高考数学复习点拨 导数易错题辨析
高考数学压轴专题(易错题)备战高考《函数与导数》知识点总复习附答案解析

【高中数学】数学《函数与导数》期末复习知识要点一、选择题1.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b -B .3223b - C .0D .2316b b -【答案】A 【解析】 【分析】求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--, ∵函数()f x 在区间[3,1]-上不是单调函数,31b ∴-<<,由()0f x '>,解得:2x >或x b <, 由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-,故选:A. 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.2.在二项式26()2a x x+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )A .146π+B .146π- C .4π D .16【答案】B【解析】 【分析】用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积. 【详解】(x 2+a 2x )6展开式中,由通项公式可得122r 162rr r r a T C x x --+⎛⎫= ⎪⎝⎭, 令12﹣3r =0,可得r =4,即常数项为4462a C ⎛⎫ ⎪⎝⎭,可得4462a C ⎛⎫ ⎪⎝⎭=15,解得a =2.曲线y =x 2和圆x 2+y 2=2的在第一象限的交点为(1,1) 所以阴影部分的面积为()1223100111-x-x |442346dx x x πππ⎛⎫=--=- ⎪⎝⎭⎰. 故选:B 【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.3.函数22cos x xy x x--=-的图像大致为( ).A .B .C .D .【答案】A 【解析】 【分析】 本题采用排除法:由5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭排除选项D ; 根据特殊值502f π⎛⎫>⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】对于选项D:由题意可得, 令函数()f x = 22cos x xy x x--=-,则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫= ⎪⎝⎭;即5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.故选项D 排除; 对于选项C :因为55225220522f ππππ--⎛⎫=> ⎪⎝⎭,故选项C 排除;对于选项B:当0x >,且x 无限接近于0时,cos x x -接近于10-<,220x x -->,此时()0f x <.故选项B 排除;故选项:A 【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.4.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .12D .56【答案】A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x=与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.5.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ).AB.C.2D.【答案】D 【解析】试题分析:因为函数()lg f x x =,0a b >>,()()f a f b = 所以lg lg a b =- 所以1a b=,即1ab =,0a b >>22a ba b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---≥=当且仅当2a b a b-=-,即a b -=时等号成立所以22a b a b +-的最下值为故答案选D考点:基本不等式.6.已知函数()322f x x ax bx a =+++在1x =处取极值10,则a =( )A .4或3-B .4或11-C .4D .3-【答案】C 【解析】分析:根据函数的极值点和极值得到关于,a b 的方程组,解方程组并进行验证可得所求. 详解:∵322()f x x ax bx a =+++, ∴2()32f x x ax b '=++.由题意得2(1)320(1)110f a b f a b a =++=⎧⎨=+++='⎩, 即2239a b a b a +=-⎧⎨++=⎩,解得33a b =-⎧⎨=⎩或411a b =⎧⎨=-⎩. 当33a b =-⎧⎨=⎩时,22()3633(1)0f x x x x '=-+=-≥,故函数()f x 单调递增,无极值.不符合题意. ∴4a =. 故选C .点睛:(1)导函数的零点并不一定就是函数的极值点,所以在求出导函数的零点后一定要注意分析这个零点是不是函数的极值点.(2)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件,因此在根据函数的极值点或极值求得参数的值后需要进行验证,舍掉不符合题意的值.7.已知函数()2f x x x =+,且()1231lnlog 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.【详解】由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=,所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=,根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A .【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.8.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.9.设奇函数()f x 在[]11-,上为增函数,且()11f =,若[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,则t 的取值范围是( )A .22t -≤≤B .1122t -≤≤ C .2t ≥或2t ≤-或0t = D .12t ≥或12t ≤-或0t =【答案】C 【解析】 【分析】()f x 在[]11x ∈-,上为增函数,[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,只需对于[]11a ∀∈-,,()2121f t at -≤--即可.【详解】∵奇函数()f x 在[]11x ∈-,上为增函数,且()11f =, ∴函数在[]11x ∈-,上的最小值为()()111f f -=-=-,又∵[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,∴()22111t at f --≥-=-,即220t at -≥, ①0t =时,不等式成立;②0t >时,()2220t at t t a -=-≥恒成立,从而2t a ≥,解得2t ≥;③0t <时,()2220t at t t a -=-≥恒成立,从而2t a ≤,解得2t ≤-故选:C. 【点睛】本题考查了含参数不等式恒成立问题,需要将不等式问题转化为函数最值问题,考查了理解辨析能力、运算求解能力和分类讨论思想,是中档题.10.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.11.函数()32xy x x =-⋅的图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】排除法:根据函数()32xy x x =-⋅为奇函数,故图象关于原点对称;函数有1-,0,1三个零点;当2x =时,函数值为正数,进行选项排除即可. 【详解】函数()32xy x x =-⋅为奇函数,故图象关于原点对称,故排除D ; 函数有1-,0,1三个零点,故排除A ; 当2x =时,函数值为正数,故排除B . 故选:C . 【点睛】本题考查函数的图象,根据解析式求图像通常利用排除法,依据有函数奇偶性、单调性、零点、定义域、值域、特殊值等,属于中等题.12.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭( ) A .12e- B .2e - C .1-D .e【答案】B 【解析】 【分析】对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1x e=求得结果. 