初二数学勾股定理经典易错习题(最新整理)
八年级数学勾股定理重点易错题

(每日一练)八年级数学勾股定理重点易错题单选题1、以下列各组数为三角形的边长,能构成直角三角形的是()A.2、3、4B.5、5、6C.2、√3、√5D.√2、√3、√5答案:D解析:根据勾股定理的逆定理得出选项A、B、C不能构成直角三角形,D选项能构成直角三角形,即可得出结论.解:A、22+32≠42,不符合勾股定理的逆定理,故不正确;B、52+52≠62,不符合勾股定理的逆定理,故不正确;C、22+(√3)2≠(√5)2,不符合勾股定理的逆定理,故不正确;D、(√2)2+(√3)2=(√5)2,符合勾股定理的逆定理,能构成直角三角形,故正确.故选D.小提示:本题考查了勾股定理的逆定理;在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、如图,圆柱的底面周长是24,高是5,一只在A点的蚂蚁想吃到B点的食物,沿着侧面需要爬行的最短路径是()A.9B.13C.14D.25答案:B解析:画出该圆柱的侧面展开图,根据两点之间线段最短,可知沿着侧面需要爬行的最短路径即为AB,然后根据勾股定理求出AB即可求出结论.解:该圆柱的侧面展开图,如下图所示,根据两点之间线段最短,可知沿着侧面需要爬行的最短路径即为AB,AB恰为一个矩形的对角线,该矩形的长为圆柱的底面周长的一半,即长为24÷2=12,宽为5,∴AB=√52+122=13,即沿着侧面需要爬行的最短路径长为13.故选:B.小提示:此题考查的是勾股定理与最短路径问题,解题的关键是掌握勾股定理和两点之间线段最短.3、以下列各组数为三角形的边长,能构成直角三角形的是()A.2、3、4B.5、5、6C.2、√3、√5D.√2、√3、√5答案:D解析:根据勾股定理的逆定理得出选项A、B、C不能构成直角三角形,D选项能构成直角三角形,即可得出结论.解:A、22+32≠42,不符合勾股定理的逆定理,故不正确;B、52+52≠62,不符合勾股定理的逆定理,故不正确;C、22+(√3)2≠(√5)2,不符合勾股定理的逆定理,故不正确;D、(√2)2+(√3)2=(√5)2,符合勾股定理的逆定理,能构成直角三角形,故正确.故选D.小提示:本题考查了勾股定理的逆定理;在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4、如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a⋅b C.√a2+b22D.√a2−b22答案:C解析:根据全等三角形的性质,设CD=AH=x,DE=AG=BC=y,由CE=a,HG=b建立方程组,求解即可得出CD=x= a−b,BC=y=a+b,然后借助勾股定理即可表示BD.解:根据图象是由四个全等的直角三角形拼成,设CD=AH=x ,DE=AG=BC=y , ∵CE =a ,HG =b , ∴{x +y =a y −x =b 解得:{x =a−b2y =a+b 2,故CD =a−b 2,BC =a+b 2在RtΔBCD 中,根据勾股定理得:BD 2=BC 2+CD 2=(a+b 2)2+(a−b 2)2=a 2+b 22,∴BD =√a 2+b 22.故选:C. 小提示:本题考查勾股定理,全等三角形的性质,能借助方程思想用含a ,b 的代数式表示CD 和BC 是解决此题的关键. 5、在△ABC 中,a ∶ b ∶ c =1 ∶ 1 ∶ √2,那么△ABC 是( ) A .等腰三角形B .钝角三角形C .直角三角形D .等腰直角三角形 答案:D 解析:根据等腰三角形的判定和勾股定理逆定理得出三角形的形状即可. ∵a :b :c =1:1:√2,∴三角形ABC 是等腰三角形. 设三边长为a,a,√2a∵a 2+a 2=(√2a )2,∴三角形ABC 是直角三角形. 综上所述:△ABC 是等腰直角三角形.故选D.小提示:本题考查了等腰三角形的判定和勾股定理逆定理.此题关键是利用勾股定理的逆定理解答.6、勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中不能证明勾股定理的是()A.B.C.D.答案:D解析:利用两个以a和b为直角边三角形面积与一个直角边为c的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积推导勾股定理可判断A,利用以a与b为两直角边四个全等三角形面积与边长为c的小正方形面积和等于以a+b的和为边正方形面积推导勾股定理可判断B,利用以a与(a+b)为两直角边四个全等三角形面积与边长为b的小正方形面积和等于以c为边正方形面积推导勾股定理可判断C,利用四个小图形面积和等于大正方形面积推导完全平方公式可判断D.解: A、两个以a和b为直角边三角形面积与一个直角边为c的等腰直角三角形面积和等于上底为a,下第为b,高为(a+b)的梯形面积,故12ab+12ab+12c2=12(a+b)2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、以a与b为两直角边四个全等三角形面积与边长为c的小正方形面积和等于以a+b的和为边正方形面积,故4×12ab+c2=(a+b)2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、以a与(a+b)为两直角边四个全等三角形面积与边长为b的小正方形面积和等于以c为边正方形面积,a(a+b)+b2=c2,整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;4×12D、四个小图形面积和等于大正方形面积,2ab+a2+b2=(a+b)2,根据图形证明完全平方公式,不能证明勾股定理,故本选项符合题意;故选:D.小提示:本题考查利用面积推导勾股定理与完全平方公式,掌握利用面积推导勾股定理与完全平方公公式是关键.7、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米答案:C解析:在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C .小提示:本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.8、如图,在△ABC 中,∠ACB =90°,分别以点A 和点B 为圆心,以相同的长(大于 12 AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交BC 于点E .若AC =3,AB =5,则DE 等于( )A .2B .103C .158D .152答案:C 解析:根据勾股定理求出BC ,根据线段垂直平分线性质求出AE=BE ,根据勾股定理求出AE ,再根据勾股定理求出DE 即可.解:在RtABC 中,由勾股定理得:BC=√52−32=4, 连接AE ,从作法可知:DE 是AB 的垂直评分线,根据性质AE=BE ,在Rt △ACE 中,由勾股定理得:AC 2+CE2=AE2,即32+(4-AE )2=AE2,解得:AE=258,在Rt △ADE 中,AD=12AB=52,由勾股定理得:DE 2+(52)2=(258)2,解得:DE=158.故选C.“点睛”:本题考查了线段垂直平分线性质,勾股定理的应用,能灵活运用勾股定理得出方程是解此题的关键. 填空题9、如图,数字代表所在正方形的面积,则A 所代表的正方形的面积为_________.答案:100. 解析:三个正方形的边长正好构成直角三角形的三边,根据勾股定理得到字母A 所代表的正方形的面积A =36+64=100. 解:由题意可知,直角三角形中,一条直角边的平方=36,一条直角边的平方=64,则斜边的平方=36+64. 所以答案是:100. 小提示:本题考查了正方形的面积公式以及勾股定理.10、如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.答案:0.5解析:结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC=√AB2−BC2=√2.52−1.52=2(米).∵BD=0.5米,∴CD=2米,∴CE=√DE2−CD2=√2.52−22=1.5(米),∴AE=AC-EC=0.5(米).故答案为0.5.点睛:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.11、如图,在RtΔABC中,∠ABC=90∘,AB=3,BC=4,RtΔMPN,∠MPN=90∘,点P在AC上,PM交AB 于点E,PN交BC于点F,当PE=2PF时,AP=________.答案:3解析:如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出PQPR =PEPF=2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解决问题.如图,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴PQPR =PEPF=2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=35,∴AP=5x=3.故答案为3.小提示:本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.12、如图,在高为6米,坡面长度AB为10米的楼梯表面铺上地毯,则至少需要地毯______米.答案:14解析:将楼梯表面向下和右平移,则地毯的总长=两直角边的和,已知斜边和一条直角边,根据勾股定理即可求另一条直角边,计算两直角边之和即可解题.解:将楼梯表面向下和右平移,则地毯的总长=两直角边的和,由题意得:∠ACB=90°,AB=10米,AC=6米,由勾股定理得BC=√AB2−AC2=√102−62=8(米),则AC+BC=14(米),所以答案是:14.小提示:本题考查了勾股定理的应用,本题中把求地毯长转化为求两直角边的长是解题的关键.13、若直角三角形的两直角边长为a、b,且满足√a2−6a+9+|b−4|=0,则该直角三角形的斜边长为_____.答案:5解析:解:∵√a2−6a+9+|b−4|=0,∴a2−6a+9=0,b-4=0,解得a=3,b=4.∵直角三角形的两直角边长为a、b,∴该直角三角形的斜边长=√a2+b2=√32+42=5.所以答案是:5解答题14、如图,已知∠ABD=90°,AB=8 m,AD=17 m,DC=20 m,BC=25 m.(1)求BD的长度;1112(2)求四边形ABCD 的面积.答案:(1)BD =15(2) 210m 2.解析:(1)根据勾股定理即可求出BD 的长;(2)先根据勾股定理的逆定理判断△BDC 是直角三角形,然后根据四边形ABCD 的面积等于△ABD 和△BDC 的面积和即可得出答案.解:(1)∵∠ABD =90°,∴AB 2+BD 2=AD 2, ∴82+BD 2=172, ∴BD =15;(2)∵BD =15,DC =20,BC =25,∴BD 2+DC 2=BC 2, ∴∠BDC =90°,∴四边形ABCD 的面积=12AB ×BD +12CD ×BD=12×8×15+12×20×15=210m 2.小提示:本题考查了勾股定理和勾股定理的逆定理的应用,根据勾股定理的逆定理判断出△BDC是直角三角形是解决此题的关键.15、如图,在△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.答案:84解析:先根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证ΔABD是直角三角形,再利用勾股定理求出CD 的长,然后利用三角形面积公式即可得出答案.解:∵BD2+AD2=62+82=102=AB2,∴ΔABD是直角三角形,∴AD⊥BC,在RtΔACD中,CD=√AC2−AD2=15,∴BC=BD+CD=6+15=21,∴SΔABC=12BC·AD=12×21×8=84.因此ΔABC的面积为84.故答案为84.小提示:此题主要考查学生对勾股定理和勾股定理的逆定理的理解和掌握,解答此题的关键是利用勾股定理的逆定理求证ΔABD是直角三角形.13。
勾股定理复习易错题四套题由简到难(附带答案)

勾股定理练习卷姓名一、填空题1.三角形的三边满足a2=b2+c2,这个三角形是三角形,它的最大边是.2.在直角三角形ABC中,∠C=90°,BC=24,CA=7,AB=.3.在△ABC中,假设其三条边的长度分别为9、12、15,那么以两个这样的三角形所拼成的四边形的面积是.4.如图1所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,那么正方形D的面积是cm2.5.如图2,在△ABC中,∠C=90°,BC=60c m,CA=80c m,一只蜗牛从C点出发,以每分钟20c m的速度沿CA→AB→BC的路径再回到C点,需要分钟的时间.6.x、y为正数,且|x2-4|+(y2-16)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为.7.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上〔设梯子上端要到达或超过挂拉花的高度才能挂上〕,小虎应把梯子的底端放在距离墙米处.8.如图3是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,假设图中大小正方形的面积分别为52与4,那么直角三角形的两直角边分别为与.〔注:两直角边长均为整数〕二、选择题1.以下各组数为勾股数的是〔〕A.6,12,13 B.3,4,7 C.4,7.5,8.5 D.8,15,16 2.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,那么梯子的长度为〔〕A.12m B.13m C.14m D.15m3.直角三角形两直角边边长分别为6cm与8cm,那么连接这两条直角边中点的线段长为〔〕A.10cm B.3cm C.4cm D.5cm4.假设将直角三角形的两直角边同时扩大2倍,那么斜边扩大为原来的〔〕A.2倍B.3倍C.4倍D.5倍5.以下说法中,不正确的选项是〔〕A.三个角的度数之比为1∶3∶4的三角形是直角三角形B.三个角的度数之比为3∶4∶5的三角形是直角三角形C.三边长度之比为3∶4∶5的三角形是直角三角形D.三边长度之比为9∶40∶41的三角形是直角三角形6.三角形的三边长满足关系:(a+b)2=c2+2ab,那么这个三角形是〔〕A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形7.某直角三角形的周长为30,且一条直角边为5,那么另一直角边为〔〕A.3 B.4 C.12 D.138.如果正方形ABCD的面积为29,那么对角线AC的长度为〔〕A .23B .49C .3D .29三、简答题 1.〔10分〕如图4,你能计算出各直角三角形中未知边的长吗?2.〔10分〕如图5所示,有一条小路穿过长方形的草地ABCD ,假设AB =60m ,BC =84m ,AE =100m ,那么这条小路的面积是多少3.〔10分〕如图6,在△ABC 中,∠BAC =120°,∠B =30°,AD ⊥AB ,垂足为A ,CD =1c m ,求AB 的长.4.〔10分〕小芳家门前有一个花圃,呈三角形状,小芳想知道该三角形是不是一个直角三角形,请问她可以用什么方法来作出判断?你能帮她设计一种方案吗?5.〔10分〕如图7,在△ABC 中,AB =AC =25,点D 在BC 上,AD =24,BD =7,试问AD 平分∠BAC 吗?为什么?6.〔10分〕如图8所示,四边形ABCD 中,AB =1,BC =2,CD =2,AD =3,且AB ⊥BC .求证:AC ⊥CD .参考答案:一、1.直角,a2.25 3.108 4.17 5.12 6.20 7.0.7 8.4,6二、1~4.CBDA 5~8.BBCA三、1.〔1〕5x =;〔2〕24x =2.2240m34.略5.所以AD平分BAC∠,理由略6.证明略四、〔1〕84,85.〔2〕任意一个大于1的奇数的平方可以拆成两个连续整数的与,并且这两个连续整数及原来的奇数构成一组勾股数.〔3〕略.八年级下册第十八勾股定理水平测试一、填空题〔每题3分,共24分〕1.一个三角形的三个内角之比为1∶2∶3,那么三角形是三角形;假设这三个内角所对的三边分别为a、b、c〔设最长边为c〕,那么此三角形的三边的关系是.2.等腰直角三角形的斜边长为2,那么直角边长为,假设直角边长为2,那么斜边长为.3.在Rt△ABC中,∠C=90°,①假设AB=41,AC=9,那么BC=;②假设AC=1.5,BC=2,那么AB=.4.两条线段的长分别为11cm与60cm,当第三条线段的长为cm时,这3条线段能组成一个直角三角形.5.如图1,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,那么筷子露在杯子外面的长度至少为厘米.6.如图2,AC⊥CE,AD=BE=13,BC=5,DE=7,那么AC=.7.等腰直角三角形有一边长为8c m,那么底边上的高是,面积是.8.如图3,一个机器人从A点出发,拐了几个直角的弯后到达B点位置,根据图中的数据,点A与点B的直线距离是.二、选择题〔每题3分,共24分〕1.如图4,两个较大正方形的面积分别为225,289,那么字母A所代表的正方形的面积为〔〕A.4 B.8 C.16 D.642.小丽与小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿钱再去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个〔设公园到小芳家及小芳家到图书馆都是直线〕〔〕A.锐角B.直角C.钝角D.不能确定3.一直角三角形的一条直角边长是7cm,另一条直角边及斜边长的与是49cm,那么斜边的长〔〕A.18cm B.20cm C.24cm D.25cm4.