亲水与超亲水、疏水、超疏水的接触角界限
超疏水现象及应用

利用化学气相沉积法在石英基底上制备了各种图案结构的阵列碳纳米管膜, 结 果表明 , 水在这些膜表面的接触角都大于 160° , 滚动角都小于 5° , 纳米结构 与微米结构在表面的阶层排列被认为是产生这种高接触角、低滚动角的原因。
利用 CVD法得到的阵列碳纳米管膜的 SEM照片: ( a,b).蜂房结构 (不同放大倍数 ) ,
结构。
模板法
复制模塑技术制备仿生超疏水表面 的操作示意图
2.等离子体法
• 等离子体:是由部分电子被剥夺后的原子及原子被电离后 产生的正负电子组成的离子化气体状物质,它广泛存在于 宇宙中,常被视为是除去固、液、气外,物质存在的第四 态。
• 等离子体法原理:利用等离子体对表面进行处理,获得粗 糙结构 ,从而得到超疏水性的材料表面。
荷叶表面双微观结构模型
• 通过实验测试,水滴在荷叶表面的接触角和滚动角分别为 161.0°±2.7º和2º。这使得荷叶具有了很好的自清洁能力。
• 从上面模型可看出:由于荷叶双微观结构的存在,大量空气储存在 这些微小的凹凸之间,使得水珠只与荷叶表面乳突上面的蜡质晶体 毛茸相接触,显著减小了水珠与固体表面的接触面积,扩大了水珠 与空气的界面,因此液滴不会自动扩展,而保持其球体状,这就是 荷叶表面具有超疏水性的原因所在。
的黏附及由此带来的对针尖的污染; – 防水和防污处理; – ………
沙漠集水 器
轮船船底涂料
轮船底部的低表面能防污涂料
海洋生物会在 船底板生长, 增加船底粗糙 度。
超疏水性自清洁涂料 防冰雪涂料
超疏水材料的应用
• 新型超疏水材料的应用将十分广泛:
– 沙漠集水; – 远洋轮船船底涂料,可以达到防污、防腐的效果; – 室外天线上,建筑玻璃,汽车、飞机挡风玻璃上,可以防
超疏水表面

剂。
化学溶液沉积法制备超疏水氧化锌薄膜
实验步骤
将清洗好的玻璃衬底采用旋涂工艺在匀胶机上制备ZnO缓冲层,转 速2000r/min。反复旋涂、干燥四次后,将玻璃衬底在400℃热处理 30min以形成ZnO缓冲层薄膜。 配备硝酸锌浓度为0.01mol/L的溶液作为化学沉积的溶液,NaOH浓 度分别为0.35mol/L、0.4mol/L、0.45mol/L。将已涂覆缓冲层的玻 璃衬底垂直插入沉积溶液中,在一定的加热速度和磁力搅拌速度下 升温至 75 ℃,继续反应一定的时间后,即可在玻璃衬底上获得 ZnO 纳米棒阵列膜。 将所制得的ZnO薄膜分别经去离子水淋洗后,在100℃下烘干。然 后放入葵基三乙氧基硅烷/乙醇溶液(10mmol/L)中,24h后取出,用 乙醇淋洗,在150℃加热2h。
刻 蚀 法
沉 积 法
模 板 法
溶 胶 凝 胶 法
相 分 离 法
静 电 纺 丝 法
纳 米 颗 粒 法
化 学 腐 蚀
激 光 刻 蚀
等 离 子 体 刻 蚀
光 刻 技 术
平 版 印 刷 术
物 理 气 相 沉 积
水 热 生 长 法
化 学 气 相 沉 积
电 化 学 方 法
层 层 组 装 技 术
超疏水表面技术存在的问题
适当增加沉积时间可以提高ZnO薄膜的疏水性,但薄膜的 疏水性与ZnO纳米棒阵列膜的规则性似乎关系不大。
谢 谢
超疏水表面技术的发展趋势
解决现存问题, 进行规模化生产
产业化
发 展 趋 势