【详解】由题意得:()()121f x f x''=+令1x =得:()()1211f f ''=+,解得:()11f '=-()12f x x '∴=-+12f e e ⎛⎫'∴=- ⎪⎝⎭本题正确选项:B 【点睛】本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.13.()f x 是定义在R 上的奇函数,对任意x ∈R 总有3()()2f x f x +=-,则9()2f -的值为( ) A .0 B .3C .32D .92-【答案】A 【解析】 【分析】首先确定函数的周期,然后结合函数的周期性和函数的奇偶性求解92f ⎛⎫- ⎪⎝⎭的值即可. 【详解】函数()f x 是定义在R 上的奇函数,对任意x R ∈总有()32f x f x ⎛⎫+=- ⎪⎝⎭,则函数的周期3T =,据此可知:()993360002222f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+==+=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 本题选择A 选项. 【点睛】本题主要考查函数的周期性,函数的奇偶性,奇函数的性质等知识,意在考查学生的转化能力和计算求解能力.14.已知定义在R 上的奇函数()y f x =满足()()80f x f x ++=,且()55f =,则()()20192024f f +=( )A .-5B .5C .0D .4043【答案】B 【解析】 【分析】根据(8)()0f x f x ++=得函数的周期为16,结合()55f =,(0)0f =即可求解. 【详解】由(8)()0f x f x ++=,得(8)()f x f x +=-,所以(16)(8)()f x f x f x +=-+=.故函数()y f x =是以16为周期的周期函数. 又在(8)()0f x f x ++=中,令0x =,得(8)(0)0f f +=, 且奇函数()y f x =是定义在R 上的函数,所以(0)0f =.故(8)0f =.故(2024)(161268)(8)0f f f =⨯+==. 又在(8)()0f x f x ++=中,令3x =-,得(5)(3)0f f +-=.得(5)(3)(3)5f f f =--==,则(2019)(161263)(3)5f f f =⨯+==. 所以(2019)(2024)5f f +=. 故选:B. 【点睛】此题考查根据函数的周期性求抽象函数的函数值,关键在于根据函数关系准确得出函数周期,结合定义在R 上的奇函数的特征求值.15.已知定义在R 上的函数(f x ),其导函数为()f x ',若()()3f x f x '-<-,()04f =,则不等式()3x f x e >+的解集是( )A .(),1-∞B .(),0-∞C .()0,+∞D .()1,+∞【答案】B 【解析】不等式()3xf x e >+得()()3311xx xf x f x e e e ->+∴>, ()()()()()330xxf x f x f xg x g x e e --+=∴='<'设,所以()g x 在R 上是减函数,因为()()()4301001g g x g x -==∴>∴<. 故选B .点睛:本题的难点在于解题的思路. 已知条件和探究的问题看起来好像没有分析联系,这里主要利用了分析法,通过分析构造函数,利用导数的知识解答.16.函数()3ln 2xf x x x=+的图象在点()()1,1f 处的切线方程为( )A .64y x =-B .75y x =-C .63=-y xD .74y x =-【答案】B 【解析】 【分析】首先求得切线的斜率,然后求解切线方程即可. 【详解】由函数的解析式可得:()221ln '6x f x x x -=+, 则所求切线的斜率()221ln1'16171k f -==+⨯=, 且:()012121f =+⨯=,即切点坐标为()1,2, 由点斜式方程可得切线方程为:()271y x -=-,即75y x =-. 本题选择B 选项. 【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.17.在平面直角坐标系中,若P ,Q 满足条件:(1)P ,Q 都在函数f (x )的图象上;(2)P ,Q 两点关于直线y=x 对称,则称点对{P ,Q}是函数f(x)的一对“可交换点对”.({P ,Q}与{Q,P}看作同一“可交换点”.试问函数2232(0)(){log (0)x x x f x x x ++≤=>的“可交换点对有( )A .0对B .1对C .2对D .3对【答案】C 【解析】试题分析:设p (x ,y )是满足条件的“可交换点”,则对应的关于直线y=x 的对称点Q 是(y ,x ),所以232x x ++=2x ,由于函数y=232x x ++和y=2x 的图象由两个交点,因此满足条件的“可交换点对”有两个,故选C. 考点:函数的性质18.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】【分析】 设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解.【详解】设()()36g x f x x =--,Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D.【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.19.函数2ln x xy x =的图象大致是( )A .B .C .D .【答案】D【解析】【分析】根据函数为偶函数排除B ,当0x >时,利用导数得()f x 在1(0,)e 上递减,在1(,)e+∞上递增,根据单调性分析,A C 不正确,故只能选D .【详解】令2ln ||()||x x f x x =,则2()ln ||()()||x x f x f x x ---==-, 所以函数()f x 为偶函数,其图像关于y 轴对称,故B 不正确,当0x >时,2ln ()ln x x f x x x x==,()1ln f x x '=+, 由()0f x '>,得1x e >,由()0f x '<,得10x e<<, 所以()f x 在1(0,)e上递减,在1(,)e +∞上递增,结合图像分析,,A C 不正确.故选:D【点睛】 本题考查了利用函数的奇偶性判断函数的图象,考查了利用导数研究函数的单调性,利用单调性判断函数的图象,属于中档题.20.已知函数()2ln 2xx f x e x =+-的极值点为1x ,函数()2x g x e x =+-的零点为2x ,函数()ln 2x h x x=的最大值为3x ,则( ) A .123x x x >>B .213x x x >>C .312x x x >>D .321x x x >> 【答案】A【解析】【分析】根据()f x '在()0,∞+上单调递增,且11024f f ⎛⎫⎛⎫''⋅< ⎪ ⎪⎝⎭⎝⎭,可知导函数零点在区间11,42⎛⎫ ⎪⎝⎭内,即()f x 的极值点111,42x ⎛⎫∈ ⎪⎝⎭;根据()g x 单调递增且11024g g ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知211,42x ⎛⎫∈ ⎪⎝⎭;通过判断()()12g x g x >,结合()g x 单调性可得12x x >;利用导数可求得()max 1124h x e =<,即314x <,从而可得三者的大小关系. 【详解】 ()1x f x e x x'=+-Q 在()0,∞+上单调递增 且1213022f e ⎛⎫'=-> ⎪⎝⎭,14115044f e ⎛⎫'=-< ⎪⎝⎭ 111,42x ⎛⎫∴∈ ⎪⎝⎭且11110x e x x +-= Q 函数()2x g x e x =+-在()0,∞+上单调递增且1213022g e ⎛⎫=-> ⎪⎝⎭,14112044g e ⎛⎫=+-< ⎪⎝⎭ 211,42x ⎛⎫∴∈ ⎪⎝⎭ 又()()11111211112220x g x e x x x g x x x ⎛⎫=+-=-+-=->= ⎪⎝⎭ 且()g x 单调递增 12x x ∴>由()21ln 2x h x x-'=可得:()()max 12h x h e e ==,即31124x e =< 123x x x ∴>>本题正确选项:A【点睛】本题考查函数极值点、零点、最值的判断和求解问题,涉及到零点存在定理的应用,易错点是判断12,x x 大小关系时,未结合()g x 单调性判断出()()12g x g x >,造成求解困难.。
专题04 导数及其应用(4大易错点分析+解题模板+举一反三+易错题通关)(新高考专用)(原卷版)

(1)当
a
1 时,求曲线
f
x
在点
1 2
,
f
1 2
处的切线方程;
(2)当 a 0 时,若关于 x 的不等式 f x a a ln 2a 恒成立,求实数 a 的取值范围.