如图5,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,那么阴影局部的面积是〔〕A.16 B.18 C.19 D.215.在直角三角形中,斜边及较小直角边的与、差分别为18、8,那么较长直角边的长为〔〕A.20 B.16 C.12 D.86.在△ABC中,假设AB=15,AC=13,高AD=12,那么△ABC的周长是〔〕A.42 B.32 C.42或32 D.37或337.如图6,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是〔〕A.CD、EF、GH B.AB、EF、GHC.AB、CD、GH D.AB、CD、EF8.如图7,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,那么AE2-BE2等于〔〕A.AC2 B.BD2C.BC2 D.DE2三、简答题〔共58分〕1.一个三角形三条边的比为5∶12∶13,且周长为60c m,求它的面积.2的点.3.如图8,是一个四边形的边角料,东东通过测量,获得了如下数据:AB=3cm,BC=12cm,CD=13cm,AD=4cm,东东由此认为这个四边形中∠A恰好是直角,你认为东东的判断正确吗?如果你认为他正确,请说明其中的理由;如果你认为他不正确,那你认为需要什么条件,才可以判断∠A是直角?4.如图9,一游泳池长48米,小方与小朱进展游泳比赛,小方平均速度为3米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点5.如图10〔1〕所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图10〔2〕所示.展开图中每个正方形的边长为1.求在该展开图中可画出最长线段的长度?这样的线段可画几条?四、拓广探索〔此题14分〕:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,设△ABC 的面积为S ,周长为l .〔1〕填表:〔2〕如果a +b -c =m ,观察上表猜测:l = (用含有m 的代数式表示).〔3〕证明〔2〕中的结论.参考答案:一、1.直角,222ab c +=2.1,2 3.40,2.5 4.615.14 6.12 7.4或,16或328.10 二、1~4.DBDC 5~8.CCBA三、1.2120cm2.图略3.不正确,可添加DB BC ⊥或5cm DB =4.小方先到达终点54条四、解:〔1〕从上往下依次填12,1,32;〔2〕; 〔3〕证明略.Ww点击勾股定理之特色题本文将在各地课改实验区的中考试题中,涉及勾股定理知识内容的特色创新题采撷几例,供读者学习鉴赏.一.清新扮靓的规律探究题例1〔成都市〕如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n 〔n 为正整数〕,那么第8个正方形的面积8S =_______.【解析】:求解这类题目的常见策略是:“从特殊到一般〞. 即是先通过观察几个特殊的数式中的变数及不变数,得出一 般规律,然后再利用其一般规律求解所要解决的问题.对于此题,由勾股定理、正方形的面积计算公式易求得:照此规律可知:25416S ==,新 课 标第 一网 观察数1、2、4、8、16易知:0123412,22,42,82,162=====,于是可知12n n S -=因此,817822128S -===二.考察阅读理解能力的材料分析题例2〔临安〕阅读以下题目的解题过程:a 、b 、c 为的三边,且满足,试判断的形状.AB CD EF G HI J问:〔1〕上述解题过程,从哪一步开场出现错误?请写出该步的代号:;〔2〕错误的原因为:〔3〕此题正确的结论为: .【解析】:材料阅读题是近年中考的热点命题,其类型多种多样,此题属于“判断纠错型〞题目.集中考察了因式分解、勾股定理等知识.在由得到等式2222222-=+-没有错,错在将这个等式()()()c a b a b a b两边同除了一个可能为零的式子22-=,那么有()()0-.假设220a ba b+-=,a b a b从而得a b=,这时,ABC为等腰三角形.因此:(1)选C.(2)没有考虑220-=a b(3) ABC∆是直角三角形或等腰三角形三.渗透新课程理念的图形拼接题例3〔长春〕如图,在Rt△ABC中,∠C = 90°,AC = 4,BC = 3.在Rt△ABC的外部拼接一个适宜的直角三角形,使得拼成的图形是一个等腰三角形,如下图.出正确的图形〕例如图备用图【解析】:要在Rt△ABC的外部拼接一个适宜的直角三角形,使得拼成的图形是一个等腰三角形,关键是腰及底边确实定;要求在图中标明拼接的直角三角形的三边长,这需要用到勾股定理知识.下面四种拼接方法可供参考.四.极具“热点〞的动态探究题例4〔泉州〕:如图1,一架长4米的梯子AB斜靠在及地面OM垂直的墙壁ON上,梯子及地面的倾斜角α为 60.⑴求AO及BO的长;⑵假设梯子顶端A沿NO下滑,同时底端B沿OM向右滑行. 如图2,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A沿NO下滑多少米X k b1.c o m【解析】:对于没有学习解直角三角形知识的同学而言,求解此题有一定的难度.但假设是利用等边三角形就可以推出的一个性质:“在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半〞,结合勾股定理求解,还是容易解答的.⑴AOBRt∆中,∠O=90,∠α= 60∴,∠OAB= 30,又AB=4米,∴米.由勾股定理得:22-22OA AB OB421223=-=.⑵设2,3,==在CODAC x BD xRt∆中,根据勾股定理:222+=OC OD CD∴所以,AC=2x=即梯子顶端A沿NO下滑了米.勾股定理中的常见题型例析勾股定理是几何计算中运用最多的一个知识点.考察的主要方式是将其综合到几何应用的解答题中,常见的题型有以下几种:一、探究开放题例1如图1,设四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…….〔1〕记正方形ABCD 的边长为1a =1,依上述方法所作的正方形的边长依次为2a ,3a ,4a ,…,n a ,求出2a ,3a ,4a 的值.〔2〕根据以上规律写出第n 个正方形的边长n a 的表达式.分析:依次运用勾股定理求出a 2,a 3,a 4,再观察、归纳出一般规律.解:(1)∵四边形ABCD 为正方形,∴AB=BC=CD=AD=1.由勾股定理,得AC 222AB BC +=同理,AE =2,EH = 22.即 a 2= 2,a 3=2,a 4= 22(2) ∵011(2)a ==, 122(2)a ==, 232(2)a ==, 3422(2)a ==,点拨:探究开放题形式新颖、思考方向不确定,因此综合性与逻辑性较强,它着力于考察观察、分析、比拟、归纳、推理等方面的能力,对提高同学们的思维品质与解决问题的能力具有十分重要的作用.二、动手操作题例2如图2,图〔1〕是用硬纸板做成的两个全等的直角三角形,两条直角边长分别为a 与b ,斜边长为c .图〔2〕是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.〔1〕画出拼成的这个图形的示意图,写出它是什么图形;〔2〕用这个图形证明勾股定理;〔3〕假设图〔1〕中的直角三角形有苦干个,你能运用图〔1〕所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图〔无需证明〕.解:〔1〕所拼图形图3所示,它是一个直角梯形.〔2〕由于这个梯形的两底分别为a 、b ,腰为〔a +b 〕,所以梯形的面积为211()()()22a b a b a b ++=+.又因为这个梯形的面积等于三个直角三角形的面积与,所以梯形的面积又可表示为:.Xk b1.c om〔3〕所拼图形如图4.点拨:动手操作题内容丰富,解法灵活,有利于考察解题者的动手能力与创新设计的才能。
2024八年级数学上册期末复习1勾股定理2易错专项训练习题课件新版北师大版

10
m.
1
2
3
4
5
易错点4 没有明确直角顶点,考虑不全面出错
4. 同一平面内有 A , B , C 三点, A , B 两点之间的距离为
5 cm,点 C 到直线 AB 的距离为2 cm,且△ ABC 为直角三
角形,则满足上述条件的点 C 有
1
2
3
4
5
8
个.
易错点5 不证明直角直接应用其性质缺少步骤出错
5. 如图,在△ ABC 中, D 是△ ABC 内一点,连接 AD ,
BD ,且 AD ⊥ BD . 已知 AD =4, BD =3, AC =13,
BC =12.求图中阴影部分的面积.
1
2
3
4
5
解:因为 AD ⊥ BD ,
所以 AB2= AD2+ BD2,
因为 AD =4, BD =3,
所以 AB =5.
BD - DC =4. 综上所述, BC 的长为14或4.
1
2
3
4
5
易错点3 求立体图形中两点之间的最短距离时无法找到正确
的展开方式出错
3. 【新考法·展开法】如图是一个长8 m,宽7 m,高5 m的
仓库,在其内的点 A 处有一只壁虎, B 处有一只蚊子,已
知 CA =2 m, PB =4 m,则壁虎沿仓库内爬到蚊子处的
1
2
3
4
5
在Rt△ ABD 中, AB =15, AD =12,由勾股定理得 BD2
= AB2- AD2=81,所以 BD =9.
在Rt△ ADC 中, AC =13, AD =12,由勾股定理得 DC2
= AC2- AD2=25,所以 DC =5.所以 BC = BD + DC =
勾股定理复习易错题四套题由简到难(附带答案)

勾股定理练习卷姓名一、填空题1.三角形的三边满足a2=b2+c2,这个三角形是三角形,它的最大边是.2.在直角三角形ABC中,∠C=90°,BC=24,CA=7,AB=.3.在△ABC中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是.4.如图1所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是 cm2.5.如图2,在△ABC中,∠C=90°,BC=60c m,CA=80c m,一只蜗牛从C点出发,以每分钟20c m的速度沿CA→AB→BC的路径再回到C点,需要分钟的时间.6.已知x、y为正数,且|x2-4|+(y2-16)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为.7.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上(设梯子上端要到达或超过挂拉花的高度才能挂上),小虎应把梯子的底端放在距离墙米处.8.如图3是2002年北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为和.(注:两直角边长均为整数)二、选择题1.下列各组数为勾股数的是()A.6,12,13 B.3,4,7 C.4,7.5,8.5 D.8,15,162.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m3.直角三角形两直角边边长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( )A .10cmB .3cmC .4cmD .5cm4.若将直角三角形的两直角边同时扩大2倍,则斜边扩大为原来的( )A .2倍B .3倍C .4倍D .5倍5.下列说法中, 不正确的是( )A .三个角的度数之比为1∶3∶4的三角形是直角三角形B .三个角的度数之比为3∶4∶5的三角形是直角三角形C .三边长度之比为3∶4∶5的三角形是直角三角形D .三边长度之比为9∶40∶41的三角形是直角三角形6.三角形的三边长满足关系:(a +b )2=c 2+2ab ,则这个三角形是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形7.某直角三角形的周长为30,且一条直角边为5,则另一直角边为( )A .3B .4C .12D .138.如果正方形ABCD 的面积为29,则对角线AC 的长度为( )A .23B .49CD .29 三、简答题1.(10分)如图4,你能计算出各直角三角形中未知边的长吗?2.(10分)如图5所示,有一条小路穿过长方形的草地ABCD ,若AB =60m ,BC =84m ,AE =100m ,则这条小路的面积是多少?3.(10分)如图6,在△ABC 中,∠BAC =120°,∠B =30°,AD ⊥AB ,垂足为A ,CD =1c m ,求AB 的长.4.(10分)小芳家门前有一个花圃,呈三角形状,小芳想知道该三角形是不是一个直角三角形,请问她可以用什么办法来作出判断?你能帮她设计一种方案吗?5.(10分)如图7,在△ABC中,AB=AC=25,点D在BC上,AD=24,BD=7,试问AD平分∠BAC吗?为什么?6.(10分)如图8所示,四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.求证:AC⊥CD.参考答案:一、1.直角,a2.25 3.108 4.17 5.12 6.207.0.7 8.4,6二、1~4.CBDA 5~8.BBCA三、1.(1)5x=;(2)24x=2.2240m34.略5.所以AD平分BAC∠,理由略6.证明略四、(1)84,85.(2)任意一个大于1的奇数的平方可以拆成两个连续整数的和,并且这两个连续整数与原来的奇数构成一组勾股数.(3)略.八年级下册第十八《勾股定理》水平测试一、填空题(每小题3分,共24分)1.一个三角形的三个内角之比为1∶2∶3,则三角形是三角形;若这三个内角所对的三边分别为a、b、c(设最长边为c),则此三角形的三边的关系是.2.已知等腰直角三角形的斜边长为2,则直角边长为,若直角边长为2,则斜边长为.3.在Rt△ABC中,∠C=90°,①若AB=41,AC=9,则BC=;②若AC=1.5,BC =2,则AB=.4.已知两条线段的长分别为11cm和60cm,当第三条线段的长为 cm时,这3条线段能组成一个直角三角形.5.如图1,将一根长24厘米的筷子,置于底面直径为6厘米,高为8厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为厘米.6.如图2,AC⊥CE,AD=BE=13,BC=5,DE=7,那么AC=.7.等腰直角三角形有一边长为8c m,则底边上的高是,面积是.8.如图3,一个机器人从A点出发,拐了几个直角的弯后到达B点位置,根据图中的数据,点A和点B的直线距离是.二、选择题(每小题3分,共24分)1.如图4,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.642.小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿钱再去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个(设公园到小芳家及小芳家到图书馆都是直线)()A.锐角B.直角C.钝角D.不能确定3.一直角三角形的一条直角边长是7cm,另一条直角边与斜边长的和是49cm,则斜边的长()A.18cm B.20cm C.24cm D.25cm4.如图5,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A.16 B.18 C.19 D.215.在直角三角形中,斜边与较小直角边的和、差分别为18、8,则较长直角边的长为()A.20 B.16 C.12 D.86.在△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是()A.42 B.32 C.42或32 D.37或337.如图6,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GHC.AB、CD、GH D.AB、CD、EF8.如图7,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE2-BE2等于()A.AC2 B.BD2C.BC2 D.DE2三、简答题(共58分)1.一个三角形三条边的比为5∶12∶13,且周长为60c m,求它的面积.2的点.3.如图8,是一个四边形的边角料,东东通过测量,获得了如下数据:AB=3cm,BC=12cm,CD=13cm,AD=4cm,东东由此认为这个四边形中∠A恰好是直角,你认为东东的判断正确吗?如果你认为他正确,请说明其中的理由;如果你认为他不正确,那你认为需要什么条件,才可以判断∠A是直角?4.如图9,一游泳池长48米,小方和小朱进行游泳比赛,小方平均速度为3米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点?5.如图10(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图10(2)所示.已知展开图中每个正方形的边长为1.求在该展开图中可画出最长线段的长度?这样的线段可画几条?四、拓广探索(本题14分)已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,设△ABC的面积为S,周长为l.(1)填表:(用含有m的代数式表示).(2)如果a+b-c=m,观察上表猜想:l(3)证明(2)中的结论.参考答案:一、1.直角,222a b c +=2.1,2 3.40,2.5 4.615.14 6.12 7.4或,16或32 8.10 二、1~4.DBDC 5~8.CCBA 三、1.2120cm2.图略3.不正确,可添加DB BC ⊥或5cm DB =4.小方先到达终点54条四、解:(1)从上往下依次填12,1,32; (2)4S m l =; (3)证明略.点击《勾股定理》之特色题本文将在各地课改实验区的中考试题中,涉及《勾股定理》知识内容的特色创新题采撷几例,供读者学习鉴赏.一.