多功能化
对自然界动植 物进行仿生
光、电、磁、热 等外界刺激响应
智能化
超疏水表面技术的潜在应用
门窗玻璃
潜 在 应 用
超疏水-是指水滴在材料表面呈球状,接触角大于150°。

超疏水-是指水滴在材料表面呈球状,接触角大于150°。
超疏水-是指水滴在材料表面呈球状,接触角大于150°。
真正具有本征超疏水的材料是不存在的,对于平整材料而言,最大的水接触角不过119°。
但是可对金属材料进行表面修饰,实现表面粗糙化或者修饰低表面能物质,使其接触角大于150°,从而实现超疏水性能。
学术术语来源---TiAl6Vi4表面超疏水修饰后的体外抑菌实验文章亮点:实验创新性采用电化学阳极氧化法在TiAl6Vi4钛合金表面制备TiO2纳米管薄膜,并通过氟硅烷自组装修饰成功制备超疏水表面,使其接触角>150°。
通过比较超疏水表面、普通疏水表面和亲水表面对金黄色葡萄球菌贴附的作用,验证通过增加内植物表面疏水性可提高其抑菌效果。
关键词:生物材料;骨生物材料;钛金属TiAl6Vi4;细菌贴附;超疏水;钛金属;感染主题词:生物相容性材料;钛;葡萄球菌,金黄色;疏水及亲水作用摘要背景:研究表明,材料表面亲、疏水性(即表面浸润性)是影响细菌黏附的重要原因。
目的:探讨钛金属TiAl6Vi4表面超疏水改性后对金黄色葡萄球菌的抑菌作用。
方法:将TiAl6Vi4板块经砂纸、酸溶液抛光和超声清洗后,随机分组:超疏水表面组采用电化学阳极氧化法在TiAl6Vi4表面制备TiO2纳米管薄膜,并通过氟硅烷自组装修饰;亲水表面组采用电化学阳极氧化法在TiAl6Vi4表面制备TiO2纳米管薄膜;疏水表面组对TiAl6Vi4表面行氟硅烷自组装修饰,分别测量3组表面的接触角。
将3组样品浸泡于金黄色葡萄球菌菌液中2 h,观察样品表面细菌黏附和分布状态,以及浸泡过样品剩余菌液的A值。
结果与结论:亲水表面组表面多数金葡菌彼此聚集、重叠,呈葡萄串形态;疏水表面组表面细菌有聚在一起的趋势,但没有彼此重叠、覆盖,只是单层排列,没有形成葡萄串表面;超疏水表面组表面细菌分散排布,一般只有两三个细菌在一起,不成串,不重叠。
“两面神”薄膜:一面超疏水一面超亲水

“两⾯神”薄膜:⼀⾯超疏⽔⼀⾯超亲⽔⾃然界中,荷叶、稻叶等材料表⾯呈现出不同超疏⽔特性。
道法⾃然,⼈们基于仿⽣策略实现了系列材料超疏⽔表⾯的构筑。
然⽽,荷叶表⾯除具有超疏⽔特性——“荷叶效应”之外,还呈现出表⾯超疏⽔、底⾯亲⽔的“两⾯神(Janus)”润湿特性。
荷叶的两⾯神润湿特性模拟荷叶表⾯这种特性进⾏具有显著润湿性差异Janus膜表⾯构筑。
近⽇,⼀个⼟⽿其—德国联合研究团队以滤纸为多孔基底,通过单⾯修饰聚⼆甲硅氧烷(PDMS)/⽆机微纳颗粒,简便构筑了具有超疏⽔/亲⽔显著润湿性差异的“两⾯神”膜。
这种Janus膜具有优异的化学稳定性、机械稳定性和柔韧性,同时保持良好的透⽓性,在伤⼝处理等⽅⾯具有较⼤的应⽤前景。
荷叶疏⽔表⾯的微观结构研究⼈员选⽤Whatman No. 1滤纸和实验室⼯程棉滤纸为基底材料,将PDMS、硅纳⽶颗粒以及玻璃微球混合均匀后采⽤喷涂技术涂覆到基底表⾯,经过120 ℃加热交联处理后PDMS共价接枝到滤纸表⾯。
该侧滤纸表⾯呈现出超疏⽔特性(接触⾓163.1°± 1.2°)。