11.已知 a R ,函数 f (x) ex ax , g(x) ax ln x . (1)当 a e 时,若斜率为 0 的直线 l 是 g(x) 的一条切线,求切点的坐标; (2)若 f (x) 与 g(x) 有相同的最小值,求实数 a.
①若 f (x) 在某个区间上单调递增,则在该区间上有 f (x) 0 恒成立(但不恒等于 0);反之,要满足 f (x) 0 ,才能得出 f (x) 在某个区间上单调递增;
注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外. 易错提醒:1.求函数导数的总原则:先化简解析式,再求导.注意以下几点:
连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式, 再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外
y
f (x0 )
f (x0 )(x
x0
)
,抓住关键
ky0f
f (x0 ) (x0 )
.
应用 2.过点的切线方程 设切点为 P(x0 ,y0 ) ,则斜率 k f (x0 ) ,过切点的切线方程为: y y0 f (x0 )(x x0 ) ,又因为切线方
程过点 A(m ,n) ,所以 n y0 f (x0 )(m x0 ) 然后解出 x0 的值.( x0 有几个值,就有几条切线)
A. 3x y 1 0 B. 2x y 1 0
C. 4x y 1 0
高考数学 经典错题深度剖析及针对训练 专题24 导数概

专题24 导数概念及运算【标题01】对导数的概念没有理解透彻 【习题01】设()f x 是可导函数,且000(2)()lim2x f x x f x x∆→-∆-=∆,则0()f x '=( )A .2B .1-C .0D .2-【经典错解】()0000(2)()lim2x f x x f x f x x∆→-∆-'==∆ 所以()02f x '=,故选A .【详细正解】()0000000(2)()(2)()lim 2lim 222x x f x x f x f x x f x f x x x∆→∆→-∆--∆-'=-=-=∆-∆所以()01f x '=-,故选B .【习题01针对训练】若'0()3f x =-,则000()(3)limh f x h f x h h→+--=( )A .3-B .6-C .9-D .12-【标题02】商的导数的求导法则记忆错误【习题02】已知函数()f x =221x x (-)+,则()f x 的导函数()f x '=________.【经典错解】由()f x =2441x x x -++,得()f x '=22221(441)242811x x x x x x x x ⨯---+=-+)(+(-)(+)(+) 【详细正解】由()f x =2441x x x -++,得()f x '=22241)(4411x x x x x ⨯-⨯(-)(+-+)(+)=22281x x x +-(+)【深度剖析】(1)经典错解错在商的导数的求导法则记忆错误.(2)商的导数公式是2()uu v uv v v ''-'=,很多同学容易记成2()u v u vu vv ''-'=,主要是分子记错,分子应该是“子导母不导减去母导子不导”. 【习题02针对训练】已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=,求a 、b 的值.【标题03】对复合函数的定义和复合函数的求导法则没有理解透彻 【习题03】求函数()sin 2xf x ex -=的导函数.【经典错解】由题得()sin 2cos 2(sin 2cos 2)2sin(2)4x x x x f x e x e x e x x e x π----'=+=+=+【详细正解】由题得()()sin 2(2cos 2)(2cos 2sin 2)x x xf x e x e x e x x ---'=-+⋅=-【习题03针对训练】求函数3()(54)cos 2f x x x =-的导函数.【标题04】求切线方程时没有准确判断点Q 是否在曲线上【习题04】求322+=x y 在点)5,1(P 和)9,2(Q 处的切线方程.【经典错解】4.4,3212='∴='∴+==x y x y x y Θ,,即过点P 的切线的斜率为4,故过点P 的切线为14+=x y .过点Q 的切线的斜率为8,故过点Q 的切线方程为:98(2)y x -=-)即870x y --=【详细正解】4.4,3212='∴='∴+==x y x y x y Θ即过点P 的切线的斜率为4,故切线为14+=x y .设过点Q 的切线的切点为),(00y x T ,则切线的斜率为04x ,又2900--=x y k PQ,故00204262x x x =--,3,1.06820020=∴=+-∴x x x .即切线QT 的斜率为4或12,从而过点Q 的切线为411215y x y x =-=-或.【深度剖析】(1)经典错解错在求切线方程时没有准确判断点Q 是否在曲线上.(2)点P 在函数的曲线上,因此过点P 的切线的斜率就是y '在1=x 处的函数值;点Q 不在函数曲线上,因此不能够直接用导数求值,要通过设切点的方法求切线.要注意所给的点是否是切点.若是,可以直接采用求导数的方法求;不是则需设出切点坐标.【习题04针对训练】已知函数3()16f x x x =+-. (1)求曲线()y f x =在点(2,6)-处的切线方程;(2)直线l 为曲线()y f x =的切线,且经过原点,求直线l 的方程及切点坐标.【标题05】审题错误误认为点P 就是切点 【习题05】已知曲线x xx y S 432:23++-=及点)0,0(P ,求过点P 的曲线S 的切线方程. 【经典错解】4222++-='x x y ,∴过点P 的切线斜率40='==x y k ,∴过点P 的曲线S 的切线方程为x y 4=.【详细正解】设过点P 的切线与曲线S 切于点),(00y x Q ,则过点P 的曲线S 的切线斜率4220200++-='==x x y k x x ,又00x y k PQ =,00020422x y x x =++-∴.①Θ点Q 在曲线S 上,.432020300x x x y ++-=∴②,②代入①得002030020432422x x x x x x ++-=++-化简,得0342030=-x x ,00=∴x 或430=x .