清新扮靓的规律探究题例1(成都市)如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF , 再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n (n 为正整数),那么第8个正方形的面积8S =_______.【解析】:求解这类题目的常见策略是:“从特殊到一般”.即是先通过观察几个特殊的数式中的变数与不变数,得出一 般规律,然后再利用其一般规律求解所要解决的问题.对于 此题,由勾股定理、正方形的面积计算公式易求得:2111S ==, 222S == 2324S == 248S ==照此规律可知:25416S ==,观察数1、2、4、8、16易知:0123412,22,42,82,162=====,于是可知12n n S -= 因此,817822128S -===二.考查阅读理解能力的材料分析题例2(临安)阅读下列题目的解题过程: 已知a 、b 、c 为的三边,且满足,试判断的形状.解:2222222222()()()()()ABC c a b a b a b B c a b C ∆∴-=+-∴=+∴是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;(2)错误的原因为: (3)本题正确的结论为: .【解析】:材料阅读题是近年中考的热点命题,其类型多种多样,本题属于“判断纠错型”题目.集中考查了因式分解、勾股定理等知识.在由得到等式2222222()()()c a b a b a b -=+-没有错,错在将这个等式两边同除了一个可能为零的式子ABC D EFGHIJ22a b -.若220a b -=,则有()()0a b a b +-=,从而得a b =,这时,ABC 为等腰三角形.因此:(1) 选C .(2) 没有考虑220a b -=(3) ABC ∆是直角三角形或等腰三角形三.渗透新课程理念的图形拼接题例3(长春)如图,在Rt △ABC 中,∠C = 90°,AC = 4,BC = 3.在Rt △ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,如图所示.要求:在答题卡的两个备用图中分别画出两种与示例不同的拼接方法,并在图中标明拼接的直角三角形的三边长.(请同学们先用铅笔画现草图,确定后再用0.5毫米的黑色签字笔画出正确的图形)示例图 备用图【解析】:要在Rt △ABC 的外部拼接一个合适的直角三角形,使得拼成的图形是一个等腰三角形,关键是腰与底边的确定;要求在图中标明拼接的直角三角形的三边长,这需要用到勾股定理知识.下面四种拼接方法可供参考.四.极具“热点”的动态探究题例4(泉州):如图1,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为 60.⑴求AO 与BO 的长;⑵若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行. 如图2,设A 点下滑到C 点,B 点向右滑行到D 点,并且AC:BD=2:3,试计算梯子顶端A 沿NO 下滑多少米?X k b1.c o m【解析】:对于没有学习解直角三角形知识的同学而言,求解此题有一定的难度.但若是利用等边三角形就可以推出的一个性质:“在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半”,结合勾股定理求解,还是容易解答的.⑴AOB Rt ∆中,∠O=90,∠α= 60 ∴,∠OAB= 30,又AB=4米,∴122OB AB ==米.由勾股定理得:OA ===. ⑵设2,3,AC x BD x ==在COD Rt ∆中,2,23,4OC x OD x CD ==+= 根据勾股定理:222OC OD CD +=∴()()2222234x x ++= -∴(213120x x +-= ∵0x ≠ ∴0381213=-+x∴x =所以,即梯子顶端A 沿NO .勾股定理中的常见题型例析勾股定理是几何计算中运用最多的一个知识点.考查的主要方式是将其综合到几何应用的解答题中,常见的题型有以下几种:一、探究开放题例1如图1,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…….(1)记正方形ABCD 的边长为1a =1,依上述方法所作的4a 正方形的边长依次为2a ,3a ,4a ,…,n a ,求出2a ,3a ,的值.(2)根据以上规律写出第n 个正方形的边长n a 的表达式. 分析:依次运用勾股定理求出a 2,a 3,a 4,再观察、归纳出一般规律.解:(1)∵四边形ABCD 为正方形,∴AB=BC=CD=AD=1.由勾股定理,得AC同理,AE =2,EH = a 2a 3=2,a 4=(2) ∵011a ==, 12a ==, 232a ==, 34a ==,∴1n n a -= ()1,n n ≥是自然数.点拨:探究开放题形式新颖、思考方向不确定,因此综合性和逻辑性较强,它着力于考查观察、分析、比较、归纳、推理等方面的能力,对提高同学们的思维品质和解决问题的能力具有十分重要的作用.二、动手操作题例2如图2,图(1)是用硬纸板做成的两个全等的直角三角形,两条直角边长分别为a 和b ,斜边长为c .图(2)是以c 为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形. (1)画出拼成的这个图形的示意图,写出它是什么图形;(2)用这个图形证明勾股定理;(3)假设图(1)中的直角三角形有苦干个,你能运用图(1)所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼后的示意图(无需证明).解:(1)所拼图形图3所示,它是一个直角梯形.(2)由于这个梯形的两底分别为a 、b ,腰为(a +b ),所以梯形的面积为211()()()22a b a b a b ++=+.又因为这个梯形的面积等于三个直角三角形的面积和,所以梯形的面积又可表示为:2111222ab ab c ++.Xk b1.c om∴221111()2222a b ab ab c +=++. ∴222a b c +=. (3)所拼图形如图4.点拨:动手操作题内容丰富,解法灵活,有利于考查解题者的动手能力和创新设计的才能。
期末复习 《勾股定理》常考题与易错题精选(35题)(原卷版)

期末复习- 《勾股定理》常考题与易错题精选(35题)一.勾股定理(共11小题)1.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是3、5、2、3,则最大正方形E的面积是( )A.10B.13C.15D.262.如图,长方形ABCD的顶点A,B在数轴上,点A表示﹣1,AB=3,AD=1.若以点A为圆心,对角线AC长为半径作弧,交数轴正半轴于点M,则点M所表示的数为( )A.B.C.D.3.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=5,BC=12,则S△ACD :S△ABD为( )A.12:5B.12:13C.5:1 3D.13:54.图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=2,且∠AOB=30°,则OC的长度为( )A.B.C.4D.5.在△ABC中,∠ABC=60°,AD为BC边上的高,AD=6,CD=1,则BC的长为( )A.5B.7C.5或7D.6.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,则点C到直线AB的距离是( )A.B.3C.D.27.已知△ABC中,∠C=90°,AB=c,BC=a,AC=b.(1)如果a=7,b=24,求c;(2)如果a=12,c=13,求b.8.如图,Rt△ABC中,∠C=90°(1)若AB=,AC=,求BC2(2)若AB=4,AC=1,求AB边上高.9.如图,在四边形ABCD中,∠B=90°,∠BCA=60°,AC=2,DA=1,CD=3.求四边形ABCD 的面积.10.如图,每个小正方形的边长都为1.求出四边形ABCD的周长和面积.11.如图,在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35.(1)求AB的长;(2)求△ACB的面积.二.勾股定理的证明(共3小题)12.如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点E.(1)求证:∠DAC=∠BCE;(2)如果AC=BC.①求证:CD=BE;②若设△ADC的三边分别为a、b、c,试用此图证明勾股定理.13.【阅读理解】我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a、b,斜边长为c.图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×ab,即(a+b)2=c2+4×ab,所以a2+b2=c2.【尝试探究】美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE,其中△BCA≌△ADE,∠C=∠D=90°,根据拼图证明勾股定理.【定理应用】在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边长分别为a、b、c.求证:a2c2+a2b2=c4﹣b4.14.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,也可以用面积法来证明勾股定理,请完成证明过程.(提示:BD和AC都可以分割四边形ABCD)三.勾股定理的逆定理(共8小题)15.下列各组中的三条线段,能构成直角三角形的是( )A.7,20,24B.,,C.3,4,5D.4,5,616.三角形的三边长分别为a、b、c,则下面四种情况中,不能判断此三角形为直角三角形的是( )A.a=3,b=4,c=5B.a=8,b=15,c=17C.a=5,b=12,c=13D.a=12,b=15,c=1817.如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.18.如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产量.小明测得AB=3m,AD=4m,CD=12m,BC=13m,又已知∠A=90°.求这块土地的面积.19.如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,DA=1.(1)求∠DAB的度数;(2)求四边形ABCD的面积.20.如图,在△ABC中,AD、BE分别为边BC、AC的中线,分别交BC、AC于点D、E.(1)若CD=4,CE=3,AB=10,求证:∠C=90°;(2)若∠C=90°,AD=6,BE=8,求AB的长.21.如图,在△ABC中,AD为BC边上的高,若BD=4,DC=5,AD=2,判断△ABC的形状,并说明理由.22.如图,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求∠ACB的度数.四.勾股数(共3小题)23.下列四组数中不是勾股数的是( )A.3,4,5B.2,3,4C.5,12,13D.8,15,1724.下列各组数中,是勾股数的为( )A.,2,B.8,15,17C.,D.32,42,5225.观察下列各组勾股数有哪些规律:3,4,5;9,40,41;5,12,13;……;7,24,25;a,b,c.请解答:(1)当a=11时,求b,c的值;(2)判断21,220,221是否为一组勾股数?若是,请说明理由.五.勾股定理的应用(共10小题)26.我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠B=90°,AB=6m,BC=8m,CD=24m,AD=26m.(1)求出空地ABCD的面积;(2)若每种植1平方米草皮需要350元,问总共需投入多少元?27.由四条线段AB、BC、CD、DA所构成的图形,是某公园的一块空地,经测量∠ADC=90°,CD=3m、AD=4m、BC=12m、AB=13m.现计划在该空地上种植草皮,若每平方米草皮需200元,则在该空地上种植草皮共需多少元?28.如图,某校攀岩墙AB的顶部A处安装了一根安全绳AC,让它垂到地面时比墙高多出了2米,教练把绳子的下端C拉开8米后,发现其下端刚好接触地面(即BC=8米),AB⊥BC,求攀岩墙AB的高度.29.如图,甲、乙两船从港口A同时出发,甲船以16海里/时的速度向北偏东42°方向航行,乙船向南偏东48°方向航行,0.5小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距17海里,问乙船的航速是多少?30.“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节.某校八年级(1)班的小明和小亮学习了“勾股定理”之后,为了测得风筝的垂直高度CE(如图),他们进行了如下操作:①测得水平距离BD的长为8米;②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的小明的身高为1.5米.(1)求风筝的垂直高度CE;(2)如果小明想风筝沿CD方向下降9米,则他应该往回收线多少米?31.森林火灾是一种常见的自然灾害,危害很大,随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,有一台救火飞机沿东西方向AB,由点A飞向点B,已知点C为其中一个着火点,且点C与直线AB上两点A,B的距离分别为600m和800m,又AB=1000m,飞机中心周围500m以内可以受到洒水影响.(1)着火点C受洒水影响吗?为什么?(2)若飞机的速度为10m/s,要想扑灭着火点C估计需要13秒,请你通过计算判断着火点C能否被扑灭?32.一架云梯长25m,如图所示斜靠在一面墙上,梯子底端C离墙7m.(1)这个梯子的顶端A距地面有多高?(2)如果梯子的顶端下滑了4m,那么梯子的底部在水平方向滑动了多少米?33.在一条东西走向的河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原由C 到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=1.5千米,CH=1.2千米,HB=0.9千米.(1)问CH是否为从村庄C到河边的最近路?请通过计算加以说明;(2)求原来的路线AC的长.34.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面3米,问:发生火灾的住户窗口距离地面BD有多高?35.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的)。
八年级数学试卷易错易错压轴勾股定理选择题试题(及答案)

2020-2021八年级数学试卷易错易错压轴选择题精选:勾股定理选择题试题(及答案)一、易错易错压轴选择题精选:勾股定理选择题1.在ABC ∆中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( )A .4或14B .10或14C .14D .102.一艘渔船从港口A 沿北偏东60°方向航行至C 处时突然发生故障,在C 处等待救援.有一救援艇位于港口A 正东方向20(3﹣1)海里的B 处,接到求救信号后,立即沿北偏东45°方向以30海里/小时的速度前往C 处救援.则救援艇到达C 处所用的时间为( )A .33小时B .23小时C .223 小时D .2323+小时 3.直角三角形的面积为 S ,斜边上的中线为 d ,则这个三角形周长为 ( ) A .22d S d ++B .2d S d --C .22d S d ++D .()22d S d ++ 4.如图,已知圆柱的底面直径6BC π=,高3AB =,小虫在圆柱侧面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程的平方为( )A .18B .48C .120D .725.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )A .2B .2.5C .3D .46.在△ABC 中,∠BCA=90∘,AC=6,BC=8,D 是AB 的中点,将△ACD 沿直线CD 折叠得到△ECD ,连接BE ,则线段BE 的长等于( )A .5B .75C .145D .3657.在直角三角形中,自两锐角所引的两条中线长分别为5和210,则斜边长为( )A .10B .410C .13D .2138.如图,四边形ABCD 中,AC ⊥BD 于O ,AB =3,BC =4,CD =5,则AD 的长为( )A .1B .32C .4D .23 9.如图,将一个等腰直角三角形按图示方式依次翻折,若DE a =,则下列说法正确的是( ) ①DC '平分BDE ∠;②BC 长为()22a +;③BCD 是等腰三角形;④CED 的周长等于BC 的长.A .①②③B .②④C .②③④D .③④10.如图,在△ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板ADE 如图放置,连接BE ,EC .下列判断:①△ABE ≌△DCE ;②BE =EC ;③BE ⊥EC ;④EC =3DE .其中正确的有( )A .1个B .2个C .3个D .4个11.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由三角形较长直角边长为a ,较短直角边长为b ,若(a +b )2=21,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6 12.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()A .22B .32C .62D .8213.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )A .1个B .2个C .3个D .4个14.