同时,研究表明混⼊掺杂三种不同尺⼨的⽆机颗粒(9−13µm、20−60µm、数纳⽶)对于超疏⽔表⾯的构筑⼗分必要,微⽶级尺⼨和纳⽶尺度的⽆机颗粒协同提供微纳粗糙表⾯。
Janus膜的制备及表⾯形貌研究发现加热处理使得PDMS与基底产⽣共价键连接,进⼀步对“两⾯神”膜的内部结构进⾏表征,结果表明在涂层制备过程中涂层组分渗透扩散⾄多孔滤纸内部形成梯度化学改性结构;这⼀结构特性有效地保证了“两⾯神”膜的溶剂/⽔稳定性。
“两⾯神”膜基于底部保持亲⽔特性,其整体保持较⾼的吸⽔率(80 g/m2)。
基于滤纸、表⾯硅橡胶涂层组分优异的柔韧性以及基底与涂层存在共价键连接界⾯,结合⽆机微纳颗粒杂化改性,使得该“两⾯神”膜表⾯具有优异的超疏⽔润湿稳定性。
在循环弯曲以及摩擦测试后,该涂层仍能维持其优异的超疏⽔特性。
ZnO超疏水_超亲水可逆转化薄膜研究进展

ZnO 超疏水/超亲水可逆转化薄膜研究进展蘧广剑,辛炳炜* ,封从姝,刘赛,石键( 德州学院山东高校配位化学与功能材料重点实验室,山东德州253023)摘要:ZnO 纳米薄膜具有光响应的润湿性可逆转化现象,这种“智能开关”在许多领域具有重要意义,为此近年来ZnO 超疏水薄膜的制备引起了研究者的广泛关注。
一般是在ZnO 表面修饰一层表面张力较低的物质,通过降低表面自由能而获得超疏水表面。
然而常用的修饰物质如氟化物、硅烷等会不同程度地被ZnO 光催化分解。
为此一方面积极寻求光催化稳定的修饰层,另一方面制备具有特殊形貌的ZnO 纳米薄膜以期直接获取ZnO 超疏水薄膜。
由于离子液体的稳定性,利用其作为ZnO 的修饰层制备双响应薄膜,另外用HAc 调控制备“裸”Zn O超疏水薄膜。
对ZnO 润湿性能及其超疏水薄膜的制备研究进展进行了简要综述。
关键词:ZnO 薄膜;润湿性;超疏水表面;光响应可逆转化中图分类号:O614.24 文献标识码:A 文章编号:0258-3283(2014)10-0907-06表面浸润性(又称浸润性,W ett abi li ty),是固体表面的一个重要特征[1,2],它对工农业生产和人们的日常生活都有着重要意义。
润湿性通常用液体在固体表面的接触角(C A)来表征,一般来讲,当水与固体的接触角<90°时为亲水性,>90° 时为疏水性;其中两种极端情况:<5°为超亲水,>150°为超疏水,广泛应用于国防、工农业生产和日常生活等领域。
超疏水表面的制备有两个前提条件:1)表面材料具有低表面自由能;2 ) 具有合适的表面微纳结构。
超疏水性表面可以通过两种方法制备:一种是在低表面能材料的表面构建粗糙结构;另一种是在粗糙表面上修饰低表面能物质。
通过外界条件如光、电、热、pH 等改变疏水亲水状态的表面,叫做智能润湿性表面[3],这种“智能开关”在微流体技术、无损液体传输、自清洁材料等许多领域具有重要意义,成为当今润湿性领域最重要的发展方向之一,国内外许多课题组已从生物仿生到实际应用等多方面设计合成了多种功能超疏水表面[4]。
接触角与亲水性的关系

一般涂层的疏水性主要是靠接触角和吸水率来判断的吧,想问下这两者之间的关系,比如说
主要是接触角,小的,疏水性小亲水强。
吸水首要能被水润湿,即有亲水性,接触角大亲水性小,在其它条件不变时吸水越小
一般是这样的
如果接触角小,说明表面和水相容性好!