若00=x ,则4=k ,过点P 的切线方程为x y 4=;若430=x ,则835=k ,过点P 的切线方程为.835x y =∴过点P 的曲线S 的切线方程为x y 4=或.835x y =【习题05针对训练】已知曲线31433y x =+, (1)求曲线在点(2,4)P 处的切线方程;(2)求曲线过点(2,4)P 的切线方程; (3)求斜率为4的曲线的切线方程.高中数学经典错题深度剖析及针对训练 第24讲:导数的概念及运算参考答案【习题01针对训练答案】D【习题01针对训练解析】()()()()()12-443lim 43lim 0000000='=--+=--+→→x f hh x f h x f h h x f h x f h h ,故选D .3323[()][(54)]cos 2(54)[cos 2]15(54)cos 2(54)2sin 2f x x x x x x x x x '''=-+-=-+--g 2(54)[15cos 22(54)sin 2]x x x x =---【习题04针对训练答案】(1)切线方程为1332y x =-;(2)直线l 的方程为13y x =,切点坐标为(2,26)--.【习题04针对训练解析】(1)2()31f x x '=+,则(2)13f '=切线方程为:613(2)y x +=-,即1332y x =-.(2)设切点为00(,)x y 则300016y x x =+-①,直线方程为2000(31)()y y x x x -=+-,直线过原点,则2000(31)y x x -=-+.② 联立①、②解得00226x y =-⎧⎨=-⎩ ,所以直线方程为13y x =,切点坐标为(2,26)--.【习题05针对训练答案】(1)440x y --=;(2)440x y --=或20x y -+=;(3)440x y --=和123200x y -+=.故所求的切线方程为440x y --=或20x y -+=. (3)设切点为00(,x y )则切线的斜率为204k x ==,02x =±.切点为(2,4),4(2,)3--∴切线方程为44(2)y x -=-和44(2)3y x +=+ 即440x y --=和123200x y -+=.。
高考数学复习 导数的应用典型错误解析

2008高考数学复习 导数的应用典型错误解析导数作为一种工具,在解决数学问题时极为方便,尤其是利用导数求函数的单调性、极值、最值、和切线的方程,但是笔者在教学过程中,发现导数的应用还存在许多误区。
一、导数的定义理解不清例1:已知函数f(x)=log a x +1,求xf x f x ∆-∆-→∆)1()21(lim0. 错解:因为f(x)=log a x +1,∴f l (x)=e a x log 1, ∴x f x f x ∆-∆-→∆)1()21(lim 0= f l (1)= log ea 剖析:错误的主要原因是由于对导数的定义理解不清,导数f l (x 0)=xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000,函数在某一点x 0处的导数,就是函数在这一点的函数值的增量与自变量的增量的比值在自变量的增量趋近于零时的极限,分子分母中的自变量的增量x ∆必须保持对应一致,它是非零的变量,它可以是-2x ∆,21x ∆等。
∴xf x f x ∆-∆-→∆)1()21(lim 0=)]2(2)1()21([lim 0-⋅∆--∆-→∆x f x f x =-2x f x f x ∆--∆-→∆2)1()21(lim 0 =-2f l (1)=-2 log ea 二、f l (x 0)为极值的充要条件理解不清 例2:函数f(x)=x 3+ax 2+bx+a 2在x=1处有极值10,求a 、b 的值。
错解:f l (x)=3x 2+2ax+b,由题意知f l (1)=0,且f(1)=10,即2a+b+3=0,且a 2+a+b+1=10,解之得a=4,b=-11 ,或a=-3 b=3剖析:错误的主要原因是把f l (x 0)为极值的必要条件当作了充要条件,f l (x 0)为极值的充要条件是f l (x 0)=0且x 0附近两侧的符号相反.,所以后面应该加上:当a=4,b=-11时f l (x)=3x 2+8x-11=(3x+11)(x-1),在x=1附近两侧的符号相反,∴ a=4,b=-11当a=-3 b=3时f l (x)=3(x-1)2, 在x=1附近两侧的符号相同,所以a=-3 b=3舍去。
高考数学复习专题02函数与导数导数的综合应用易错点

导数的综合应用易错点
主标题:导数的综合应用易错点
副标题:从考点分析导数的综合应用易错点,为学生备考提供简洁有效的备考策略。
关键词:导数与方程,导数与不等式,导数应用,易错点
难度:4
重要程度:5
内容:
【易错点】
1.函数最值与不等式(方程)的关系
(1)对任意x >0,ax 2+(3a -1)x +a ≥0恒成立的充要条件是a ∈⎣⎢⎡⎭
⎪⎫15,+∞.(√) (2)已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是(-∞,2ln 2-2].(√)
2.关于实际应用问题
(3)实际问题中函数定义域要由实际问题的意义和函数解析式共同确定.(√)
(4)若实际问题中函数定义域是开区间,则不存在最优解.(×)
(5)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13
x 3+81x -234,则使该生产厂家获取最大年利润的年产量为9万件.(√) [剖析]
1.两个转化 一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;
二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,如(2).
2.两点注意 一是注意实际问题中函数定义域,由实际问题的意义和解析式共同确定,如
(3).
二是在实际问题中,如果函数在区间内只有一个极值点,那么可直接根据实际意义判定是
最大值还是最小值,如(4).若在开区间内有极值,则一定有最优解.
二是函数的极值一定不会在定义域区间的端点取到.