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( )A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c = 15.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A刚好落在BC 上,则CD 的长为( )A .10B .5C .4D .316.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )A .3B .5C .4.2D .417.“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在ABC 中,90ACB ∠=︒,分别以ABC 的三条边为边向外作正方形,连结EB ,CM ,DG ,CM 分别与AB ,BE 相交于点P ,Q .若30ABE ∠=︒,则DG QM 的值为( )A .32B 5C .45D 3118.如图,BD 为ABCD 的对角线,45,DBC DE BC ︒∠=⊥于点E ,BF ⊥DC 于点F ,DE 、BF 相交于点H ,直线BF 交线段AD 的延长线于点G ,下列结论:①12CE BE = ;②A BHE ∠=∠;③AB=BH;④BHD BDG ∠=∠;⑤222BH BG AG +=;其中正确的结论有( )A.①②③B.②③⑤C.①⑤D.③④19.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3 B.5 C.4.2 D.420.已知一个直角三角形的两边长分别为3和5,则第三边长是()A.5 B.4 C.34D.4或3421.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是()A.0.6米B.0.7米C.0.8米D.0.9米22.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是()A.217B.25C.2D.723.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为()A.5B7C.57D.3或424.如图,在△ABC,∠C=90°,AD平分∠BAC交CB于点D,过点D作DE⊥AB,垂足恰好是边AB的中点E,若AD=3cm,则BE的长为()A .332cmB .4cmC .32cmD .6cm25.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对26.如图,在Rt ABC 中,90BAC ︒∠=,以Rt ABC 的三边为边分别向外作等边三角形'A BC ,'AB C △,'ABC △,若'A BC ,'AB C △的面积分别是10和4,则'ABC △的面积是( )A .4B .6C .8D .927.如图,在23⨯的正方形网格中,AMB ∠的度数是( )A .22.5°B .30°C .45°D .60°28.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .15229.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( ) A .8 B .9.6 C .10 D .1230.下列说法不能得到直角三角形的( )A .三个角度之比为 1:2:3 的三角形B .三个边长之比为 3:4:5 的三角形C .三个边长之比为 8:16:17 的三角形D .三个角度之比为 1:1:2 的三角形【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.A解析:A【分析】根据AC =13,AD =12,CD =5,可判断出△ADC 是直角三角形,在Rt △ADB 中求出BD ,继而可得出BC 的长度.【详解】∵AC =13,AD =12,CD =5,∴222AD CD AC +=,∴△ABD 是直角三角形,AD ⊥BC ,由于点D 在直线BC 上,分两种情况讨论:当点D 在线段BC 上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则14BC BD CD =+=;②当点D 在BC 延长线上时,如图所示,在Rt △ADB 中,229BD AB AD =-=, 则4BC BD CD =-=.故答案为:A.【点睛】 本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.2.C解析:C【解析】【分析】过点C 作CD 垂直AB 延长线于D ,根据题意得∠CDB=45°,∠CAD=30°,设BD=x 则CD=BD=x ,BC=2x ,由∠CAD=30°可知tan∠CAD=33CD AD = 即3320(31)x x =-+ ,解方程求出BD 的长,从而可知BC 的长,进而求出救援艇到达C 处所用的时间即可.【详解】如图:过点C 作CD 垂直AB 延长线于D ,则∠CDB=45°,∠CAD=30°,∵∠CDB=45°,CD⊥BD,∴BD=CD,设BD=x ,救援艇到达C 处所用的时间为t ,∵tan∠CAD=33CD AD =,AD=AB+BD , ∴3320(31)x x=-+,得x=20(海里), ∴BC=2BD=202(海里),∴t=20230 =223(小时),故选C.【点睛】本题考查特殊角三角函数,正确添加辅助线、熟练掌握特殊角的三角函数值是解题关键.3.D解析:D【解析】【分析】根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。
第05讲 易错易混集训:利用勾股定理求解易错(解析版)--初中数学北师大版8年级上册
第05讲易错易混集训:利用勾股定理求解易错目录【典型例题】.......................................................................................................................错误!未定义书签。
【易错一没有明确斜边或直角时,考虑不全面而漏解】 (1)【易错二三角形形状不明时,考虑不全面而漏解】 (3)【易错三等腰三角形的腰和底不明时,考虑不全面而漏解】 (7)【易错四求立体图形中两点距离最短时无法找到正确的展开方式】 (10)【易错一没有明确斜边或直角时,考虑不全面而漏解】例题:(2023春·黑龙江大庆·七年级校联考期中)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是__【答案】7或25【分析】已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.【详解】解:直角三角形的两边长分别为3和4,分两种情况:当3、4都为直角边时,第三边长的平方223425=+=;当3为直角边,4为斜边时,第三边长的平方22437=-=.故答案为:7或25.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.【变式训练】则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB的“勾股分割点”,若AM=3,MN=4,则BN的长为______.【易错二三角形形状不明时,考虑不全面而漏解】AD 为边BC 上的高,90ADB ADC ∴∠=∠=︒,在Rt ABD 中,2BD AB =-在Rt ACD 中,2CD AC =-当点D 在线段BC 上时,BC =BC=+=,23268AB=+所以三角形ABC的周长AB=如图2:BC=-=,AB=624所以三角形ABC的周长故答案为:3513++【点睛】本题考查勾股定理,关键是根据题意画出图形,分情况讨论.2.(2022·北京·101中学八年级期中)在且BP=6,则线段AP的长为__________.AD是BC边上的高,ADB ADC∴∠=∠=︒,90∴在Rt△ABD中,2=-BD AB AD 是BC边上的高,AD【答案】4或25 4【分析】当ABP为直角三角形时,分两种情况:此时t的值即可.【详解】在Rt ABC△中,由勾股定理得:①当APB∠为直角时,如图①,点P与点C重合,4cmBP BC==,4t∴=;∠【易错三等腰三角形的腰和底不明时,考虑不全面而漏解】1.(2021·辽宁·沈阳市第一三四中学八年级阶段练习)如图,在Rt△ABC中,∠ACB=90°,AB=5cm,AC =3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒,当△ABP为等腰三角形时,t的取值为_____.(1)求BC边的长;(2)当ABP△为直角三角形时,求t的值;∴(CP BP BC =-=∵222AC CP AP =+∴()222435t t -=-+∵AC BC ⊥,∴2BP BC =,∴=5t ;当AP BP =时,如下图所示:则(3CP BC BP =-=在Rt APC 中,2AC 即()22243t t +-=,【易错四求立体图形中两点距离最短时无法找到正确的展开方式】例题:(2023春·湖北武汉·八年级校考阶段练习)如图,圆柱形玻璃杯高为16cm ,底面周长为40cm ,在杯内壁离杯底4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 且与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为()cm .(杯壁厚度不计)A .20B .25C .30D .40【答案】B故选:B【点睛】本题考查了勾股定理的应用,根据题意把圆柱展开,化曲为直是解决问题的关键.【变式训练】1.(2022秋·山东威海·七年级统考期末)如图,圆柱形玻璃杯高14cm,底面周长为18cm,在外侧距下底处1cm 有一只蜘蛛,与蜘蛛相对的圆柱形容器的上端距开口处1cm的外侧点处有一只苍蝇,蜘蛛捕到苍蝇的最短路线长是______cm.【答案】15⊥于E,求出SE、【分析】展开后连接SF,求出SF的长就是捕获苍蝇的蜘蛛所走的最短路径,过S作SE CDEF,根据勾股定理求出SF即可.【详解】解:如图展开后连接SF,求出SF的长就是捕获苍蝇的蜘蛛所走的最短路径,⊥于E,过S作SE CD【答案】30【分析】将长方形的盒子按不同方式展开,得到不同的长方形,再根据勾股定理求出正确答案.【详解】解:如图由勾股定理得()99AB =+如图2所示,当沿长方体的长展开时,【答案】85【分析】可将教室的墙面ADEF 与地面解即可.【详解】解:如图,将教室的墙面ADEF 过P 作PG BF ⊥于G ,连接∵6AG =米,AP AB ==∴221068PG =-=(米∴16BG =米,∴228PB GB PG =+=∵滑行部分的斜面是半径为∴12332AD ππ=⨯⨯=∵16AB CD ==,CE ∴16412DE =-=,在Rt ADE 中,22AE AD DE =+=(2)分两种情况:①如图,当横向展开时:∴AC 1=221AC CC +。
八上数学 第一章勾股定理知识点归纳+易错题精选(含答案)
八年级数学上册 第一章 勾股定理知识点+易错题精选1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
勾股定理 易错题精选一.选择题1.以下列各组线段为边作三角形,能构成直角三角形的是( )A .2,3,4B .6,8,10C .5,8,13D .12,13,142.用四个边长均为a 、b 、c 的直角三角板,拼成如图中所示的图形,则下列结论中正确的是( )A .c 2=a 2+b 2B .c 2=a 2+2ab+b 2C .c 2=a 2﹣2ab+b 2D .c 2=(a+b )2.3.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=6,AC=8,点D ,E ,F ,G ,H ,I 都是矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A.360 B.400 C.440 D.4844.如图,甲是第七届国际数学教育大会(简称ICME~7)的会徽,会徽的主体图案是由如图乙的一连串直角三角形演化而成的其中OA1=A1A2=A2A3=…=A7A8=1,如果把图乙中的直角三角形继续作下去,那么OA1,OA2,…OA25这些线段中有多少条线段的长度为正整数()A.3 B.4 C.5 D.65.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c26.如图,在正方形网格中,每个小正方形的方格的边长均为1,则点A到边BC的距离为()A. B.C. D.37.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2 B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:158.某中学旁边有一块三角形空地,为了保持水土,美化环境,全校师生一齐动手,在空地的三条边上栽上了树苗(如图).已知三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,那么这块空地的形状为()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定9.长方形门框ABCD中,AB=2m,AD=1.5m.现有四块长方形薄木板,尺寸分别是:①长1.4m,宽1.2m;②长2.1m,宽1.7m;③长2.7m,宽2.1m;④长3m,宽2.6m.其中不能从门框内通过的木板有()A.0块 B.1块 C.2块 D.3块10.如图铁路上A,B两点相距40千米,C,D为两村庄,DA⊥AB,CB⊥AB,垂足分别为A 和B,DA=24千米,CB=16千米.现在要在铁路旁修建一个煤栈E,使得C,D两村到煤栈的距离相等,那么煤栈E应距A点()A.20千米B.16千米C.12千米D.无法确定二.填空题11.已知直角三角形的三边分别为6、8、x,则x= .12.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.13.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a= ,b= ,c= .15.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形的形状是三角形.16.已知一个三角形的三条边的长分别为、和,那么这个三角形的最大内角的大小为度.17.如图,在四边形ABCD中,∠C=90°,AB=12cm,BC=3cm,CD=4cm,AD=13cm.求四边形ABCD的面积= cm2.18.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为米(精确到0.1m).19.上午8时,一条船从海岛A出发,以15海里/时的速度向正北航行,10时到达海岛B 处,从A、B望灯塔C,测得∠BAC=60°,点C在点B的正西方向,海岛B与灯塔C之间的距离是海里.20.如图是一段楼梯,∠A=30°,斜边AC是4米,若在楼梯上铺地毯,则至少需要地毯米.二.解答题21.如图,你能用它验证勾股定理吗?(提示:以斜边为边长的正方形的面积+四个三角形的面积=外正方形的面积)22.如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13.试判断△ACD的形状,并说明理由.23.问题情境:在综合与实践课上,同学们以“已知三角形三边的长度,求三角形面积”为主题开展数学活动,小颖想到借助正方形网格解决问题.图1,图2都是8×8的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.操作发现:小颖在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C,A,她借助此图求出了△ABC的面积.(1)在图1中,小颖所画的△ABC的三边长分别是AB= ,BC= ,AC= ;△ABC的面积为.解决问题:(2)已知△ABC中,AB=,BC=2,AC=5,请你根据小颖的思路,在图2的正方形网格中画出△ABC,并直接写出△ABC的面积.24.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.25.某研究性学习小组进行了探究活动.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯AB=13m,梯子底端离墙角的距离BO=5m.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离BD=4m吗?为什么?(3)亮亮在活动中发现无论梯子怎么滑动,在滑动的过程中梯子上总有一个定点到墙角O 的距离始终是不变的定值,会思考问题的你能说出这个点并说明其中的道理吗?26.如图,圆柱形容器高12cm,底面周长24cm,在杯口点B处有一滴蜂蜜,此时蚂蚁在杯外壁底部与蜂蜜相对的A处,(1)求蚂蚁从A到B处吃到蜂蜜最短距离;(2)若蚂蚁刚出发时发现B处的蜂蜜正以每秒钟1cm沿杯内壁下滑,4秒钟后蚂蚁吃到了蜂蜜,求蚂蚁的平均速度至少是多少?参考答案一.选择题1.【分析】只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.【解答】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、62+82=100=102,能构成直角三角形,故本选项正确;C、52+82=89≠132,不能构成直角三角形,故本选项错误;D、122+132=313≠142,不能构成直角三角形,故本选项错误;故选:B.2.【分析】四个一样的直角三角板围成的四边形为正方形,其中小四边形也为正方形,大正方形的面积可以由边长的平方求出,也可以由四个直角三角形的面积与小正方形面积之和来求,两种方法得出的面积相等,利用完全平方公式展开,合并后即可得到正确的等式.