 23133332222n n+⎛⎫=++++ ⎪⎝⎭ ()231331322nn --=+2339424n n +=+-()133234n n +=+-,故D 项正确.故选:ABD.【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.【答案】310##0.3【解析】【分析】利用空间向量的加减及数乘运算,以{},,a b c为基底,用基向量表示MN ,再空间向量基本定理待定系数即可.【详解】在平行六面体1111ABCD A B C D -中,因为点M 是11A D 的中点,点N 是1CA 上的点,所以111114152MN A N A M A C A D =-=- ()()11111141415252AC AA A D AB AD AA A D =--=+--()14152AB AD AA AD =+--14345105AB AD AA =+-4345105a b c =+- .又MN xa yb zc =++ ,由空间向量基本定理得,434,,5105x y z ===-,则310x y z ++=.故答案为:310.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.【答案】25##0.4【解析】【分析】分析数据得到三天中恰有两天下雨的有417,386,196,206,得到答案.【详解】10组随机数中,表示三天中恰有两天下雨的有417,386,196,206,故这三天中恰有两天下雨的概率近似为42105=.故答案为:2515.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.【答案】129130【解析】【分析】利用等差数列前n 项和公式,将题目所求的式子中的,n n a b 有关的式子,转化为,n n S T 有关的式子来求解.【详解】原式11111212111111212132333322111292222223212130a a a a Sb b b b T +⨯+==⋅=⋅=⋅=⋅=+⨯+.【点睛】本小题主要考查了等差数列通项公式的性质,考查了等差数列前n 项和公式,考查了通项公式和前n 项和公式的转化.对于等比数列{}n a 来说,若m n p q +=+,则有m n p q a a a a +=+,而前n 项和公式()12n n a a n S +⋅=,可以进行通项和前n 项和的相互转化.属于基础题.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.【答案】(【解析】【分析】利用点差法得到22l b k a=,根据题意和渐近线方程得到l b k a <,故01b a <<,从而求出离心率的取值范围.【详解】设()()1122,,,A x y B x y ,则2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减得()()()()2212121212b x x x x a y y y y +-=+-,若12x x =,则AB 的中点在x 轴上,不合要求,若12x x =-,则AB 的中点在y 轴上,不合要求,所以2121221212y y y y b x x x x a-+⋅=-+,因为()1,1P 为AB 的中点,所以1212212y y x x +==+,故22l b k a=,因为()222211,0x y a b a b-=≥>的渐近线方程为b y x a =±,要想直线l 与双曲线C :()222211,0x y a b a b -=≥>交于A 、B 两点,则l b k a <,即22b ba a <,解得01b a <<,所以离心率(c e a ==.故答案为:(【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.【答案】(1)2100x y +-=;(2)70x y +-=或430x y -=.【解析】【分析】(1)根据给定的方向向量,求出直线的斜率,利用直线的点斜式方程求解即得.(2)由已知,按截距是否为0,结合直线的截距式方程分类求解即得.【小问1详解】由向量()1,2a =-是直线l 的一个方向向量,得直线l 的斜率2k =-,又l 经过点()3,4P ,则l 方程为:()423y x -=--,即:2100x y +-=,所以直线l 的方程为2100x y +-=.【小问2详解】依题意,当直线l 过原点时,而直线l 又过点()3,4P ,则直线l 的方程为43y x =,即430x y -=;当直线l 不过原点时,设直线l 的方程为x y a +=,则有34a +=,解得7a =,即直线l 的方程为70x y +-=,所以直线l 的方程为70x y +-=或430x y -=.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.【答案】(1)(2)11,22⎛+⎝⎭【解析】【分析】(1)求出圆心和半径,得到圆心到直线的距离,利用垂径定理求出弦长;(2)求出圆心和半径,根据圆心()2,λλ--到y x =的距离大于半径得到不等式,求出答案.