反之,说明差
度:h的正负表示上升或下降。
浸润液体上升,接触角为锐角;不浸润液体下降,接触较为钝角。
上升高度h=2*表面张力系数*cos接触角/(液体密度*重力加速度g*毛细管半径r)。
植物的根系吸收水分除了利用毛细现象,根吸水的主要动力是由蒸腾作用通过散失水分所产生的拉力
想让水从下面运到房子上肯定要力的作用的,不如你设计一个省力的滑轮组把水吊上去好了,省力是省力,做的功还是一样多的
有特殊情况,最近在nature上看到一篇文章,说的是玫瑰花瓣,其表面疏水性很强,但与水却粘滞不滴落,其吸水性却是强的。
接触角大小表征的可能是初期疏水性性吧,而吸水率表征的是长期吸水情况吧!
吸水过程有三个阶段:
1.水分进入材料,充满其中的自由体积;接触角很重要
2.水分作为增塑剂,使聚合物分子链滑移,增加自由体积,增大吸水率;
3.材料中的极性基团和水形成氢键,发生不可逆反应,吸水率随时间一直增加
涂层是否内外材质均匀呢。
涂料的自清洁特性与应用研究
涂料的自清洁特性与应用研究在当今社会,涂料作为一种广泛应用于建筑、工业、交通等领域的材料,其性能和功能不断得到拓展和创新。
其中,自清洁涂料因其独特的特性和广泛的应用前景,受到了越来越多的关注和研究。
自清洁涂料是一种具有特殊表面性能的涂料,能够在自然环境中自动去除表面的污垢、灰尘、污染物等,保持表面的清洁和光洁。
这种特性使得自清洁涂料在许多领域具有重要的应用价值。
一、自清洁涂料的原理自清洁涂料的自清洁原理主要包括两个方面:一是超疏水/超亲水特性,二是光催化作用。
超疏水特性是指涂料表面具有极低的表面能,水在其表面形成球状,容易滚落并带走表面的污垢。
这种超疏水表面通常是通过特殊的表面结构和化学组成来实现的。
例如,表面具有微纳结构的粗糙度,同时涂层中含有低表面能的物质,如氟碳化合物、硅氧烷等。
超亲水特性则是指涂料表面能够迅速吸收水分,使水分在表面形成均匀的水膜,将污垢溶解并冲走。
这种超亲水表面通常是通过在涂层中引入亲水基团或纳米粒子来实现的。
光催化作用是另一种常见的自清洁原理。
常见的光催化剂如二氧化钛(TiO₂),在紫外线或可见光的照射下,能够产生强氧化性的自由基,将有机污染物分解为无害物质。
这种光催化自清洁涂料不仅能够去除表面的污垢,还能够降解空气中的有害气体。
二、自清洁涂料的类型根据自清洁原理的不同,自清洁涂料主要可以分为以下几种类型:1、超疏水自清洁涂料这类涂料主要利用超疏水特性实现自清洁。
其在建筑外墙、玻璃幕墙、汽车表面等领域有广泛应用。
例如,建筑外墙上的超疏水涂料可以减少雨水的残留,防止污垢和藻类的附着,保持建筑物外观的清洁和美观。
2、超亲水自清洁涂料超亲水自清洁涂料在玻璃、陶瓷等表面有较好的应用。
如自清洁玻璃,能够在雨水的冲刷下迅速清洁表面,提高玻璃的透明度和采光效果。
3、光催化自清洁涂料光催化自清洁涂料由于其能够同时去除表面污垢和降解空气中的污染物,在室内外环境净化方面具有很大的潜力。
例如,在医院、学校等公共场所的墙面涂料中使用光催化自清洁涂料,可以有效减少细菌和病毒的传播,改善室内空气质量。
水接触角单位
水接触角单位全文共四篇示例,供读者参考第一篇示例:水接触角是指水滴或水珠与固体表面接触时形成的夹角。
它是衡量固体表面与水接触性质的重要参数之一,通常用于描述固体表面的亲水性或疏水性。
水接触角的大小直接影响到水在固体表面上的传播和吸附性质,对于表面润湿、防水、防污等应用具有重要意义。