【解答】解:由题意得到四个完全一样的直角三角板围成的四边形为正方形,其边长为c,里边的小四边形也为正方形,边长为b﹣a,则有c2=ab×4+(b﹣a)2,整理得:c2=a2+b2.故选:A.3.【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=6+8=14,所以,KL=6+14=20,LM=8+14=22,因此,矩形KLMJ的面积为20×22=440.故选:C.4.【分析】OA1=1,OA2==,OA3==,找到OA n=的规律即可计算OA1到OA25中长度为正整数的个数.【解答】解:找到OA n=的规律,所以OA1到OA25的值分别为,,……,故正整数为=1, =2, =3, =4, =5.故选:C.5.【分析】在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角,根据此就可以直接判断A、B、C、D选项.【解答】解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.6.【分析】首先利用勾股定理求出三角形的边长,然后得到三角形是等腰三角形,进而利用勾股定理求出AD的长即可.【解答】解:根据勾股定理可知:AB==,AC==,BC==,则△ABC是等腰三角形,过点A作AD⊥BC,垂足为D,即BD=CD=BC=,AD===,即点A到BC的距离为.故选:C.7.【分析】根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.8.【分析】根据三边上的树苗的数分别求得三边的长为13、47、49,根据三边的长判断三角形的形状即可.【解答】解:∵三边上的树苗数分别为50、14、48,空地的三个角均有一棵树,且每条边上的树苗株距均为1米,∴三边的长分别为13米、47米、49米,假设为直角三角形且直角三角形的最长边为x,则:x2=132+472=2378,∵492=2401>2378,∴该三角形为钝角三角形.故选:B.9.【分析】求出长方形门框的对角线长,宽小于或等于长方形门框的对角线的长的木板就可通过.【解答】解:门框的对角线长是: =2.5m.宽小于或等于2.5m的有:①②③.故选:B.10.【分析】根据题意利用勾股定理得出AD2+AE2=BE2+BC2,进而求出即可.【解答】解:设AE=xkm,则BE=(40﹣x)km,∵DA⊥AB,CB⊥AB,C,D两村到煤栈的距离相等,∴AD2+AE2=BE2+BC2,故242+x2=(40﹣x)2+162,解得:x=16,则煤栈E应距A点16km.故选:B.二.填空题11.【分析】根据勾股定理的内容,两直角边的平方和等于斜边的平方,分两种情况进行解答.【解答】解:分两种情况进行讨论:①两直角边分别为6,8,由勾股定理得x==10,②一直角边为6,一斜边为8,由勾股定理得x==2;故答案为:10或2.12.【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB﹣BF.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.13.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.故答案为: +1.14.【分析】由n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5;n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10;n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…得出a=2n,b=n2﹣1,c=n2+1,满足勾股数.【解答】解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…∴勾股数a=2n,b=n2﹣1,c=n2+1.故答案为:2n,n2﹣1,n2+1.15.【分析】根据题目中的式子和勾股定理的逆定理可以解答本题.【解答】解:∵2ab=(a+b)2﹣c2,∴2ab=a2+2ab+b2﹣c2,∴a2+b2=c2,∵三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,∴此三角形是直角三角形,故答案为:直角.16.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形,进而可得答案.【解答】解:∵()2+()2=()2,∴三角形为直角三角形,∴这个三角形的最大内角度数为90°,故答案为:9017.【分析】连接BD,根据勾股定理求出BD,根据勾股定理的逆定理求出△CBD是直角三角形,分别求出△ABD和△CBD的面积,即可得出答案.【解答】解:连结BD,在△ABD中,∵∠A=90°,BC=3cm,DC=4cm,∴BD==5(cm),S△BCD=BC•DC=×3×4=6(cm2),在△ABD中,∵AD=13cm,AB=12cm,BD=5cm∴BD2+AB2=AD2,∴△ABD是直角三角形,∴S△ABD=AB•BD=×12×5=30(cm2),∴四边形ABCD的面积=S△ABD+S△BCD=6+30=36(cm2).故答案为:36.18.【分析】根据已知条件得到∠BAC=90°,AB=150米,AC=120米,由勾股定理即可得到结论.【解答】解:根据题意得:∠BAC=90°,AB=150米,AC=120米,在Rt△ABC中,BC=≈192.2米,故答案为:192.219.【分析】根据方位角可知船与海岛、灯塔的方向正好构成了直角.然后根据路程=速度×时间,再根据勾股定理,即可求得海岛B与灯塔C之间的距离.【解答】解:因为∠BAC=60°,点C在点B的正西方向,所以△ABC是直角三角形,∵AB=15×2=30海里,∠BAC=60°,∴AC=60海里,∴BC==30(海里)故答案为:3020.【分析】利用直角三角形中30°角对的直角边等于斜边的一半求出BC的长,再根据勾股定理求出AB的长,进而可得出结论.【解答】解:∵△ABC是直角三角形,∠A=30°,斜边AC是4米,∴BC=AC=2米,∴AB===2(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=(2)米.故答案为:2+2三.解答题(共6小题)21.【分析】根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.【解答】解:根据题意,中间小正方形的面积;化简得a2+b2=c2,即在直角三角形中斜边的平方等于两直角边的平方和.22.【分析】先根据勾股定理求出AC的长,在△ACD中,再由勾股定理的逆定理,判断三角形的形状.【解答】解:△ACD是直角三角形.理由是:∵∠B=90°,AB=3,BC=4,∴AC2=AB2+BC2=9+16=25,∴AC=5,又∵AC2+CD2=25+144=169,AD2=169,∴AC2+CD2=AD2,∴△ACD是直角三角形.23.【分析】根据勾股定理、矩形的面积公式、三角形面积公式计算.【解答】解:(1)AB==5,BC==,AC==,△ABC的面积为:4×4﹣×3×4﹣×1×4﹣×3×1=,故答案为:5;;;;(2)△ABC的面积:7×2﹣×3×1﹣×4×2﹣×7×1=5.24.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB 的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.25.【分析】(1)在Rt△AOB中利用勾股定理求得AO的长即可;(2)在梯子长度不变的情况下,求出DO的长后减去BO的长求得BD即可作出判断;(3)由直角三角形斜边上的中线的性质回答问题.【解答】解:(1)∵AO⊥DO,∴AO=,=,=12m,∴梯子顶端距地面12m高;(2)滑动不等于4m,∵AC=4m,∴OC=AO﹣AC=8m,∴OD=,=,∴BD=OD﹣OB=,∴滑动不等于4m.(3)AB上的中点到墙角O的距离总是定值,因为直角三角形斜边上的中线等于斜边的一半.26.【分析】(1)先将圆柱的侧面展开,再根据勾股定理求解即可;(2)根据勾股定理得到蚂蚁所走的路程,于是得到结论.【解答】解:(1)如图所示,∵圆柱形玻璃容器,高12cm,底面周长为24cm,∴AD=12cm,∴AB===12(cm).答:蚂蚁要吃到食物所走的最短路线长度是12cm;(2)∵AD=12cm,∴蚂蚁所走的路程==20,∴蚂蚁的平均速度=20÷4=5(cm/s).。
八年级初二数学第二学期勾股定理单元 易错题测试题
八年级初二数学第二学期勾股定理单元 易错题测试题一、选择题1.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接B ,D 和B ,E .下列四个结论:①BD =CE ,②BD ⊥CE ,③∠ACE +∠DBC=30°,④()2222BE AD AB =+.其中,正确的个数是( ) A .1 B .2C .3D .4 2.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ;③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④3.棱长分别为86cm cm ,的两个正方体如图放置,点A ,B ,E 在同一直线上,顶点G 在棱BC 上,点P 是棱11E F 的中点.一只蚂蚁要沿着正方体的表面从点A 爬到点P ,它爬行的最短距离是( )A .(3510)cmB .513cmC 277cmD .583)cm4.已知等边三角形的边长为a ,则它边上的高、面积分别是( )A .2,24a a B 234a a C 233a a D .2334a a5.将6个边长是1的正方形无缝隙铺成一个矩形,则这个矩形的对角线长等于( ) A .37 B .13 C .37或者13 D .37或者1376.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( )A .49B .25C .12D .107.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( )A .36B .9C .6D .188.如图,ABC 中,90ACB ∠=︒,2AC =,3BC =.设AB 长是m ,下列关于m 的四种说法:①m 是无理数;②m 可以用数轴上的一个点来表示;③m 是13的算术平方根;④23m <<.其中所有正确说法的序号是( )A .①②B .①③C .①②③D .②③④ 9.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C 34D .43410.在△ABC 中,∠A ,∠B ,∠C 的对边分别记为a ,b ,c ,下列结论中不正确的是( ) A .如果∠A ﹣∠B =∠C ,那么△ABC 是直角三角形B .如果∠A :∠B :∠C =1:2:3,那么△ABC 是直角三角形C .如果 a 2:b 2:c 2=9:16:25,那么△ABC 是直角三角形D .如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠A =90°二、填空题11.如图,在矩形 ABCD 中,AB =10,BC =5,若点 M 、N 分别是线段 AC 、AB 上的两个动点,则 BM+MN 的最小值为_____________________.12.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.13.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.14.如图,等腰梯形ABCD 中,//AD BC ,1AB DC ==,BD 平分ABC ∠,BD CD ⊥,则AD BC +等于_________.15.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.16.在Rt △ABC 中,直角边的长分别为a ,b ,斜边长c ,且a +b 5c =5,则ab 的值为______.17.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.18.如图,在△ABC 中,∠C =90°,∠ABC =45°,D 是BC 边上的一点,BD =2,将△ACD 沿直线AD 翻折,点C 刚好落在AB 边上的点E 处.若P 是直线AD 上的动点,则△PEB 的周长的最小值是________.19.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.20.如图,在△ABC 中,AB =AC =10,BC =12,AD 是角平分线,P 、Q 分别是AD 、AB 边上的动点,则BP +PQ 的最小值为_______.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.23.如图,△ABC 和△ADE 都是等腰三角形,其中AB =AC ,AD =AE ,且∠BAC =∠DAE . (1)如图①,连接BE 、CD ,求证:BE =CD ;(2)如图②,连接BE 、CD ,若∠BAC =∠DAE =60°,CD ⊥AE ,AD =3,CD =4,求BD 的长;(3)如图③,若∠BAC =∠DAE =90°,且C 点恰好落在DE 上,试探究CD 2、CE 2和BC 2之间的数量关系,并加以说明.24.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.25.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.26.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .(1)则BC =____________cm ;(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.27.如图,在△ABC 中,∠C =90°,把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合.(1)若∠A =35°,则∠CBD 的度数为________;(2)若AC =8,BC =6,求AD 的长;(3)当AB =m(m>0),△ABC 的面积为m +1时,求△BCD 的周长.(用含m 的代数式表示)28.如图,△ABC 中,90BAC ∠=︒,AB=AC ,P 是线段BC 上一点,且045BAP ︒<∠<︒.作点B 关于直线AP 的对称点D, 连结BD ,CD ,AD .(1)补全图形.(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.29.2ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.30.如图1,在正方形ABCD 中,点E ,F 分别是AC ,BC 上的点,且满足DE ⊥EF ,垂足为点E ,连接DF .(1)求∠EDF= (填度数);(2)延长DE 交AB 于点G ,连接FG ,如图2,猜想AG ,GF ,FC 三者的数量关系,并给出证明;(3)①若AB=6,G 是AB 的中点,求△BFG 的面积;②设AG=a ,CF=b ,△BFG 的面积记为S ,试确定S 与a ,b 的关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】①由AB=AC ,AD=AE ,利用等式的性质得到夹角相等,利用SAS 得出三角形ABD 与三角形ACE 全等,由全等三角形的对应边相等得到BD=CE ;②由三角形ABD 与三角形ACE 全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD 垂直于CE ;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°; ④由BD 垂直于CE ,在直角三角形BDE 中,利用勾股定理列出关系式,等量代换即可作出判断.【详解】解:如图,① ∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD ,即∠BAD=∠CAE ,∵在△BAD 和△CAE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩===∴△BAD ≌△CAE (SAS ),∴BD=CE ,故①正确;②∵△BAD ≌△CAE ,∴∠ABD=∠ACE ,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°,∴∠BDC=90°,∴BD ⊥CE ,故②正确;③∵△ABC 为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③错误;④∵BD ⊥CE ,∴在Rt △BDE 中,利用勾股定理得BE 2=BD 2+DE 2,∵△ADE 为等腰直角三角形,∴AE=AD ,∴DE 2=2AD 2,∴BE 2=BD 2+DE 2=BD 2+2AD 2,在Rt △BDC 中,BD BC <,而BC 2=2AB 2,∴BD 2<2AB 2,∴()2222BE AD AB<+故④错误,综上,正确的个数为2个.故选:B .【点睛】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键. 2.A解析:A【分析】先判断△DBE 是等腰直角三角形,根据勾股定理可推导得出2BE ,故①正确;根据∠BHE 和∠C 都是∠HBE 的余角,可得∠BHE=∠C ,再由∠A=∠C ,可得②正确;证明△BEH ≌△DEC ,从而可得BH=CD ,再由AB=CD ,可得③正确;利用已知条件不能得到④,据此即可得到选项.