【小问1详解】当2λ=时,圆C :22410x y y ++-=,圆心()0,2C -,半径r =,所以圆心到直线的距离d ==设直线与圆交于A 、B 两点,则弦长AB ==故直线y x =被圆C截得的弦长为【小问2详解】圆C 方程为()()2222221x y λλλλ+-++=⎡-⎤⎣+⎦,22012221122λλλ⎛⎫-+=- ⎪+⎭>⎝恒成立,因为直线y x =与圆C 没有公共点,圆心()2,λλ--到y x =>所以22221λλ>-+,即22210λλ--<,解得:1122λ-<<,故λ的取值范围是11,22⎛+ ⎝⎭.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-.【解析】【详解】试题分析:(Ⅰ)列出关于1,a q 的方程组,解方程组求基本量;(Ⅱ)用错位相减法求和.试题解析:(Ⅰ)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==.又0n a >,解得:12,2a q ==,所以2n n a =.(Ⅱ)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,令nn nb c a =,则212n nn c +=,因此12231357212122222n n n n n n T c c c --+=+++=+++++ ,又234113572121222222n n n n n T +-+=+++++ ,两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-.【考点】等比数列的通项,错位相减法求和.【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.【答案】(1)证明见解析(2)4515【解析】【分析】(1)先证明线面垂直,再应用面面垂直判定定理证明即可;(2)应用空间向量法求出二面角余弦.【小问1详解】因为PB ⊥平面ABCD ,所以PB AB ⊥.在Rt PAB中可求得AB ==在ABC 中,因为1,2BC AC ==,所以2225AC BC AB +==,所以ACBC ⊥.又PB ⊥平面ABCD ,所以AC PB ⊥.因为PB BC B ⋂=,PB BC ⊂,平面PBC ,所以AC ⊥平面PBC .又AC ⊂平面PAC ,所以平面PAC ⊥平面PBC .【小问2详解】因为,AB AD PB ⊥⊥平面ABCD ,所以分别以,,AD BA BP的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系,则()()()()0,2,,2,0,0,2,0,0,0,55P C D AD AP ⎛⎫-==- ⎪ ⎪⎝⎭.由(1)知AC ⊥平面PBC ,所以,,055AC ⎛⎫=- ⎪ ⎪⎝⎭ 为平面PBC 的一个法向量.设平面PAD 的法向量为(),,n x y z =r,可得2020x z =⎧⎪⎨+=⎪⎩,令2y =,得(n =.设平面PBC 与平面PAD 的夹角为θ,则cos cos ,15n AC n AC n ACθ⋅===.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.【答案】(1)427(2)265432【解析】【分析】(1)对乙来说共有两种情况:(胜,不胜,胜),(不胜,胜,胜),根据独立事件的乘法公式即可求解.(2)以比赛结束时的场数进行分类,在每一类中根据相互独立事件的乘法公式即可求解.【小问1详解】设事件A 为“第三局结束乙获胜”由题意知,乙每局获胜的概率为13,不获胜的概率为23.若第三局结束乙获胜,则乙第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).故()121211433333327P A =⨯⨯+⨯⨯=【小问2详解】设事件B 为“甲获胜”.若第二局结束甲获胜,则甲两局连胜,此时的概率1111224P =⨯=.若第三局结束甲获胜,则甲第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).此时的概率211111112222224P =⨯⨯+⨯⨯=.若第四局结束甲得两分获胜,则甲第四局必定获胜,前三局为1胜2平或1胜1平1负,总共有9种情况:(胜,平,平,胜),(平,胜,平,胜),(平,平,胜,胜),(胜,平,负,胜),(胜,负,平,胜),(平,胜,负,胜),(负,胜,平,胜),(平,负,胜,胜),(负,平,胜,胜).此时的概率311111111562662263248P =⨯⨯⨯⨯3+⨯⨯⨯⨯=若第四局结束甲以积分获胜,则乙的积分为0分,总共有4种情况:(胜,平,平,平),(平,胜,平,平),(平,平,胜,平),(平,平,平,胜).此时的概率41111142666108P =⨯⨯⨯⨯=故()3124265432P B P P P P =+++=22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.【答案】(1)22143x y +=;(2)90,2⎛⎤ ⎥⎝⎦.【解析】【分析】(1)根据给定条件,确定椭圆C 过点3(1,)2,再代入求解作答.(2)设出直线l 的方程,与椭圆C 的方程联立,结合韦达定理求出APQ △面积的函数关系,再利用对勾函数的性质求解作答.