三次函数的五个性态

合集下载

第一章 函数与极限

第一章 函数与极限

第一章 函数与极限高等数学与初等数学的根本区别之一是初等数学的研究对象基本上是常量,而高等数学的研究对象主要是变量.在现实世界中,存在着许许多多变化着的量,它们之间有些变量是相互依赖、相互联系的,函数就是对变量之间相互依赖关系的一种抽象.极限是高等数学中的另一个主要概念,它是高等数学这门课程的基本推理工具.连续性是函数的一个重要性态,而连续函数是高等数学研究的主要对象.在初等数学的学习过程中,我们已经学习过函数、极限与连续的概念,本章将在此基础上,对函数、极限与连续进行复习、巩固和提高.第一节 函数一、函数的概念定义1 设x 和y 是两个变量,D 是一个给定的非空实数集.如果对于变量x 在数集D 中取定的每一个确定的数值,变量y 按照一定的对应法则f 都有惟一确定的数值与之对应,则称变量y 是定义在数集D 上的变量x 的函数,记作)(x f y =.数集D 称为函数)(x f y =的定义域,x 称为自变量,y 称为函数(或称因变量). 当x 取数值D x ∈0时,由对应法则f ,与0x 对应的y 的值0y 称为函数)(x f y =在点0x 处的函数值.记作)(00x f y =.当x 取遍D 中的每个数值时,对应的函数值全体组成的数集{}D x x f y y M ∈==,)(称为函数)(x f y =的值域.函数)(x f y =中表示对应法则(或对应关系)的记号“f ”也可改用其它字母.例如“F ”或“g ”,这时函数)(x f y =就记作)(x F y =或)(x g y =.同一个函数在讨论中应取定一种记号.如果在讨论同一问题时,涉及多个函数,则应取不同的记号分别表示.为方便起见,有时可用记号)(1x f y =,)(2x f y =,…等表示函数.这种表示函数的方法也称为函数的解析法(或公式法).函数的定义域和对应法则称为函数的两个要素.如果某两个函数)(x f y =与)(x g y =的定义域和对应法则相同,则称它们为相同的函数,否则称它们为不同的函数.对于函数)(x f y =,如果自变量x 在定义域内任意取定一个数值时,对应的函数值y 总是只有一个,这种函数称为单值函数,否则称为多值函数.注意 以后凡是没有特别说明时,本书所讨论的函数都是指单值函数.例1 设62)(3-+=x x x f ,1sin )(+-=x x x g ,求(1))()3()1(2x f f f ,,;(2))1()()0(+x g g g ,,π.解(1) 36121)1(3-=-⋅+=f ,276323)3(3=-⋅+=f ,626)(2)()(262322-+=-+=x x x x x f .(2) 1100sin )0(=+-=g ,ππππ-=+-=11sin )(g ,xx x x x g -+=++-+=+)1sin(1)1()1sin()1(. 例2 已知1)1(2+-=+x x x f ,求)(x f .解 令,于是,则11-==+t x t x331)1()1()(22+-=+---=t t t t t f , 所以 33)(2+-=x x x f .例3 判断下列各对函数是否是相同的函数:(1)x x f =)(,2)(x x g =;(2)x x g x x f lg 2)(lg )(2==,.解 (1)因为x x f =)(的定义域为)(∞+-∞,, x x x g ==2)(的定义域也为)(∞+-∞,,所以,函数)()(x g x f 与是相同的函数.(2)因为2lg )(x x f =的定义域为)0()0(∞+⋃-∞,,,x x g lg 2)(=的定义域为)0(∞+,,所以,函数)()(x g x f 与是不同的函数.例4 求下列函数的定义域:(1)2312+-+=x x x y ; (2)342+-=x x y ; (3)24x y -=; (4).)2ln(232-+-+=x x x y 解(1)由0232≠+-x x ,解得21≠≠x x 且, 因此,函数2312+-+=x x x y 的定义域为)2()21()1(∞+-∞,,, .(2)由0342≥+-x x ,解得,或31≥≤x x 因此,函数342+-=x x y 的定义域为(][)∞+∞-,,31 . (3)由042≥-x ,,解得22≤≤-x 因此,函数24x y -=的定义域为[]22,-. (4)由⎩⎨⎧>-≥-+,,020232x x x 解得32≤<x , 因此,函数)2ln(232-+-+=x x x y 的定义域为(]32,. 给定一个函数)(x f y =时,就意味着其定义域是同时给定的.