【详解】解:∵∠DBC=45°,DE ⊥BC 于E ,∴在Rt △DBE 中,BE 2+DE 2=BD 2,BE=DE ,∴2BE ,故①正确;∵DE ⊥BC ,BF ⊥DC ,∴∠BHE 和∠C 都是∠HBE 的余角,∴∠BHE=∠C ,又∵在▱ABCD 中,∠A=∠C ,∴∠A=∠BHE ,故②正确;在△BEH 和△DEC 中,BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,故③正确;利用已知条件不能得到△BCF ≌△DCE ,故④错误,故选A.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.3.C解析:C【分析】当E 1F 1在直线EE 1上时,,得到AE=14,PE=9,由勾股定理求得AP 的长;当E 1F 1在直线B 2E 1上时,两直角边分别为17和6,再利用勾股定理求AP 的长,两者进行比较即可确定答案【详解】① 当展开方法如图1时,AE=8+6=14cm ,PE=6+3=9cm , 由勾股定理得2222149277AP AE PE cm =+=+=② 当展开方法如图2时,AP 1=8+6+3=17cm ,PP 1=6cm , 由勾股定理得222211176325AP AP PP cm =+=+= ∵277<325∴蚂蚁爬行的最短距离是277cm,【点睛】此题考察正方体的展开图及最短路径,注意将正方体沿着不同棱线剪开时得到不同的平面图形,路径结果是不同的4.C解析:C【分析】作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD ,利用勾股定理即可求出AD ,再利用三角形面积公式即可解决问题.【详解】解:如图作AD ⊥BC 于点D .∵△ABC 为等边三角形,∴∠B =60°,∠B AD =30° ∴1122BD AB a == 由勾股定理得,2222213()22AD AB BD a a a =-=-= ∴边长为a 的等边三角形的面积为12×a ×3a =3a 2, 故选:C .【点睛】本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.5.C解析:C【分析】如图1或图2所示,分类讨论,利用勾股定理可得结论.【详解】当如图1所示时,AB=2,BC=3,∴2223=13+;当如图2所示时,AB=1,BC=6,∴AC=221+6=37;故选C .【点睛】本题主要考查图形的拼接,数形结合,分类讨论是解答此题的关键.6.C解析:C【解析】试题解析:如图,∵大正方形的面积是25,∴c 2=25,∴a 2+b 2=c 2=25,∵直角三角形的面积是(25-1)÷4=6,又∵直角三角形的面积是12ab=6, ∴ab=12.故选C. 7.A解析:A【分析】先根据角平分线的定义、角的和差可得90ECF ∠=︒,再根据平行线的性质、等量代换可得,ACE CEF ACF F ∠=∠∠=∠,然后根据等腰三角形的定义可得,EM CM FM CM ==,从而可得6EF =,最后在Rt CEF 中,利用勾股定理即可得.【详解】CE 平分ACB ∠,CF 平分ACD ∠,,1122ACB ACD BCE ACE DCF ACF ∴∠∠=∠=∠=∠∠=, 111(90222)ACB AC E D ACB ACD CF ACE ACF ∠=∠+∴∠+∠=∠∠∠=+=︒, //EF BC ,,BCE CEF DCF F ∠=∴∠∠=∠,,ACE CEF ACF F ∴∠=∠∠=∠,3,3EM CM FM CM ∴====,6EF EM FM ∴=+=,在Rt CEF 中,由勾股定理得:2222636CE CF EF +===,故选:A .【点睛】本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.8.C解析:C【分析】根据勾股定理即可求出答案.【详解】解:∵∠ACB =90°,∴在Rt ABC 中,m =AB故①②③正确,∵m 2=13,9<13<16,∴3<m <4,故④错误,故选:C .【点睛】本题考查勾股定理及算术平方根、无理数的估算,解题的关键是熟练运用勾股定理,本题属于基础题型. 9.D解析:D【解析】试题解析:当3和5当5.故选D .10.D解析:D【分析】根据直角三角形的判定和勾股定理的逆定理解答即可.【详解】选项A 中如果∠A ﹣∠B =∠C ,由∠A+∠B+∠C =180°,可得∠A =90°,那么△ABC 是直角三角形,选项正确;选项B 中如果∠A :∠B :∠C =1:2:3,由∠A+∠B+∠C =180°,可得∠A =90°,那么△ABC 是直角三角形,选项正确;选项C 中如果 a 2:b 2:c 2=9:16:25,满足a 2+b 2=c 2,那么△ABC 是直角三角形,选项正确;选项D 中如果 a 2=b 2﹣c 2,那么△ABC 是直角三角形且∠B =90°,选项错误;故选D .【点睛】考查直角三角形的判定,学生熟练掌握勾股定理逆定理是本题解题的关键,并结合直角三角形的定义解出此题.二、填空题11.8【解析】如图作点B 关于AC 的对称点B ′,连接B ′A 交DC 于点E ,则BM+MN 的最小值等于的最小值 作交于,则为所求; 设,,由,,h+5=8,即BM+MN 的最小值是8.点睛:本题主要是利用轴对称求最短路线,题中应用了勾股定理与用不同方式表示三角形的面积从而求出某条边上的高,利用轴对称得出M 点与N 点的位置是解题的关键.12.21021332【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==,∴25AB =, 情况一:当25AD AB ==时,作AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即455AE =,1455DE = ∴22855CE AC AE =-= ∴22213CD CE DE =+=情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即45BE =,145DE = ∴2225CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E∴1122BC AC AB BE ⋅=⋅, ∴45BE =355CE ∴= ∵ABD △为等腰直角三角形 ∴152BF DF AB === ∴95DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-=-= ∴2232CD CE E D ''=+=故答案为:1021332【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 13.9625【分析】 将△B´CF 的面积转化为求△BCF 的面积,由折叠的性质可得CD =AC =6,∠ACE =∠DCE ,∠BCF =∠B´CF ,CE ⊥AB ,可证得△ECF 是等腰直角三角形,EF =CE ,∠EFC =45°,由等面积法可求CE 的长,由勾股定理可求AE 的长,进而求得BF 的长,即可求解.【详解】根据折叠的性质可知,CD =AC =6,∠ACE =∠DCE ,∠BCF =∠B´CF ,CE ⊥AB , ∴∠DCE +∠B´CF =∠ACE +∠BCF , ∵∠ACB =90°,∴∠ECF =45°,且CE ⊥AB ,∴△ECF 是等腰直角三角形,∴EF =CE ,∠EFC =45°,∵S △ABC =12AC•BC =12AB•CE , ∴AC•BC =AB•CE ,∵根据勾股定理求得AB =10,∴CE =245, ∴EF =245,∵AE 185, ∴BF =AB−AE−EF =10-185-245=85, ∴S △CBF =12×BF ×CE =12×85×245=9625, ∴S △CB´F =9625, 故填:9625. 【点睛】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等知识,根据折叠的性质求得相等的角是解决本题的关键.14.3【分析】由//AD BC ,BD 平分ABC ∠,易证得ABD ∆是等腰三角形,即可求得1AD AB ==,又由四边形ABCD 是等腰梯形,易证得2C DBC ∠=∠,然后由BD CD ⊥,根据直角三角形的两锐角互余,即可求得30DBC ∠=︒,则可求得BC 的值,继而求得AD BC +的值.【详解】解:∵//AD BC ,AB DC =,∴C ABC ∠=∠,ADB DBC ∠=∠,∵BD 平分ABC ∠,∴2ABC DBC ∠=∠,ABD DBC ∠=∠,∴ABD ADB ∠=∠,∴1AD AB ==,∴2C DBC ∠=∠,∵BD CD ⊥,∴90BDC ∠=︒,∵三角形内角和为180°,∴90DBC C ∠+∠=︒,∴260C DBC ∠=∠=︒,∴2212BC CD ==⨯=,∴123AD BC +=+=.故答案为:3.【点睛】本题主要考查对勾股定理,含30度角的直角三角形,等腰三角形的性质和判定,平行线的性质,等腰梯形的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.15.82【分析】根据S△PAD=13S矩形ABCD,得出动点P在与AD平行且与AD的距离是4的直线l上,作A关于直线l的对称点E,连接DE,BE,则DE的长就是所求的最短距离.然后在直角三角形ADE中,由勾股定理求得DE的值,即可得到PA+PD的最小值.【详解】设△PAD中AD边上的高是h.∵S△PAD=13S矩形ABCD,∴12AD•h=13AD•AB,∴h=23AB=4,∴动点P在与AD平行且与AD的距离是4的直线l上,如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.在Rt△ADE中,∵AD=8,AE=4+4=8,DE22228882AE AD++=即PA+PD的最小值为2.故答案2.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.16.10【分析】先根据勾股定理得出a2+b2=c2,利用完全平方公式得到(a+b)2﹣2ab=c2,再将a+b=c=5代入即可求出ab的值.【详解】解:∵在Rt△ABC中,直角边的长分别为a,b,斜边长c,∴a2+b2=c2,∴(a+b)2﹣2ab=c2,∵a+b=c=5,∴(2﹣2ab=52,∴ab=10.故答案为10.【点睛】本题考查勾股定理以及完全平方公式,灵活运用完全平方公式是解题关键.17.4或【分析】分三种情况讨论:①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.【详解】①以A为直角顶点,向外作等腰直角三角形DAC,如图1.∵∠DAC=90°,且AD=AC,∴BD=BA+AD=2+2=4;②以C为直角顶点,向外作等腰直角三角形ACD,如图2.连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°.又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,=∴CE=DE=22在Rt△BAC中,BC==BD===③以AC为斜边,向外作等腰直角三角形ADC,如图3.∵∠ADC=90°,AD=DC,且AC=2,=∴AD=DC=AC sin45°=22又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,又∵在Rt△ABC中,BC22=+=22,22∴BD2222()().=+=+=BC CD22210故BD的长等于4或25或10.故答案为4或25或10.【点睛】本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题,18.222+【分析】连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.【详解】如图,连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,BD=2,∴2,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∵∠DEA=90°,∵∠ABC=45°,∴∠B=45°,∵DE=2, ∴BE=2,即BC=2+2,∴△PEB 的周长的最小值是BC+BE=2+2+2=2+22.故答案为2+22.【点睛】本题考查了折叠性质,等腰三角形性质,轴对称-最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P 点的位置.19.169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512 =169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.20.6【解析】∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD ,∴B 点,C 点关于AD 对称,如图,过C 作CQ ⊥AB 于Q ,交AD 于P ,则CQ=BP+PQ 的最小值,根据勾股定理得,AD=8,利用等面积法得:AB ⋅CQ=BC ⋅AD ,∴CQ=BC AD AB ⋅=12810⨯=9.6 故答案为:9.6. 点睛:此题是轴对称-最短路径问题,主要考查了角平分线的性质,对称的性质,勾股定理,等面积法,用等面积法求出CQ 是解本题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)()23y x =-【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DM =3BM ,进而可得BE +CF =3(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D 是线段BC 的中点,∴BD =DC =12BC =2. ∵DF ⊥AC ,即∠AFD =90°,∴∠AED =360°﹣60°﹣90°﹣120°=90°,∴∠BED =90°,∴∠BDE =30°,∴BE =12BD =1;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,则有∠AMD =∠BMD =∠AND =∠CND =90°.∵∠A =60°,∴∠MDN =360°﹣60°﹣90°﹣90°=120°.∵∠EDF =120°,∴∠MDE =∠NDF .在△MBD 和△NCD 中,∵∠BMD =∠CND ,∠B =∠C ,BD =CD ,∴△MBD ≌△NCD (AAS ),∴BM =CN ,DM =DN .在△EMD 和△FND 中,∵∠EMD =∠FND ,DM =DN ,∠MDE =∠NDF ,∴△EMD ≌△FND (ASA ),∴EM =FN ,∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12AB ;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.BF 的长为32【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中, BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.23.(1)证明见解析;(2)5;(3)CD 2+CE 2=BC 2,证明见解析.【分析】(1)先判断出∠BAE=∠CAD,进而得出△ACD≌△ABE,即可得出结论.(2)先求出∠CDA=12∠ADE=30°,进而求出∠BED=90°,最后用勾股定理即可得出结论.(3)方法1、同(2)的方法即可得出结论;方法2、先判断出CD2+CE2=2(AP2+CP2),再判断出CD2+CE2=2AC2.即可得出结论.【详解】解:∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD.又∵AB=AC,AD=AE,∴△ACD≌△ABE(SAS),∴CD=BE.(2)如图2,连结BE,∵AD=AE,∠DAE=60°,∴△ADE是等边三角形,∴DE=AD=3,∠ADE=∠AED=60°,∵CD⊥AE,∴∠CDA=12∠ADE=12×60°=30°,∵由(1)得△ACD≌△ABE,∴BE=CD=4,∠BEA=∠CDA=30°,∴∠BED=∠BEA+∠AED=30°+60°=90°,即BE⊥DE,∴BD5.(3)CD2、CE2、BC2之间的数量关系为:CD2+CE2=BC2,理由如下:解法一:如图3,连结BE.∵AD=AE,∠DAE=90°,∴∠D=∠AED=45°,∵由(1)得△ACD≌△ABE,∴BE=CD,∠BEA=∠CDA=45°,∴∠BEC=∠BEA+∠AED=45°+45°=90°,即BE⊥DE,在Rt△BEC中,由勾股定理可知:BC2=BE2+CE2.∴BC2=CD2+CE2.解法二:如图4,过点A作AP⊥DE于点P.∵△ADE为等腰直角三角形,AP⊥DE,∴AP=EP=DP.∵CD2=(CP+PD)2=(CP+AP)2=CP2+2CP•AP+AP2,CE2=(EP﹣CP)2=(AP﹣CP)2=AP2﹣2AP•CP+CP2,∴CD2+CE2=2AP2+2CP2=2(AP2+CP2),∵在Rt △APC 中,由勾股定理可知:AC 2=AP 2+CP 2,∴CD 2+CE 2=2AC 2.∵△ABC 为等腰直角三角形,由勾股定理可知:∴AB 2+AC 2=BC 2,即2AC 2=BC 2,∴CD 2+CE 2=BC 2.【点睛】本题是几何变换综合题,主要考查了全等三角形的判定和性质,勾股定理,等边三角形的判定和性质,等腰直角三角形的判定和性质,解(1)的关键是判断出∠BAE=∠CAD ,解(2)(3)的关键是判断出BE ⊥DE ,是一道中等难度的中考常考题.24.(1)90°;(2)证明见解析;(3)变化,234l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.25.