【小问1详解】依题意,2a =,当直线l 的斜率不存在时,由3PQ =,得直线l 过点3(1,)2,于是219144b+=,解得23b =,所以椭圆C 的方程为22143x y +=.【小问2详解】依题意,直线l 不垂直于y 轴,设直线l 的方程为()()11221,,,,x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩消去x 整理得()2234690t y ty ++-=,则12122269,3434t y y y y t t --+==++,APQ △的面积121||||2S AD y y =-=218134t ==++,令1u =≥,对勾函数13y u u=+在[1,)+∞上单调递增,则134u u+≥,即4≥,从而189012<≤+,当且仅当0t =时取等号,故APQ △面积的取值范围为90,2⎛⎤ ⎥⎝⎦.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.。

最新高二数学上学期期末考试试卷含答案

一、选择题(本大题共12小题,共60.0分)1.在等差数列{a n}中,已知a4=3,a12=19,则公差d为()A. 2B. 1C. −2D. −1【答案】A【解析】解:∵在等差数列{a n}中,a4=3,a12=19,∴公差d=19−3 12−4=168=2.故选:A.利用等差数列的通项公式直接求解.本题考查等差数列的公差的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.2.在△ABC中,AB=AC=2,且∠B=π6,则边BC=()A. 2B. 4C. √3D. 2√3【答案】D【解析】解:∵AB=AC=2,且∠B=π6,∴∠C=∠B=π6,∠A=2π3,∴由正弦定理ACsin∠B =BCsin∠A,可得:2sinπ6=BCsin2π3,可得:BC=2×√3212=2√3.故选:D.由已知利用等腰三角形的性质可求∠A=2π3,由正弦定理即可解得BC的值.本题主要考查了正弦定理在解三角形中的应用,属于基础题.3.在等比数列{a n}中,已知公比q=2,前n项和为S n,若S2=3,S3=7,则它的前5项之和S5为()A. 62B. 15C. 31D. 21【答案】C【解析】解:在等比数列{a n}中,公比q=2,前n项和为S n,S2=3,S3=7,∴{a1(1−22)1−2=3a1(1−23)1−2=7,解得a1=1,∴它的前5项之和S5=1×(1−25)1−2=31.故选:C.利用等比数列前n项和公式列方程组,求出a1=1,由此能求出它的前5项之和S5.本题考查年平均增长率的求法,考查年平均增长率的性质、计算公式等基础知识,考查运算求解能力,是基础题.4.已知△ABC的三内角A、B、C的对边分别为a、b、c,若b=2√3,a=2,∠B=60∘,则∠A=()A. 120∘B. 60∘C. 45∘D. 30∘【答案】D【解析】解:在△ABC中,由正弦定理得asinA =bsinB,∴sinA=asinBb=2×√32 2√3=12.∵a<b,∴A<B,即A是锐角.∴A=30∘.故选:D.由已知及正弦定理可求得sinA的值,由a<b,可知A是锐角,从而确定∠A的值.本题考查了正弦定理的应用,是基础题.5.已知椭圆x225+y216=1的两个焦点为F1,F2,过F1的直线与椭圆交于A,B两点,则△ABF2的周长为()A. 20B. 10C. 16D. 8【答案】A【解析】解:根据椭圆的定义:|AF1|+|AF2|=2a=10;|BF1|+ |BF2|=2a=10;△ABF1的周长为:|AB|+|AF1|+|BF1|=|AF2|+|BF2|+|AF1|+|BF1|=4a=20.故选:A.利用椭圆的定义:椭圆上的点到两焦点的距离之和为2a;把三角形的周长转化成椭圆上的点到焦点的距离问题解决.本题考查了椭圆的定义,解题的关键是把三角形的周长问题转化成椭圆上的点到焦点的距离问题,利用椭圆的定义解决.6.已知双曲线C的中心在坐标原点,渐近线方程为y=±2x,且它的个焦点为(√5,0),则双曲线C的实轴长为()A. 1B. 2C. 4D. 2√5【答案】B【解析】解:双曲线C的中心在坐标原点,渐近线方程为y=±2x,且它的一个焦点为(√5,0),所以c=√5,ba =2,可得c2−a2a2=4,解得a=1,所以双曲线的实轴长为2.故选:B.一条渐近线方程是y=±2x,焦点为(√5,0),转化求解双曲线的实轴长即可.本题给出焦点在x坐标轴上的双曲线满足的条件,求双曲线的标准方程.着重考查了双曲线的标准方程与简单几何性质等知识,属于基础题.7.下列命题中正确的是()A. 若a,b∈R,则ba +ab≥2√ba⋅ab=2B. 若x>0,则x+1x>2C.若x<0,则x+4x ≥−2√x⋅4x=−4D. 若x∈R,则2x+2−x≥2√2x⋅2−x=2【答案】D【解析】解:A选项必须保证a,b,同号.B选项应取到等号,若x>0,则x+1x≥2,C选项应该为≤,故选:D.由基本不等式成立的条件,正、定、等,可知答案选D.本题考查基本不等式的性质,属于简单题.8. 