三是求最值时,应注意极值点和所给区间的关系,关系不确定时应分类讨论.不可想当然认为极值就是最值,如(8).。
导数试题中的易错易误点归类剖析

ʏ贵州省遵义市第四中学 刘德文长期以来,高中数学中导数板块的内容都是同学们学习的痛点㊂虽说运用导数解决问题是一种十分优美的方式,但是不少同学在实际解题过程中会出现因为对导数的工具性认识不足,理解不够透彻,掉进命题人设置的各种各样的陷阱里面,进而造成在考试中出现失分的现象㊂针对上述情况,本文从以下八个容易出现错误的题型入手,分析常见错解情况,再剖析同学们出错的原因,最后给出正确解答,从而帮助大家一起厘清概念,精准理解,高效解题㊂易错点一㊁对导数定义理解不清例1 已知函数f (x )=14x 4-23x 3+6,则l i m Δx ң0f (1+Δx )-f (1)2Δx=( )㊂A.-1 B .0 C .-12D .2错解:因为f '(x )=x 3-2x 2,所以l i mΔx ң0f (1+Δx )-f (1)2Δx =f '(1)=-1㊂故选A ㊂错因分析:该题致错的主要原因在于同学们未能准确理解函数在某点处的导数的含义,实际上,最原始的导数表达式为f '(x )=l i m Δx ң0Δy Δx =l i mΔx ң0f (x 0+Δx )-f (x 0)Δx ,自变量的增量Δx 与函数值的增量Δy 必须对应一致㊂正解:因为f '(x )=x 3-2x 2,所以l i mΔx ң0f (1+Δx )-f (1)2Δx=l i mΔx ң012㊃f (1+Δx )-f (1)(1+Δx )-1=12f '(1)=-12㊂故选C ㊂易错点二㊁忽略函数的定义域例2 函数f (x )=x +4x-3l n x 的单调递减区间是( )㊂A.(-1,4) B .(0,1)C .(4,+ɕ) D .(0,4)错解:对f (x )求导得f '(x )=1-4x2-3x =(x +1)(x -4)x 2,令f '(x )<0,解得-1<x <4,所以函数f (x )的单调递减区间是(-1,4)㊂故选A ㊂错因分析:求函数的单调递增区间时,由f'(x )>0解出x ,再与定义域求交集才是函数的单调递增区间;求函数的单调递减区间时,由f '(x )<0解出x ,再与定义域求交集才是函数的单调递减区间㊂同学们要牢记函数单调区间的求法,一定要定义域优先㊂正解:前面同错解得-1<x <4㊂又因为函数f (x )的定义域是(0,+ɕ),所以函数f (x )的单调递减区间是(0,4)㊂故选D ㊂易错点三㊁误以为导数不存在,切线就不存在例3 函数y =3x 2的图像在点(0,0)处的切线方程为㊂错解1:由已知得y '=23x -13,易知函数在x =0处的导数值不存在,所以曲线在该点处没有切线㊂错解2:由已知得y '=23x -13,易知函数在x =0处的导数值不存在,所以曲线在该点处的切线为y =0㊂错因分析:错解1主要是未能厘清导数与切线㊁切线斜率之间的关系,误以为导数不存在,切线就不存在;错解2考生混淆切线斜率为0与斜率不存在㊂实际上,大家要准确理解斜率不存在,可以理解为该切线为x =x 0,结合过原点(0,0),其实切线方程就是x 42 解题篇 易错题归类剖析 高考数学 2023年5月Copyright ©博看网. All Rights Reserved.=0㊂正解:由已知得y'=23x-13,易知函数在x=0处的导数值不存在,所以曲线在该点处的切线的斜率不存在,即函数y=3x2的图像在点(0,0)处的切线方程为x=0㊂易错点四㊁对曲线切线的定义理解有误例4已知曲线C:y=f(x)=13x3+ 43,曲线C在点P(2,4)处的切线方程为y= 4x-4㊂试问:该切线与曲线C是否还有其他公共点若有,求出公共点的坐标;若没有,请说明理由㊂错解:由于直线y=4x-4与曲线C相切,因此除切点P(2,4)外没有其他的公共点㊂错因分析:对于圆㊁椭圆等封闭的几何图形来说, 切线与曲线有唯一公共点 ,就是说直线与这些曲线的交点只有切点,没有其他点,但对一般曲线来说是不一定成立的,同学们可以画出三次函数的草图试一试㊂正解:联立y=4x-4,y=13x3+43,消去y整理得x3-12x+16=0,即(x-2)(x2+2x-8) =0,即(x-2)2(x+4)=0,解得x=2或x=-4,所以交点的坐标为(2,4),(-4, -20),所以该切线与曲线的公共点除了切点还有点(-4,-20)㊂易错点五㊁混淆单调区间为D与在区间D上单调例5已知函数f(x)=l n x+x2+a x 的单调递减区间为12,1,则()㊂A.aɪ(-ɕ,-3]B.a=3C.a=-3D.aɪ(-ɕ,3]错解:因为函数的单调递减区间为12,1,所以f'(x)=1x+2x+aɤ0在12,1上恒成立,即aɤ-1x+2x m i n,易知y=1x+2x在12,22上单调递减,在22,1上单调递增,故y=1x+2x的最大值在端点处取得,计算可知最大值为f(1)=3,所以aɤ-3㊂故选A㊂错因分析:未能准确理解 函数的单调区间为D 与 函数在区间D上单调 两者的区别㊂准确来说,函数在区间D上单调,函数的单调区间不一定就是D㊂错解求出的结果实为函数在区间12,1上单调递减时的答案㊂若函数f(x)=l n x+x2+a x存在单调递减区间,则存在实数x,使得f'(x)=1x+2x+a<0,即a<-1x+2xm a x=-22㊂正解:因为数的单调递减区间为12,1,所以f'(x)=1x+2x+a=0的两个根为12和1㊂代入方程,解得a=-3㊂故选C㊂易错点六㊁误以为导数为0的点一定取得极值例6已知函数f(x)=x3+3m x2+n x+m2在x=-1处取得极值0,则m+n=()㊂A.4B.11C.4或11D.3或9错解:对f(x)求导得f'(x)=3x2+6m x+n,则f'(-1)=0,f(-1)=0,即3-6m+n=0,-1+3m-n+m2=0,解得m=1,n=3,或m=2,n=9,所以m+n=4或11㊂故选C㊂错因分析:若函数在x=x0可导,则f'(x0)=0是函数在x=x0处取得极值的必要条件,而非充要条件㊂如y=x3在x=0处的导数值为0,但0不是该函数的极值点㊂因此,需要将求出的m㊁n的值代入导函数中检验㊂正解:对f(x)求导得f'(x)=3x2+52解题篇易错题归类剖析高考数学2023年5月Copyright©博看网. All Rights Reserved.6m x +n ,则f'(-1)=0,f (-1)=0,即3-6m +n =0,-1+3m -n +m 2=0, 解得m =1,n =3,或m =2,n =9㊂当m =1,n =3时,f '(x )=3x 2+6x +3=3(x +1)2ȡ0,函数f (x )在R 上单调递增,与函数f (x )在x =-1处取得极值0矛盾,不合题意,舍去;当m =2,n =9时,f'(x )=3x 2+12x +9=3(x +1)(x +3),函数在x =-1处取得极小值0,符合题意,所以m +n =11㊂易错点七㊁混淆极值与最值例7 求函数f (x )=x 3-2x 2+x 在[-3,3]上的最值㊂错解:对f (x )求导得f '(x )=3x 2-4x+1=(3x -1)(x -1)㊂令f '(x )=0,解得x =1或x =13㊂因为f (1)=0,f13=427,所以函数f (x )的最大值为427,最小值为0㊂错因分析:函数并不一定在极值点处取最值,最值是针对函数的整个区间而言,是整体性质,而极值是局部性质,是两个不同的概念㊂对于闭区间而言,需要将极值与端点处的函数值进行比较,才能得出函数的最值㊂正解:对f (x )求导得f '(x )=3x 2-4x+1=(3x -1)(x -1)㊂令f '(x )=0,解得x =1或x =13㊂因为f (1)=0,f 13=427,f (-3)=-48,f (3)=12,所以函数f (x )的最大值为12,最小值为-48㊂易错点八㊁对极值理解有偏差例8 已知函数f (x )=exx+k (l n x -x ),若x =1是函数f (x )的唯一极值点,则实数k 的取值范围是( )㊂A.(-ɕ,e ] B .(-ɕ,e)C .(-e ,+ɕ) D .[-e ,+ɕ)错解:对f (x )求导得f '(x )=e x(x -1)x2+k 1x -1=x -1x e xx-k㊂因为f (x )有唯一极值点x =1,所以f '(x )=0有唯一根x =1,所以exx-k =0无解,即y =k 与g (x )=e xx 无交点㊂令g '(x )=e x(x -1)x2=0,解得x =1㊂当x ɪ(0,1)时,g '(x )<0,g (x )在(0,1)上单调递减;当x ɪ(1,+ɕ)时,g'(x )>0,g (x )在(1,+ɕ)上单调递增㊂所以g (x )m i n =g (1)=e ,所以k <e ㊂故选B ㊂错因分析:首先,f (x )有唯一极值点x =1并不能说明f '(x )=0有唯一根x =1,因为可能会存在两侧导数不变号的根,此时的根并不是极值点;其次,若x =1是函数f (x )的唯一极值点,并不能推出exx-k =0无解,因为可能还会存在exx-k =0有解且解为x =1的情况,所以需要进行分类讨论;最后,并没有检验在x =1的两侧导数是否变号㊂正解:对f (x )求导得f '(x )=e x(x -1)x 2+k1x-1=x -1x e xx -k㊂(1)若方程exx-k =0有解,则方程的解为x =1,解得k =e ,此时f '(x )=x -1x ㊃exx-e㊂当x ɪ(0,1)时,f '(x )<0,f (x )在(0,1)上单调递减;当x ɪ(1,+ɕ)时,f '(x )>0,f (x )在(1,+ɕ)上单调递增㊂所以x =1是函数f (x )的极小值点㊂(2)若方程exx-k =0无解,则y =k 与g (x )=exx无交点㊂令g '(x )=e x(x -1)x2=0,解得x =1㊂当x ɪ(0,1)时,g '(x )<0,g (x )在(0,1)上单调递减;当x ɪ(1,+ɕ)时,g '(x )>0,g (x )在(1,+ɕ)上单调递增㊂所以g (x )m i n =g (1)=e ,所以k <e ㊂综上所述,k ɤe㊂故选A ㊂(责任编辑 王福华)62 解题篇 易错题归类剖析 高考数学 2023年5月Copyright ©博看网. All Rights Reserved.。
导数考试题型及易错点
导数题型及易错点题型一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).题型二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.题型三导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.题型四导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.题型五定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.题型六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.易错点:1.注意区分曲线在点P 处的切线与过点P 的曲线的切线.2.导数公式与导数的四则运算法则:(1)要注意公式的适用范围.如(x n )′=nx n -1中,n ∈N +,若n ∈Q且n ≠0,则应有x >0;(2)注意公式不要用混,如(a x )′=a x ln a ,而不是(a x )′=xa x -1.还要特别注意(u v )′≠u ′v ′,(u v )′≠u ′v ′. 3.利用导数讨论函数的单调性需注意以下几个问题:(1)注意定义域优先原则,必须在函数的定义域内解不等式f ′(x )>0(或f ′(x )<0);(2)在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意函数的不连续点或不可导点;(3)注意在某一区间内f ′(x )>0(或f ′(x )<0)是函数f (x )在该区间上为增(或减)函数的充分条件.4.若y =f (x )在(a ,b )内可导,f ′(x )≥0或f ′(x )≤0,且y =f (x )在(a ,b )内导数f ′(x )=0的点仅有有限个,则y =f (x )在(a ,b )内仍是单调函数.5.讨论含参数的函数的单调性时,必须注意分类讨论.6.极值与最值的区别和联系:(1)函数的极值不一定是最值,需对极值和区间端点的函数值进行比较,或者考察函数在区间内的单调性;(2)如果连续函数在区间(a,b)内只有一个极值,那么极大值就是最大值,极小值就是最小值;(3)可导函数的极值点导数为零,但是导数为零的点不一定是极值点;(4)极值是一个局部概念,极大值不一定比极小值大.7.导数的实际应用:(1)在求实际问题的最大(小)值时,一定要注意考虑实际问题的意义,不符合实际意义的值应舍去;(2)在实际问题中,有时会遇到函数在区间内只有一个点使f′(x)=0的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.8.应用定积分求平面图形的面积时,要特别注意面积值应为正值,故应区分积分值为正和为负的情形.。
高考数学复习点拨 导数典型错误剖析
用心 爱心 专心 高考数学复习点拨 导数典型错误剖析
一、因忽视解题顺序而致错
例1 求函数2()f x x =在2x =的导数.