水接触角的测量单位为度,表示为°。
正常情况下,当水珠与固体表面形成的接触角小于90°时,称为亲水性表面;当接触角大于90°时,称为疏水性表面。
接触角越小,表明水在固体表面上的润湿性越好;而接触角越大,则表明水滴在固体表面上呈现出较大的滚动角,即不易附着在表面上。
水接触角的测量方法有很多种,常见的有接触角仪、接触角计算软件等。
接触角仪通过测量水滴与固体表面接触时的夹角来得到水接触角的数值,具有高精度和重复性。
接触角计算软件则通过分析图像或视频数据来计算出水接触角的数值,能够实现自动化测量和数据处理。
水接触角的测量在科研领域和工业生产中有着广泛的应用。
在科研方面,通过研究不同固体表面的水接触角可以了解材料的表面性质和润湿性能,为材料设计和表面改性提供依据。
在工业生产中,水接触角的测量可以用于评估产品的表面质量和性能,指导产品的设计和制造过程,提高产品的竞争力和市场占有率。
除了在科研和工业应用中,水接触角还在环境保护和生物学研究中发挥着重要作用。
通过测量水滴在不同植物叶片表面的接触角,可以了解植物表面的亲水性和疏水性,从而探讨植物在生长发育和光合作用中的适应性和优势。
水接触角的测量也可以应用于检测水资源污染和生态系统监测,帮助解决环境问题和保护生态环境。
水接触角作为表征固体表面性质的重要参数,具有广泛的应用前景和深远的意义。
随着科学技术的不断发展和进步,水接触角的测量和研究将在更多领域得到应用,为促进科学进步和社会发展作出更大的贡献。
希望大家能够关注水接触角的研究和应用,共同推动科技创新和绿色发展的进程。
超疏水表面的定义
超疏水表面的定义1. 引言超疏水表面是一种特殊的表面结构,其具有非常强的疏水性质,即液体在其上无法附着。
这种表面的应用潜力巨大,可以在许多领域发挥重要作用,如自清洁涂层、防污染材料、液滴传感器等。
本文将详细介绍超疏水表面的定义、原理、制备方法以及应用领域。
2. 超疏水表面的定义超疏水表面是指具有非常高的接触角和低的滑移角的表面。
接触角是指液体与固体界面上形成的接触线与固体表面之间形成的夹角,而滑移角则是指液体在固体表面上滑动时形成的夹角。
当接触角大于90度且滑移角接近于0度时,就可以将该表面称为超疏水表面。
3. 超疏水表面的原理超疏水表面的疏水性质主要源于两个方面:微纳米结构和化学改性。
3.1 微纳米结构超疏水表面通常具有微纳米级别的结构特征,如微凸起、纳米柱状结构等。
这些结构可以使液体在表面上只接触到少量的固体区域,从而减小了液体与固体之间的接触面积,使接触角增大。
微纳米结构还可以形成空气层,在液体滑过表面时降低摩擦力,从而实现液滴无法附着的效果。
3.2 化学改性除了微纳米结构外,化学改性也是实现超疏水表面的重要手段。
通过在表面上引入特定的化学官能团或涂层,可以使表面具有更好的疏水性质。
在聚合物材料上引入氟碳链可以增加表面的亲-疏水性差异,从而提高接触角;在金属材料上进行化学溶液处理可以形成氧化物层,进一步提高疏水性能。
4. 超疏水表面的制备方法制备超疏水表面的方法多种多样,常见的包括物理处理和化学处理。
4.1 物理处理物理处理方法主要是通过改变表面的形貌来实现超疏水性质。
常见的物理处理方法包括刻蚀、薄膜沉积、激光加工等。
刻蚀可以通过化学腐蚀或机械加工来改变表面的形貌,形成微纳米结构;薄膜沉积可以在表面上形成具有特定性质的涂层;激光加工则可以通过瞬间高温和高压来改变材料表面的形貌。