在等差数列{a n }中,已知a 2+a 5+a 12+a 15=36,则S 16=() A. 288B. 144C. 572D. 72 【答案】B【解析】解:a 2+a 5+a 12+a 15=2(a 2+a 15)=36,∴a 1+a 16=a 2+a 15=18,∴S 16=16(a 1+a 16)2=8×18=144,故选:B .根据等差数列的性质和求和公式计算即可.本题考查了等差数列的求和公式和等差数列的性质,属于基础题9. 含2n +1个项的等差数列,其奇数项的和与偶数项的和之比为() A.2n+1nB.n+1nC.n−1nD.n+12n【答案】B【解析】解:依题意,奇数项的和S 奇数=a 1+a 3+⋯+a 2n+1=(n+1)(a 1+a 2n+1)2=(n+1)×2a n+12=(n +1)a n+1,同理可得S 偶数=na n+1;∴S 奇数S偶数=n+1n.故选:B .利用等差数列的求和公式与等差数列的性质即可求得该题中奇数项的和与偶数项的和之比.本题考查等差数列的性质,着重考查等差数列的求和公式与等差数列的性质的综合应用,属于中档题.10. 已知点M 在抛物线x 2=4y 上,则点M 到直线y =x −3的最小距离为() A. 1B. 2C. √2D. 3 【答案】C【解析】解:设与直线y =x −3平行的直线方程为:y =x −m ,设切点坐标(s,t),x 2=4y 可得:y ′=12x ,可得12s =1,可得s =2,则t =1,所以点M 到直线y =x −3的最小距离为:√2=√2.故选:C .设出直线的平行线方程,利用函数的导数,求解切点坐标,利用点到直线的距离公式求解即可.本题主要考查了抛物线的简单性质,两点距离公式的应用.解此类题设宜先画出图象,进而利用数形结合的思想解决问题.11. 设a >1,则关于x 的不等式(1−a)(x −a)(x −1a )<0的解集是()A. (−∞,a)∪(1a,+∞)B. (a,+∞)C. (a,1a )D. (−∞,1a)∪(a,+∞)【答案】D【解析】解:a >1时,1−a <0,且a >1a ,则关于x 的不等式(1−a)(x −a)(x −1a )<0可化为(x −a)(x −1a )>0,解得x <1a 或x >a ,所以不等式的解集为(−∞,1a )∪(a,+∞).故选:D .根据题意,把不等式化为(x −a)(x −1a )>0,求出解集即可.本题考查了一元二次不等式的解法与应用问题,是基础题.12. 已知直线与抛物线y 2=2px(p >0)交于A ,B 两点,且OA ⊥OB ,OD ⊥AB 交AB 于D ,点D 的坐标为(2,1),则p 的值为() A. 52B. 23C. 54D. 32 【答案】C【解析】解:设A(x 1,y 1),B(x 2,y 2),∵直线OD 斜率为12,OD ⊥AB ,∴直线AB 斜率为−2,故直线AB 方程为2x +y −5=0…(1)将(1)代入抛物线方程得y 2+py −5p =0,则y 1y 2=−5p ,∵y 12=2px 1,y 22=2px 2,则(y 1y 2)2=4p 2x 1x 2,故x 1x 2=254,∵OA ⊥OB ∴x 1x 2+y 1y 2=0,∵p >0,∴p =54.故选:C .设A(x 1,y 1),B(x 2,y 2),由直线OD 斜率为12,OD ⊥AB ,知直线AB 方程为2x +y −5=0,代入抛物线方程得y 2+py −5p =0,从而得到y 1y 2=−5p ,再由OA ⊥OB ,能求出p .本题考查直线与抛物线的位置关系的应用,解题时要认真审题,仔细解答,注意等价转化思想的合理运用. 二、填空题(本大题共4小题,共20.0分)13. 设x 、y 满足约束条件{0≤x ≤10≤y ≤22y −x ≥1,且z =2y −2x +4,则z的最大值为______. 【答案】8【解析】解:作出不等式组对应的平面区域如图:由z =2y −2x +4得y =x +z 2−2,平移直线y =x +z2−2,由图象可知当直线y =x +z2−2经过点A(0,2)时,直线y =x +z2−2的截距最大,此时z 最大,z max =2×2+4=8.即z 的最大值是8,故答案为:8.作出不等式组对应的平面区域,由z =2y −2x +4得y =x +z2−2,利用数形结合即可的得到结论.本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键. 14. 命题:“若A ∪B =A ,则A ∩B =B ”的否命题是______. 【答案】若A ∪B ≠A 则A ∩B ≠B【解析】解:“若A ∪B =A ,则A ∩B =B ”的否命题: “若A ∪B ≠A 则A ∩B ≠B ”故答案为:若A ∪B ≠A 则A ∩B ≠B .对所给命题的条件和结论分别否定,即:A ∪B ≠A 和A ∩B ≠B ,作为否命题的条件和结论.本题考查了否命题的定义,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(本大题共12小题,共60.0分)
1.直线x+2=0的倾斜角为()
A. 0B. π
4C. π
3
D. π
2
【答案】D
【解析】解:直线x+2=0的斜率不存在,倾斜角为π
2
.故选:D.直
线x+2=0与x轴垂直,斜率不存在,倾斜角为π
2
.本题考查了直线方程与倾斜角的应用问题,是基础题.