误:(2)4f =∵,(2)0f '=∴.
析:()f x 在点0x 处的导数0()f x ',实际上是导函数()f x '在0x x =处的函数值,即00()()x x f x f x =''=|.故求()f x 在0x 处的导数0()f x ',应先求()f x 的导函数()f x ',再将0x x =代入()f x '求值,顺序不能颠倒.
正:()2f x x '=∵,(2)4f '=∴.
二、对题意理解不清而致错
例2 求曲线33y x x =-的过点(22)A -,的切线方程. 误:显然点A 在曲线33y x x =-上,且2()33f x x '=-,(2)9f =-∴. 故所求切线方程为29(2)y x +=--,即9160x y +-=. 析:曲线过点A 的切线与曲线在点A 处的切线不同,前者既包括点A 处的切线,也包括过点A 但切点为另一点的切线.因此,解题时必须理清头绪,弄清题意. 正:设切点为00()P x y ,,
233y x '=-∵,
∴在点P 处的切线方程为2000(33)()y y x x x -=--. 又切线过点A ,
3200002(3)(33)(2)x x x x ---=--∴,
整理,得3200340x x -+=,即200(1)(2)0x x +-=. 01x =-∴或02x =.
∴当01x =-时,切线方程为2y =-,当02x =时,切线方程为9160x y +-=.。
易错点04 导数及其应用-备战2023年高考数学考试易错题(解析版)(全国通用)
易错点04 导数及其应用易错点1:导数与函数的单调性导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用. 易错点2:导数与函数的极(最)值求函数f (x )在[a ,b ]上的最大值和最小值的步骤 (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值。
易错点3:对“导函数值正负”与“原函数图象升降”关系不清楚上为常函数在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('⇒=∈⇒<∈⇒>∈⇔∈⇔<⇔∈⇔>讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 易错点4:导数与函数的零点研究函数图像的交点、方程的根、函数零点,归根到底是研究函数的性质,如单调性、极值等。
用导数研究函数的零点,一方面用导数判断函数单调性,借助零点村子性定理判断;另一方面,也可将零点问题转化为函数图像的交点问题,利用数形结合来解决。
1.对任意的(]12,1,3x x ∈,当12x x <时,1122ln 03xa x x x -->恒成立,则实数a 的取值范围是( )A .[)3,+∞B .()3,+∞C .[)9,+∞D .()9,+∞2.若函数()()22e e x xf x x ax a a R =+-∈有三个不同的零点,则实数a 的取值范围是( )A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,1e ⎛⎫ ⎪⎝⎭C .2110,,1e e e ⎛⎫⎛⎫⋃ ⎪ ⎪-⎝⎭⎝⎭D .210,e e ⎛⎫ ⎪-⎝⎭e e13.已知函数21()cos 4f x x x =+,()f x '是函数()f x 的导函数,则()f x '的图像大致是( ) A . B .C .D .4.已知函数2()3(ln )=-+f x x ax ,若21,e x ⎡⎤∈⎣⎦时,()f x 在1x =处取得最大值,则实数a 的取值范围是( ) A .26,e ⎛⎤-∞ ⎥⎝⎦B .(,0]-∞C .260,e ⎛⎫⎪⎝⎭D .266,e e ⎛⎫ ⎪⎝⎭故选:B .5.已知()f x '是定义在R 上的函数()f x 的导数,且()()0f x f x '-<,则下列不等式一定成立的是( )A .()()3e 21f f ->B .()()32e 1f f -<C .()()e 12f f <D .()()1e 2f f <1.若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +122.设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( ) A .a b < B .a b > C .2ab a < D .2ab a >【答案】D【详解】若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故ab .()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的. 当0a <时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >. 综上所述,2ab a >成立. 故选:D3.设()'f x 是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )A .B .C .D .【答案】D【详解】解析:检验易知A 、B 、C 均适合,不存在选项D 的图象所对应的函数,在整个定义域内,不具有单调性,但y=f (x )和y=f′(x )在整个定义域内具有完全相同的走势,不具有这样的函数,故选D .4.已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为A .[]0,1B .[]0,2C .[]0,eD .[]1,e5.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤则该正四棱锥体积的取值范围是( ) A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C1.曲线e 22x y x x =+-在0x =处的切线方程是( )A .320x y ++=B .220x y ++=C .220x y --=D .320x y --=【答案】D【详解】e 22x y x x =+-,则()1e 2xy x '=++,当0x =时,2y =-,3y ,所以切线方程为()23y x --=,即320x y --=. 故选:D .2.已知()3232f x ax x =++,且()14f '-=,则实数a 的值为( )A .193B .163C .133D .103()1f '-=36a ∴-=103a ∴=.故选:D .3.设函数()f x 在定义域内可导,()f x 的图象如图所示,则其导函数()'f x 的图象可能是( )A .B .C .D .【答案】A【详解】解:由()f x 的图象可知,当(),0x ∈-∞时函数单调递增,则()0f x '≥,故排除C 、D ; 当()0,x ∈+∞时()f x 先递减、再递增最后递减,所以所对应的导数值应该先小于0,再大于0,最后小于0,故排除B ; 故选:A4.