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB=再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以OC=22228373AC OA +=+=所以BC=2OC=273,在Rt △BCD 中,CD=()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以AB=22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.26.(1)12;(2)t=12.5s 时,13 cm ;(3)11s 或12s 或13.2s【分析】(1)由勾股定理即可得出结论;(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.【详解】(1)在Rt △ABC 中,BC 2222212016AC AB =-=-=(cm ). 故答案为:12;(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,∴PC = PA =t ,PB =16-t .在Rt △BPC 中,222BC BP CP +=,即2221216)t t +-=(,解得:t =252. ∵Q 从B 到C 所需的时间为12÷2=6(s ),252>6, ∴此时,点Q 在边AC 上,CQ =25212132⨯-=(cm );(3)分三种情况讨论:①当CQ =BQ 时,如图1所示,则∠C =∠CBQ .∵∠ABC =90°,∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,∴∠A =∠ABQ ,∴BQ =AQ ,∴CQ =AQ =10,∴BC +CQ =22,∴t =22÷2=11(s ).②当CQ =BC 时,如图2所示,则BC +CQ =24,∴t =24÷2=12(s ).③当BC =BQ 时,如图3所示,过B 点作BE ⊥AC 于点E ,则BE 121648205AB BC AC ⋅⨯===, ∴CE 2222483612()55BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,∴CQ =2CE =14.4,∴BC +CQ =26.4,∴t =26.4÷2=13.2(s ).综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.【点睛】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.27.(1)∠CBD=20°;(2)AD=164;(3) △BCD 的周长为m+2 【分析】(1)根据折叠可得∠1=∠A=35°,根据三角形内角和定理可以计算出∠ABC=55°,进而得到∠CBD=20°;(2)根据折叠可得AD=DB ,设CD=x ,则AD=BD=8-x ,再在Rt △CDB 中利用勾股定理可得x 2+62=(8-x )2,再解方程可得x 的值,进而得到AD 的长;(3)根据三角形ACB 的面积可得112AC CB m =+, 进而得到AC •BC=2m+2,再在Rt △CAB 中,CA 2+CB 2=BA 2,再把左边配成完全平方可得CA+CB 的长,进而得到△BCD 的周长.【详解】(1)∵把△ABC 沿直线DE 折叠,使△ADE 与△BDE 重合,∴∠1=∠A=35°,∵∠C=90°,∴∠ABC=180°-90°-35°=55°,∴∠2=55°-35°=20°,即∠CBD=20°;(2)∵把△ABC沿直线DE折叠,使△ADE与△BDE重合,∴AD=DB,设CD=x,则AD=BD=8-x,在Rt△CDB中,CD2+CB2=BD2,x2+62=(8-x)2,解得:x= 74,AD=8-74=164;(3)∵△ABC 的面积为m+1,∴12AC•BC=m+1,∴AC•BC=2m+2,∵在Rt△CAB中,CA2+CB2=BA2,∴CA2+CB2+2AC•BC=BA2+2AC•BC,∴(CA+BC)2=m2+4m+4=(m+2)2,∴CA+CB=m+2,∵AD=DB,∴CD+DB+BC=m+2.即△BCD的周长为m+2.【点睛】此题主要考查了图形的翻折变换,以及勾股定理,完全平方公式,关键是掌握勾股定理,以及折叠后哪些是对应角和对应线段.28.(1)见解析;(2)∠ADC=45α︒+;(3)BD=【分析】(1)根据题意画出图形即可;(2)根据对称的性质,等腰三角形的性质及角与角之间的和差关系进行计算即可;(3)画出图形,结合(2)的结论证明△BED为等腰直角三角形,从而得出结论.【详解】解:(1)如图所示;(2)∵点B 与点D 关于直线AP 对称,∠BAP=α,∴∠PAD=α,AB=AD ,∵90BAC ∠=︒,∴902DAC α∠=︒-,又∵AB=AC ,∴AD=AC ,∴∠ADC=1[180(902)]2α⨯︒-︒-=45α︒+; (3)如图,连接BE ,由(2)知:∠ADC=45α︒+,∵∠ADC=∠AED+∠EAD ,且∠EAD=α,∴∠AED=45°,∵点B 与点D 关于直线AP 对称,即AP 垂直平分BD ,∴∠AED=∠AEB=45°,BE=DE ,∴∠BED=90°,∴△BED 是等腰直角三角形,∴22222BD BE DE DE =+=,∴2BD DE =.【点睛】本题考查了轴对称的性质,等腰三角形的性质,勾股定理等知识,明确角与角之间的关系,学会添加常用辅助线构造直角三角形是解题的关键.。
八年级数学试卷易错易错压轴勾股定理选择题复习题(含答案)
2020-2021八年级数学试卷易错易错压轴选择题精选:勾股定理选择题复习题(含答案)一、易错易错压轴选择题精选:勾股定理选择题1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm,在容器内壁离容器底部3cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm,则该圆柱底面周长为()A.20cm B.18cm C.25cm D.40cm2.在平面直角坐标系中,已知平行四边形ABCD的点A(0,﹣2)、点B(3m,4m+1)(m≠﹣1),点C(6,2),则对角线BD的最小值是()A.32B.213C.5 D.63.如图,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45︒,若AD=4,CD=2,则BD的长为()A.6 B.27C.5 D.254.在ΔABC中,211a b c=+,则∠A( )A.一定是锐角B.一定是直角C.一定是钝角D.非上述答案5.如图,已知AB是⊙O的弦,AC是⊙O的直径,D为⊙O上一点,过D作⊙O的切线交BA 的延长线于P,且DP⊥BP于P.若PD+PA=6,AB=6,则⊙O的直径AC的长为()A.5B.8C.10D.126.已知一个直角三角形的两边长分别为1和2,则第三边长是()A.3 B3C5D357.已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE,以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是( )A .1B .2C .3D .48.如图,在△ABC 中,∠A =90°,P 是BC 上一点,且DB =DC ,过BC 上一点P ,作PE ⊥AB 于E ,PF ⊥DC 于F ,已知:AD :DB =1:3,BC =46,则PE+PF 的长是( )A .46B .6C .42D .269.如图,已知圆柱的底面直径6BC π=,高3AB =,小虫在圆柱侧面爬行,从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程的平方为( )A .18B .48C .120D .7210.如图,已知45∠=MON ,点A B 、在边ON 上,3OA =,点C 是边OM 上一个动点,若ABC ∆周长的最小值是6,则AB 的长是( )A .12B .34C .56D .111.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )A .1个B .2个C .3个D .4个12.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( )A .49B .25C .12D .10 13.在ABC 中,AB 边上的中线3,6,8CD AB BC AC ==+=,则ABC 的面积为( )A .6B .7C .8D .9 14.在ABC 中,90C ∠=︒,30A ∠=︒,12AB =,则AC =( )A .6B .12C .62D .63 15.已知一个三角形的两边长分别是5和13,要使这个三角形是直角三角形,则这个三角形的第三条边可以是( )A .6B .8C .10D .1216.如图所示,有一个高18cm ,底面周长为24cm 的圆柱形玻璃容器,在外侧距下底1cm 的点S 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm 的点F 处有一只苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路径的长度是( )A .16cmB .18cmC .20cmD .24cm17.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .618.如图,分别以直角ABC ∆三边为边向外作三个正方形,其面积分别用123,,S S S 表示,若27S =,32S =,那么1S =( )A .9B .5C .53D .45 19.已知x ,y 为正数,且224(3)0x y -+-=,如果以x ,y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A .5B .25C .7D .1520.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )①∠ACD=2∠FAB ②27ACD S ∆= ③272CF=- ④ AC=AF A .①②③ B .①②③④ C .②③④ D .①③④21.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对22.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A =90°,BD =4,CF =6,设正方形ADOF 的边长为x,则210+=()x xA.12 B.16 C.20 D.2423.在下列以线段a、b、c的长为边,能构成直角三角形的是()A.a=3,b=4,c=6 B.a=5,b=6,c=7 C.a=6,b=8,c=9 D.a=7,b=24,c=25 24.如图,点A和点B在数轴上对应的数分别是4和2,分别以点A和点B为圆心,线段AB的长度为半径画弧,在数轴的上方交于点C.再以原点O为圆心,OC为半径画弧,与数轴的正半轴交于点M,则点M对应的数为()36A.3.5 B.23C.13D.25.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.1026.在四边形ABCD中,AB∥CD,∠A=90°,AB=1,BD⊥BC,BD=BC,CF平分∠BCD交BD、AD于E、F,则EDC的面积为()A.2 2 B.2﹣2 C.22D2﹣127.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是()A.3 B.5 C.4或5 D.3或5128.如图,在矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为()A.3 B.6C.10D.929.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是( )A.3 B.154C.5 D.15230.以下列各组数为边长,能组成直角三角形的是()A.1,2,3 B.2,3,4 C.3,4,6 D.13,2【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.D解析:D【分析】将容器侧面展开,建立A关于EG的对称点A′,根据两点之间线段最短可知A′B的长度即为最短路径,由勾股定理求出A′D即圆柱底面周长的一半,由此即可解题.【详解】解:如图,将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A ',连接A B '交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长,即 25cm AF BF A B '+==,延长BG ,过A '作A D BG '⊥于D ,3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=,Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=-=-=, ∴该圆柱底面周长为:20240cm ⨯=,故选D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.D解析:D【分析】先根据B (3m ,4m+1),可知B 在直线y=43x+1上,所以当BD ⊥直线y=43x+1时,BD 最小,找一等量关系列关于m 的方程,作辅助线:过B 作BH ⊥x 轴于H ,则BH=4m+1,利用三角形相似得BH 2=EH•FH ,列等式求m 的值,得BD 的长即可.【详解】解:如图,∵点B(3m ,4m+1),∴令341m xm y=⎧⎨+=⎩,∴y=43x+1,∴B在直线y=43x+1上,∴当BD⊥直线y=43x+1时,BD最小,过B作BH⊥x轴于H,则BH=4m+1,∵BE在直线y=43x+1上,且点E在x轴上,∴E(−34,0),G(0,1)∵F是AC的中点∵A(0,−2),点C(6,2),∴F(3,0)在Rt△BEF中,∵BH2=EH⋅FH,∴(4m+1)2=(3m+34)(3−3m)解得:m1=−14(舍),m2=15,∴B(35,95),∴=6,则对角线BD的最小值是6;故选:D.【点睛】本题考查了平行四边形的性质,利用待定系数法求一次函数的解析式,三角形相似的判定,圆形与坐标特点,勾股定理等知识点.本题利用点B的坐标确定其所在的直线的解析式是关键.3.A解析:A【解析】【分析】作AD′⊥AD,A D′=AD,连接CD′,DD′,根据等式的性质,可得∠BAD与∠CAD′的关系,根据SAS,可得△BAD与△CAD′的关系,根据全等三角形的性质,可得BD与CD′的关系,根据勾股定理,可得答案.【详解】作AD′⊥AD ,AD′=AD ,连接CD′,DD′,则有∠AD′D=∠D′AD=45︒,∵∠BAC+∠CAD=∠DAD′+∠CAD ,即∠BAD=∠CAD′,在△BAD 与△CAD′中,''BC CA BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△CA D′(SAS ),∴BD=CD′,∠DAD′=90°,由勾股定理得DD′=22'AD AD +=42,∠D′DA+∠ADC=90°,由勾股定理得CD′=22DC DD +'=()22422+=6,故选A.【点睛】本题考查了全等三角形的判定与性质,利用了全等三角形的判定与性质,勾股定理,添加辅助线作出全等图形是解题关键.4.A解析:A【解析】【分析】根据211a b c=+以及三角形三边关系可得2bc >a 2 ,再根据(b-c ) 2 ≥0,可推导得出b 2 +c 2 >a 2 ,据此进行判断即可得. 【详解】∵211a b c =+, ∴2b c a bc+=, ∴2bc=a (b+c ),∵a 、b 、c 是三角形的三条边,∴b+c >a ,∴2bc >a·a ,即2bc >a 2 ,∵(b-c ) 2 ≥0,∴b 2 +c 2 -2bc≥0,b 2 +c 2 ≥2bc ,∴b 2 +c 2 >a 2 ,∴一定为锐角,故选A .【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b 2 +c 2 >a 2 是解题的关键.5.C解析:C【解析】分析:通过切线的性质表示出EC 的长度,用相似三角形的性质表示出OE 的长度,由已知条件表示出OC 的长度即可通过勾股定理求出结果.详解:如图:连接BC ,并连接OD 交BC 于点E :∵DP ⊥BP ,AC 为直径;∴∠DPB=∠PBC=90°.∴PD ∥BC,且PD 为⊙O 的切线.∴∠PDE=90°=∠DEB,∴四边形PDEB 为矩形,∴AB ∥OE ,且O 为AC 中点,AB=6.∴PD=BE=EC.∴OE=12AB=3. 设PA=x ,则OD=DE-OE=6+x-3=3+x=OC ,EC=PD=6-x..在Rt △OEC 中:222OE EC OC +=,即:()()222363x x +-=+,解得x=2.所以AC=2OC=2×(3+x )=10.点睛:本题考查了切线的性质,相似三角形的性质,勾股定理. 6.D解析:D【解析】当一直角边、斜边为1和2时,第三边==;当两直角边长为1和2时,第三边==;故选:D.7.C解析:C【解析】试题分析:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.∵在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS).∴BD=CE.本结论正确.②∵△BAD≌△CAE,∴∠ABD=∠ACE.∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°.∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°.∴BD⊥CE.本结论正确.③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°.∴∠ABD+∠DBC=45°.∵∠ABD=∠ACE,∴∠ACE+∠DBC=45°.本结论正确.④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2.∵△ADE为等腰直角三角形,∴2AD,即DE2=2AD2.∴BE2=BD2+DE2=BD2+2AD2.而BD2≠2AB2,本结论错误.