2.抛物线y2=4x的准线方程为()
A. x=−1
B. x=1
C. y=−1
D. y=1
【答案】A
【解析】解:∵y2=4x,2p=4,p=2,∴抛物线y2=4x的准线
方程为x=−1.故选:A.利用抛物线的基本性质,能求出抛物
线y2=4x的准线方程.本题考查抛物线的简单性质,是基础题.解
题时要认真审题,仔细解答.
3.如果一个几何体的正视图是矩形,则这个几何体不可能是()
A. 三棱柱
B. 四棱柱
C. 圆锥
D. 圆柱
【答案】C
【解析】解:三棱柱,四棱柱(特别是长方体),圆柱的正视图都
可以是矩形,圆锥不可能.几何体放置不同,则三视图也会发生
改变.三棱柱,四棱柱(特别是长方体),圆柱的正视图都可以是矩
形.几何体放置不同,则三视图也会发生改变.考查了学生的空间想象力.
4.设a,b,c为实数,且a<b<0,则下列不等式正确的是()
A. 1
a <1
b
B. ac2<bc2
C. b
a
>a
b
D. a2>ab>b2
【答案】D
【解析】解:对于A:1
a −1
b
=b−a
ab
>0,A不正确;对于B:ac2<bc2
在c=0时,不成立,B不正确;对于C:b
a −a
b
=b2−a2
ab
=(b−a)(b+a)
ab
<
0,C不正确.故选:D.A:作差判断不成立;B:c=0时不成立;C:作差判断不成立.本题考查了不等式的基本性质,属基础题.
5.如图是根据某赛季甲、乙两名篮球运动员参加
11场比赛的得分情况画出的茎叶图.若甲运动
员的中位数为a,乙运动员的众数为b,则a−
b的值是()
A. 8
B. 9
C. 10
D. 11
【答案】A
【解析】解:根据茎叶图知,甲运动员的中位数为a=19,乙运动员的众数为b=11,则a−b=19−11=8.故选:A.根据茎叶图中的数据写出甲的中位数a和乙的众数b,再求a−b.本题考查了利用茎叶图求中位数和众数的应用问题,是基础题.6.某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其
均值和方差分别为x−和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为()
A. x−,s2+1002
B. x−+100,s2+1002
C. x−,s2
D. x−+100,
s2
【答案】D
【解析】解:由题意知y i=x i+100,则y−=1
10
(x1+x2+⋯+x10+
100×10)=1
10(x1+x2+⋯+x10)=x−+100,方差s2=1
10
[(x1+
100−(x−+100)2+(x2+100−(x−+100)2+⋯+(x10+100−(x−+100)2]=1
10
[(x1−x−)2+(x2−x−)2+⋯+(x10−x−)2]=
s2.故选:D.根据变量之间均值和方差的关系和定义,直接代入即可得到结论.本题主要考查样本数据的均值和方差之间的关系,利用均值和方差的定义是解决本题的关键,要求熟练掌握相应的计算公式.