4.2 化学处理化学处理方法主要是通过在材料表面引入特定的化学官能团或涂层来实现超疏水性质。
常见的化学处理方法包括溶液浸泡、溶胶凝胶法、自组装等。
疏气和接触角关系-概述说明以及解释
疏气和接触角关系-概述说明以及解释1.引言1.1 概述概述:本文将探讨疏气和接触角之间的关系。
作为表面科学领域的重要概念,疏气和接触角在许多领域有着广泛的应用。
疏气是指液体与固体表面之间的无序间隔空气区域,而接触角则是液滴或气泡与固体表面之间的接触线和垂直表面的夹角。
研究疏气和接触角的关系不仅有助于深入理解液体在固体表面上的行为,还对很多领域的应用有着重要意义,如界面科学、涂料技术、生物医学工程等。
在接下来的文章中,我们将首先讨论疏气的概念和作用。
疏气作为液体表面的一种特性,影响着液体在固体表面上的传输和扩散行为。
了解疏气的概念和作用,可以为我们解释一系列实际现象和问题,如水珠在荷叶表面的滚动、液滴在微纳米结构上的自清洁性等。
接着,我们将介绍接触角的定义和影响因素。
接触角是由液滴或气泡与固体表面之间形成的界面性质决定的,它能够反映液体在固体表面上的润湿性和黏附性。
通过研究接触角的定义和影响因素,我们可以深入了解液滴在固体表面上的行为,并且可以为控制液体与固体之间的相互作用提供理论基础。
最后,我们将总结疏气与接触角之间的关系,并展望研究疏气和接触角的意义和应用。
通过对疏气和接触角的关系进行分析和总结,我们可以为相关领域的研究和应用提供指导和参考。
同时,本文也将强调疏气和接触角研究的重要性和前景,为未来的科学研究提供一定的启示和方向。
通过本文的阐述,我们希望能够加深读者对疏气和接触角之间关系的理解,提高对液体在固体表面上行为的认识,并为相关研究和应用提供一定的参考和启示。
希望本文能为读者提供有用的信息,并促进相关领域的发展和创新。
文章结构部分的内容可以包括以下几个方面:1.2 文章结构为了更好地介绍疏气和接触角之间的关系,本文将按照以下结构展开:首先,在引言部分,我们将对整篇文章的概述进行介绍,包括疏气和接触角的基本概念以及它们在实际应用中的重要性。
同时,我们还会介绍本文的结构和目的,以便读者能够更好地理解整个文章的框架。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
亲水与超亲水、疏水、超疏水的接触角界限
在表面科学中,接触角是一个重要的概念,它用于描述液体与固体表面接触时的角度。
接触角越小,液体在固体表面上的粘附力越大,表面就越亲水;反之,接触角越大,液体在固体表面上的粘附力越小,表面就越疏水。
在这个基础上,又有超亲水、超疏水等概念。
亲水与超亲水的界限:一般认为,接触角小于5度的表面被称为超亲水表面。
超亲水表面的液体接触角非常小,甚至可以达到0度,液体在表面上会形成完美的薄膜,表面张力非常小。
这种表面的应用非常广泛,例如防水材料、自清洁表面等。
疏水与超疏水的界限:接触角大于90度的表面被称为疏水表面。
在疏水表面上,液体的粘附力非常小,液滴会在表面上形成球形,表面张力非常大。
超疏水表面的接触角大于150度,液滴在表面上几乎不会留下任何痕迹。
这种表面的应用也非常广泛,例如防污材料、防腐蚀材料等。
总的来说,接触角是一个非常重要的概念,它可以用来描述液体与固体表面的相互作用。
超亲水和超疏水表面的应用非常广泛,例如在防水、自清洁、防污、防腐蚀等方面都有着重要的应用。