综上所述,正确的个数为3个.故选C.8.C解析:C【解析】【分析】根据三角形的面积判断出PE+PF的长等于AC的长,这样就变成了求AC的长;在Rt△ACD 和Rt△ABC中,利用勾股定理表示出AC,解方程就可以得到AD的长,再利用勾股定理就可以求出AC的长,也就是PE+PF的长.【详解】∵△DCB为等腰三角形,PE⊥AB,PF⊥CD,AC⊥BD,∴S△BCD=12BD•PE+12C D•PF=12BD•AC,∴PE+PF=AC,设AD=x,BD=CD=3x,AB=4x,∵AC2=CD2-AD2=(3x)2-x2=8x2,∵AC2=BC2-AB2=(6)2-(4x)2,∴x=2,∴2,∴2故选C【点睛】本题考查勾股定理、等腰三角形的性质等知识,解题的关键是学会利用面积法证明线段之间的关系,灵活运用勾股定理解决问题,属于中考常考题型.9.D解析:D【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【详解】解:把圆柱侧面展开,展开图如图所示,点A ,C 的最短距离为线段AC 的长.∵已知圆柱的底面直径6BC π=, ∴623AD ππ=⋅÷=, 在Rt ADC ∆中,90ADC ∠=︒ ,3CD AB ==,∴22218AC AD CD =+=,∴从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程的平方为()222472AC AC ==.故选D.【点睛】本题考查了平面展开-最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.10.D解析:D【分析】作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C ,此时△ABC 周长最小,根据题意及作图可得出△OAD 是等腰直角三角形,OA=OE=3,,所以∠OAE=∠OEA=45°,从而证明△BOE 是直角三角形,然后设AB=x ,则OB=3+x ,根据周长最小值可表示出BE=6-x ,最后在Rt △OBE 中,利用勾股定理建立方程求解即可.【详解】解:作点A 关于OM 的对称点E ,AE 交OM 于点D ,连接BE 、OE ,BE 交OM 于点C , 此时△ABC 周长最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE ,∵△ABC 周长的最小值是6,∴AB+BE=6,∵∠MON=45°,AD ⊥OM ,∴△OAD 是等腰直角三角形,∠OAD=45°,由作图可知OM 垂直平分AE ,∴OA=OE=3,∴∠OAE=∠OEA=45°,∴∠AOE=90°,∴△BOE 是直角三角形,设AB=x ,则OB=3+x ,BE=6-x ,在Rt △OBE 中,()()2223+3+6x x =-,解得:x=1,∴AB=1.故选D.【点睛】本题考查了利用轴对称求最值,等腰直角三角形的判定与性质,勾股定理,熟练掌握作图技巧,正确利用勾股定理建立出方程是解题的关键.11.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF ,交DE 于点P ,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC ≌△BFC ,△AFD ≌△CFE ,△CFD ≌△BFE . 由等腰直角三角形的性质,可知FA=FC=FB ,易得△AFC ≌△BFC .∵FC ⊥AB ,FD ⊥FE ,∴∠AFD=∠CFE .∴△AFD ≌△CFE (ASA ).同理可证:△CFD ≌△BFE .结论②正确,理由如下:∵△AFD ≌△CFE ,∴S △AFD =S △CFE ,∴S 四边形CDFE =S △CFD +S △CFE =S △CFD +S △AFD =S △AFC =12S △ABC , 即△ABC 的面积等于四边形CDFE 的面积的2倍.结论③错误,理由如下:∵△AFD ≌△CFE ,∴CE=AD ,∴CD+CE=CD+AD=AC=2FA .结论④正确,理由如下:∵△AFD ≌△CFE ,∴AD=CE ;∵△CFD ≌△BFE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:222CD CE DE +=,∴222AD BE DE += .故选B .【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.12.C解析:C【解析】试题解析:如图,∵大正方形的面积是25,∴c 2=25,∴a 2+b 2=c 2=25,∵直角三角形的面积是(25-1)÷4=6,又∵直角三角形的面积是12ab=6, ∴ab=12.13.B解析:B【分析】本题考查三角形的中线定义,根据条件先确定ABC 为直角三角形,再根据勾股定理求得228AC BC = ,最后根据12ABC AC BC ∆=⋅求解即可. 【详解】 解:如图,在ABC 中,AB 边上的中线,∵CD=3,AB= 6,∴CD=3,AB= 6,∴CD= AD= DB ,12∠∠∴=,34∠=∠ ,∵1234180∠+∠+∠+∠=︒,∴1390∠+∠=︒,∴ABC 是直角三角形,∴22236AC BC AB +==,又∵8AC BC +=,∴22264AC AC BC BC +⋅+=,∴22264()643628AC BC AC BC ⋅=-+=-=,又∵12ABC AC BC ∆=⋅, ∴128722ABC S ∆=⨯=, 故选B.【点睛】本题考查三角形中位线的应用,熟练运用三角形的中线定义以及综合分析、解答问题的能力,关键要懂得:在一个三角形中,如果获知一条边上的中线等于这一边的一半,那么就可考虑它是一个直角三角形,通过等腰三角形的性质和内角和定理来证明一个三是直角三角形.14.D解析:D【分析】根据直角三角形的性质求出BC ,根据勾股定理计算,得到答案.解:∵∠C=90°,∠A=30°,∴BC=12AB=6,由勾股定理得,AC=2263AB BC=-,故选:D.【点睛】本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.15.D解析:D【分析】此题要分两种情况:当5和13都是直角边时;当13是斜边长时;分别利用勾股定理计算出第三边长即可求解.【详解】当5和13都是直角边时,第三边长为:22513194+=;当13是斜边长时,第三边长为:2213512-=;故这个三角形的第三条边可以是12.故选:D.【点睛】本题主要考查了勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.16.C解析:C【分析】首先画出圆柱的侧面展开图,进而得到SC=12cm,FC=18-2=16cm,再利用勾股定理计算出SF长即可.【详解】将圆柱的侧面展开,蜘蛛到达目的地的最近距离为线段SF的长,由勾股定理,SF2=SC2+FC2=122+(18-1-1)2=400,SF=20 cm,故选C.【点睛】本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.17.C解析:C【详解】如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C .考点:勾股定理的证明.18.A解析:A【分析】根据勾股定理与正方形的性质解答.【详解】解:在Rt △ABC 中,AB 2=BC 2+AC 2,∵S 1=AB 2,S 2=BC 2,S 3=AC 2,∴S 1=S 2+S 3.∵S 2=7,S 3=2,∴S 1=7+2=9.故选:A .【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.19.C解析:C【分析】本题可根据两个非负数相加和为0,则这两个非负数的值均为0解出x 、y 的值,然后运用勾股定理求出斜边的长.斜边长的平方即为正方形的面积.【详解】依题意得:2240,30x y -=-=,∴2,x y ==,斜边长==所以正方形的面积27==.故选C .考点:本题综合考查了勾股定理与非负数的性质点评:解这类题的关键是利用直角三角形,用勾股定理来寻求未知系数的等量关系.20.B解析:B【分析】过点C 作CH AB ⊥于点H ,根据等腰三角形的性质得到1802ACD CDA ∠=︒-∠,根据AF CD ⊥得到90FAB CDA ∠=︒-∠,可以证得①是正确的,利用勾股定理求出AG 的长,算出三角形ACD 的面积证明②是正确的,再根据角度之间的关系证明AFC ACF ∠=∠,得到④是正确的,最后利用勾股定理求出CF 的长,得到③是正确的.【详解】解:如图,过点C 作CH AB ⊥于点H ,∵AC CD =,∴CAD CDA ∠=∠,1802ACD CDA ∠=︒-∠,∵AF CD ⊥,∴90AGD ∠=︒,∴90FAB CDA ∠=︒-∠,∴2ACD FAB ∠=∠,故①正确;∵3CG =,1DG =,∴314CD CG DG =+=+=,∴4AC CD ==,在Rt ACG 中,221697AG AC CG =--=, ∴1272ACD S AG CD =⋅=∵90CHB ∠=︒,45B ∠=︒,∴45HCB ∠=︒,∵AC CD =,CH AD ⊥, ∴12ACH HCD ACD ∠=∠=∠,∵45AFC B FAB FAB ∠=∠+∠=︒+∠,45ACF ACH HCB ACH ∠=∠+∠=∠+︒,12ACH ACD FAB ∠=∠=∠,∴AFC ACF ∠=∠,∴4AC AF ==,故④正确;∴4GF AF AG =-=-在Rt CGF 中,2CF ===,故③正确. 故选:B .【点睛】本题考查几何的综合证明,解题的关键是掌握等腰三角形的性质和判定,勾股定理和三角形的外角和定理.21.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒222AD CD AC ∴+=13AC ∴=13AB AC ∴==故ABC 是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.22.D解析:D【分析】设正方形ADOF 的边长为x ,在直角三角形ACB 中,利用勾股定理可建立关于x 的方程,整理方程即可.【详解】解:设正方形ADOF 的边长为x ,由题意得:BE =BD =4,CE =CF =6,∴BC =BE +CE =BD +CF =10,在Rt △ABC 中,AC 2+AB 2=BC 2,即(6+x )2+(x +4)2=102,整理得,x 2+10x ﹣24=0,∴x 2+10x =24,故选:D .【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.23.D解析:D【解析】A 选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B 选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C 选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D 选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确. 故选D .24.B解析:B【分析】如图,作CD ⊥AB 于点D ,由题意可得△ABC 是等边三角形,从而可得BD 、OD 的长,然后根据勾股定理即可求出CD 与OC 的长,进而可得OM 的长,于是可得答案.【详解】解:∵点A 和点B 在数轴上对应的数分别是4和2,∴OB=2,OA=4,如图,作CD ⊥AB 于点D ,则由题意得:CA=CB=AB=2,∴△ABC 是等边三角形,∴BD=AD=112AB =, ∴OD=OB+BD=3,223CD BC BD =-=,∴()22223323OC OD CD =+=+=,∴OM=OC=23,∴点M 对应的数为23.故选:B .【点睛】本题考查了实数与数轴、等边三角形的判定与性质以及勾股定理等知识,属于常见题型,正确理解题意、熟练掌握上述知识是解题的关键.25.C解析:C【分析】根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD 的长,即可得出BC 的长.【详解】在△ABC 中,AB =AC ,AD 是∠BAC 的平分线,∴AD ⊥BC ,BC=2BD.∴∠ADB=90°在Rt △ABD 中,根据勾股定理得:=4∴BC=2BD=2×4=8.故选C.【点睛】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.26.C解析:C【分析】先过点E 作EG ⊥CD 于G ,再判定△BCD 、△ABD 都是等腰直角三角形,并求得其边长,最后利用等腰直角三角形,求得EG 的长,进而得到△EDC 的面积.【详解】解:过点E 作EG ⊥CD 于G ,又∵CF 平分∠BCD ,BD ⊥BC ,∴BE =GE ,在Rt △BCE 和Rt △GCE 中CE CE BE GE =⎧⎨=⎩, ∴Rt △BCE ≌Rt △GCE ,∴BC =GC ,∵BD ⊥BC ,BD =BC ,∴△BCD 是等腰直角三角形,∴∠BDC =45°,∵AB//CD ,∴∠ABD =45°,又∵∠A =90°,AB =1,∴等腰直角三角形ABD 中,BD=BC ,∴Rt △BDC 中,CD 2,∴DG =DC ﹣GC =2﹣2, ∵△DEG 是等腰直角三角形,∴EG =DG =2﹣2,∴△EDC 的面积=12×DC×EG =12×2×(2﹣2)=2﹣2. 故选:C .【点睛】本题主要考查了角平分线的性质,等腰直角三角形的性质与判定,全等三角形的判定与性质,以及勾股定理等知识,解决问题的关键是作辅助线,构造直角三角形EDG 进行求解.27.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x+-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键.28.C解析:C【分析】做点F 做FH AD ⊥交AD 于点H ,因此要求出EF 的长,只要求出EH 和HF 即可;由折叠的性质可得BE=DE=9-AE ,在Rt ABE △中应用勾股定理求得AE 和BE ,同理在Rt BC F 'Rt ABE △中应用勾股定理求得BF ,在Rt EFH 中应用勾股定理即可求得EF .【详解】过点F 做FH AD ⊥交AD 于点H .∵四边形EFC B '是四边形EFCD 沿EF 折叠所得,∴ED=BE ,CF=C F ',3BC CD '==∵ED=BE ,DE=AD-AE=9-AE∴BE=9-AE∵Rt ABE △,AB=3,BE=9-AE∴()22293AE AE -=+∴AE=4∴DE=5∴9C F BC BF BF '=-=-∴Rt BC F ',3BC '=,9C F BF '=-∴()22293BF BF -+=∴BF=5,EH=1∵Rt EFH ,HF=3,EH=1 ∴22223110EF EH HF =+=+故选:C .【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题. 29.C解析:C【解析】将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y ,∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=15, ∴得出S 1=8y+x ,S 2=4y+x ,S 3=x ,∴S 1+S 2+S 3=3x+12y=15,即3x+12y=15,x+4y=5,所以S 2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y 表示出S1,S2,S3,再利用S1+S2+S3=15求解是解决问题的关键.30.D解析:D【分析】根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.【详解】解:A、12+22=5≠32,故不符合题意;B、22+32=13≠42,故不符合题意;C、32+42=25≠62,故不符合题意;D、12+2=4=22,符合题意.故选D.【点睛】本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,简便的方法是:判断两个较小的数的平方和是否等于最大数的平方即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理练习题:
1、图1是用四个全等的直角三角形(两直角边长分别是a b ,,斜边长为c )和一个边长为c 的正方
形拼成的两个大正方形,图2是两个全等的直角三角形和一个等腰直角三角形拼成的直角梯形,请你分别利用它们证明勾股定理。
2、在△ABC 中,∠A ∠B ∠C 的对边分别为,并且(a+b)(a-b)=c ,则( )
,,a b c 2(A )∠A 为直角 (B )∠C 为直角 (C )∠B 为直角 (D )不是直角三角形
3、已知线段a =15,b =12,c =9,判断由线段a ,b ,c 组成的三角形是不是直角三角形?
4、在△ABC 中,AB =AC =10,BC =16,则△ABC 的面积为_________。
5、△ABC 中,∠C =90o ,AB =3,则AB 2+BC 2+AC 2=_______。
6、如果直角三角形的三条边为2,4,a ,求a 2的值。
7、如图在△ABC 中,∠C=90°,AD 平分∠BAC ,DE ⊥AB 于E ,
DE=3,BD=2CD ,则BC 的值。
8、在Rt △ABC 中,∠C =90°,a ∶b =24∶7,且c =75,求a 、b 的值。
9、已知a 、b 、c 为△ABC 的三边,且满足,试判断△ABC 的形状2222222
()()()c a b a b a b -=-+10、如图,矩形纸片ABCD 中,AD =4,AB =10,按图中方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长。
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。