7.已知双曲线x2
5−y2
b2
=1的焦点到渐近线的距离为2,则其虚轴
长为()
A. 1
B. 4
C. 3
D. 0 【答案】B
【解析】解:双曲线x2
5−y2
b2
=1的一个焦点设为(c,0),c>0,且
c=√5+b2,一条渐近线的方程设为bx−√5y=0,b>0,由题意可得
√b2+5
=b=2,即有2b=4,故选:B.设出双曲线的一个焦点和一条渐近线方程,运用点到直线的距离公式可得b=2,可得虚轴长2b.本题考查双曲线的方程和性质,主要是渐近线方程,考查点到直线的距离公式,以及运算能力,属于基础题.
8.设α,β,γ是三个不重合的平面,m,n是两条不重合的直线,
则下列说法正确的是()
A. 若m//α,n//α,则m//n
B. 若α⊥β,m⊥β,则m//α
C. 若
α⊥β,β⊥γ,则α//γD. 若m⊥α,n⊥α,则m//n
【答案】D
【解析】解:A中m,n还可能相交或异面;B中漏掉了m⊂α的情况;C中α,β也可能相交;D中同垂直于一个平面的两条直线平行,正确,故选:D.A,B,C中的结论都不完整,D中的结论有定理作保证,显然选D.此题考查了线面,面面的各种关系,难度较小.
9.某市为调查某社区居民的家庭收入与年支出的关系,现随机调
查了该社区5户家庭,得到如下统计数据:
若该社区居民家庭收入与年支出存在线性相关关系,且根据上表得到的回归直线方程是y^=b^x+a^,其中b^=0.76,据此估计,该社区一户年收入为15万元的家庭的年支出约为()
A. 11.4万元
B. 11.8万元
C. 12.0万元
D. 12.2万元
【答案】B
【解析】解:x−=8.5+9+10+11+11.5
5=10,y−=6.2+7.5+8+8.5+9.8
5
=8,
再根据样本中心点(x−,y−)在回归直线上,所以8=0.76×10+â可得â=0.4,所以线性回归直线方程为y−=0.76x+0.4,当x=15时,
y=0.76×15+0.4,解得y=11.8元.故选:B.先根据线性回归直线过样本中心点得â=0.4,从而得回归方程,在将x=15代入可求得y=11.8万元.本题考查了线性回归方程,属中档题.10.如图的程序框图的部分算法思路来源于我
国古代内容极为丰富的数学名著《九章算
术》中的“更相减损术”,执行该程序框图,
若输入a,b的值分别为12,15,则输出
的m=()
A. 3
B. 30
C. 60
D. 180
【答案】C
【解析】解:模拟程序的运行,可得a=12,b=15,t=12×15= 180,不满足条件a≥b,b=12−5=3满足条件a≥b,a=12−3=9满足条件a≥b,a=9−3=6满足条件a≥b,a=6−3=3此时,不满足条件a≠b,计算并输出m=180
=60.故选:C.由
3
已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量m的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.11.设抛物线C:y2=4x的焦点为F,点M在C上,若以MF为
直径的圆过点P(0,−2),则|PM|的值为()
A. √5
B. 5
C. 2√5
D. 10
【答案】C
【解析】解:抛物线C :y 2
=4x 的焦点为F(1,0),设M(y 24,y),∵以MF 为直径的圆过点P(0,−2),∴PM ⊥PF ,
∴PM ⃗⃗⃗⃗⃗⃗ ⋅PF ⃗⃗⃗⃗ =(y 24,y +2)⋅(1,2)=0,∴y 2
4+2(y +2)=0,解得y =−4,∴x M =(−4)2
4=4,M(4,−4);∴|PM|=
√(4−0)2+(−4+2)2=2√5.故选:C .根据抛物线的方程求出焦点F ,利用直径对直角得出PM ⊥PF ,求出点M 的坐标,再计算|PM|的值.本题考查了圆的性质和抛物线的定义应用问题,也考查了推理能力与计算能力,是中档题.
12. 已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为
F 1(−c,0)、F 2(c,0),A ,B 是圆(x +c)2+y 2=4c 2与双曲线C 位于x 轴上方的两个交点,且∠AF 1B =90∘,则双曲线C 的离心率为()
A. √√2+1
B. √2+1
C. √2√2+1
D. 2√2+1
【答案】A
【解析】解:圆(x +c)2+y 2=
4c 2的圆心为(−c,0),半径为2c ,
且|AF 1|=2c ,|BF 1|=2c ,由双
曲线的定义可得|AF 2|=2a +2c ,
|BF 2|=2c −2a ,设∠BF 1F 2=α,。

相关文档
最新文档