已知函数()32183833f x x x x =-+-,()lng x x x =-,若()120,3x x ∀∈,,()()12g x k f x +≥恒成立,则实数k 的取值范围是( ) A .[)2ln 2,++∞ B .[)3,∞-+ C .5,3⎡⎫+∞⎪⎢⎣⎭D .[)3,+∞5.已知函数2()3(ln )=-+f x x ax ,若21,e x ⎡⎤∈⎣⎦时,()f x 在1x =处取得最大值,则实数a 的取值范围是( ) A .26,e ⎛⎤-∞ ⎥⎝⎦B .(,0]-∞C .260,e ⎛⎫⎪⎝⎭D .266,e e ⎛⎫ ⎪⎝⎭6.已知函数()3ln 2f x x x =--,则不等式()()2325f x f x ->-的解集为( )A .()4,2-B .()2,2-C .()(),22,∞∞--⋃+D .()(),42,-∞-+∞【答案】D【详解】()f x 的定义域为(,)-∞+∞,因为2()ln 23f x x '=--0<,所以()f x 在(,)-∞+∞上单调递减,所以不等式()()2325f x f x ->-等价于2325x x -<-,解得4x <-或2x >, 所以不等式()()2325f x f x ->-的解集为()(),42,-∞-+∞.故选:D7.如图所示为某“胶囊”形组合体,由中间是底面半径为1,高为2的圆柱,两端是半径为1的半球组成,现欲加工成一个圆柱,使得圆柱的两个底面的圆周落在半球的球面上,则当圆柱的体积最大时,圆柱的底面半径为( )AB .89CD .238.不等式ln 0x kx -≤恒成立,则实数k 的取值范围是( ) A .[)0,e B .(],e -∞C .10,e ⎡⎤⎢⎥⎣⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭9.已知函数()x f x e =,函数()g x 与()f x 的图象关于直线y x =对称,若()()h x g x kx =-无零点,则实数k 的取值范围是( ) A .21e ,e ⎛⎫ ⎪⎝⎭B .1,e e ⎛⎫⎪⎝⎭C .(e,)+∞D .1,e ⎛⎫+∞ ⎪⎝⎭10.若函数()()22e e x xf x x ax a a R =+-∈有三个不同的零点,则实数a 的取值范围是( )A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,1e ⎛⎫⎪⎝⎭C .2110,,1e e e ⎛⎫⎛⎫⋃ ⎪ ⎪-⎝⎭⎝⎭D .210,e e ⎛⎫ ⎪-⎝⎭e e。
高考一轮复习数学函数与导数易混淆知识点
高考一轮复习数学函数与导数易混淆知识点高考一轮复习数学函数与导数易混淆知识点导语:俗话说,“习惯成自然”,良好的学习习惯对学习有着重要的促进作用。
下面就由小编为大家带来高考一轮复习数学函数与导数易混淆知识点,大家一起去看看怎么做吧!易错点求函数定义域忽视细节致误错因分析:函数的定义域是使函数有意义的自变量的取值范围,因此要求定义域就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数的定义域。
在求一般函数定义域时要注意下面几点:(1)分母不为0;(2)偶次被开放式非负;(3)真数大于0;(4)0的0次幂没有意义。
函数的定义域是非空的数集,在解决函数定义域时不要忘记了这点。
对于复合函数,要注意外层函数的定义域是由内层函数的值域决定的。
易错点带有绝对值的函数单调性判断错误错因分析:带有绝对值的函数实质上就是分段函数,对于分段函数的单调性,有两种基本的判断方法:一是在各个段上根据函数的解析式所表示的函数的单调性求出单调区间,最后对各个段上的单调区间进行整合;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断。
研究函数问题离不开函数图象,函数图象反应了函数的所有性质,在研究函数问题时要时时刻刻想到函数的图象,学会从函数图象上去分析问题,寻找解决问题的方案。
对于函数的几个不同的单调递增(减)区间,千万记住不要使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
易错点求函数奇偶性的常见错误错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。
在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数易错题辨析
导数是高中新课程新增重点内容,初学这部分,同学们往往会出现这样那样的错误。
现举几种常见的错误加以剖析,希望对同学们能有所帮助。
例1、求函数ln y x x =-的单调区间。
【错解】111,1010.y y x x x x
''=-=->><∴令即或函数的单调递增区间为(1,),(,0)+∞-∞;1100 1.y x x
'=-<<<∴令即函数的单调递增区间为(0,1). 【错因剖析】求函数的单调区间应注意首先考虑函数的定义域。
因此本题中应注意到0x >,∴函数的单调递增区间为(1,)+∞,递减区间为(0,1).
例2、已知函数32()31(0)f x x ax x a =++->,若()f x 在其定义域内为增函数,求a 的取值范围。
【错解】∵函数32()31(0)f x x ax x a =++->在R 上为增函数,
故2()3230f x x ax '=++>在R 上恒成立;
由224360,9,0 3.a a a ∆=-<∴<∴<<
【错因剖析】()0f x '>是函数()f x 在定义域I 上单调递增的充分不必要条件并不是充要条件。
事实上:()f x 在I 上递增⇔对任意的x I ∈有()0f x '≥(但这里满足()0f x '=的点应只是在个别点处,也就是()f x '不能恒等于零).
本题中()f x 在其定义域内为增函数应满足()0f x '≥且()0f x '不恒等于;∴应改为2()3230f x x ax '=++≥在R 上恒成立,由24360,a ∆=-≤
29,03a a ∴≤∴<≤;又当3a =时,22()3633(1)0f x x x x '=++=+≥(只有当
1x =-时,()f x '才等于0);因此03a <≤
例3、已知函数322()f x x ax bx a =+++在1x =处有极值为10,求,a b 的值。
【错解】2()32f x x ax b '=++,由题意可知:
2230(1)043,(1)10113
110a b f a a f b b a a b ++='===-⎧⎧⎧⎧∴⎨⎨⎨⎨==-=+++=⎩⎩⎩⎩即:或 . 【错例剖析】对于可导函数,导数为0的点不一定是极值点。
函数()y f x =在0x x =处取
极值的充要条件应为:(1)0()0f x '=,(2)在0x x =左右两侧的导数值的符号相反。
本题只是满足了(1),对于(2)我们必须进行验证:当3,3a b =-=时,22()3633(1)f x x x x '=-+=-,易知在1x =的左右两侧都有()0f x '>,即函数()f x 在R 上是单调递增的,因此()f x 在1x =处并不存在极值。
故本题正确答案应为411a b =⎧⎨=-⎩.。