如果所讨论的函数来自于某个实际问题,则其定义域必须符合实际意义;如果不考虑所讨论的函数的实际背景,则其定义域应使函数)(x f y =在数学上有意义即可.为此要求:(1)分式中的分母不能为零;(2)偶次根式的被开方式非负;(3)对数的真数大于零;(4)正切符号下的式子不等于为整数);k k (2ππ+(5)余切符号下的式子不等于为整数);k k (π(6)反正弦、反余弦符号下的式子的绝对值小于等于1;(7)如果函数)(x f y =中含有上述几种情形,则应取各情形下的交集.二、函数的三种常用表示法表示函数的方法,常用的有列表法、图形法、解析法三种.1. 列表法用列出表格来表示两个变量的函数关系的方法称为列表法.例如,数学用表中的平方表、平方根表、三角函数表,以及银行里使用的利息表等都是用列表法表示函数关系的.2. 图形法用函数的图形来表示两个变量的函数关系的方法称为图形法.例如,气象台用自动记录器描绘温度随时间变化的曲线就是用图形法表示函数关系的.3. 解析法用一个等式表示两个变量的函数关系的方法称为解析法.这个等式称为函数的解析表达式,简称解析式.例如, )0(2>=r r S π,)0(≠+=a b ax y ,)0(2≠++=a c bx ax y , )22(42≤≤--=x x y等都是用解析法表示函数关系的.高等数学中研究的函数都是用解析法表示的函数.在许多实际问题的解决过程中,经常用到这样一类函数,在自变量的不同变化范围中,对应法则用不同的解析式表示的函数,这类函数称为分段函数.分段函数是高等数学中常见的一种函数.例如,函数⎩⎨⎧<-≥==00x x x x x y ,,, 和 ⎪⎩⎪⎨⎧-<≤≤->-=11112x x x x x x y ,,,,, 都是分段函数,它们的图形如图1-1、图1-2所示.图1-1 图1-2注意 分段函数是用几个解析式合起来表示一个函数,而不是表示几个函数. 三、函数的四个简单性质1、奇偶性定义2 设函数)(x f 的定义域D 关于原点对称(即时D x ∈,D x ∈-则).(1)如果 )()(x f x f =-,D x ∈,则称函数)(x f 为偶函数.(2)如果 )()(x f x f -=-,D x ∈,则称函数)(x f 为奇函数.(3)如果 )()(x f x f ≠-且)()(x f x f -≠-,D x ∈,则称函数)(x f 为非奇非偶函数.例如,函数2)(x x f =在)(∞+-∞,内是偶函数,因为)()()(22x f x x x f ==-=-. 函数3)(x x f =在)(∞+-∞,内是奇函数,因为)()()(33x f x x x f -=-=-=-. 注意 偶函数的图形关于y 轴是对称的;奇函数的图形关于原点是对称的.2.单调性定义3 设函数)(x f 的定义域为D ,区间D I ⊂.如果对于区间I 上的任意两点1x 、2x ,当21x x <时,恒有(1) )()(21x f x f <,则称函数)(x f 在区间I 上是单调增加的,区间I 称为单调增区间(图1-3).(2) )()(21x f x f >,则称函数)(x f 在区间I 上是单调减少的,区间I 称为单调减区间(图1-4).图1-3 图1-4单调增加的函数和单调减少的函数统称为单调函数,单调增区间和单调减区间统称为单调区间. 例如,函数3)(x x f =在)(∞+-∞,内是单调增加的(图1-5).函数32)(x x f =在(]0,∞-内是单调减少的,在[)∞+,0内是单调增加的,而在()∞+∞-,内不是单调的(图1-6).图1-5 图1-6 3.有界性定义4 设函数)(x f 的定义域为D ,区间D I ⊂.如果存在正数M ,使 I x M x f ∈≤,)(,则称函数)(x f 在区间I 上有界.如果不存在这样的正数M ,则称函数)(x f 在区间I 上无界.例如,函数x x f sin )(=在)(∞+-∞,内有界,因为1sin ≤x . 函数x x f 1)(=在[)∞+,1内有界,而在)0(∞+,内无界.4.周期性 定义5 设函数)(x f 的定义域为D .如果存在非零数T ,使得对于任意,D x ∈都有D T x ∈±,且)()(x f T x f =+,则称函数)(x f 为周期函数,T 称为周期函数)(x f 的周期.注意 通常我们所说的周期函数的周期是指最小正周期.例如 正弦函数x y sin =和余弦函数x y cos =都是周期为π2的周期函数. 正切函数x y tan =和余切函数x y cot =都是周期为π的周期函数.四、反函数定义6 设函数)(x f y =的定义域为,D 值域为M .如果对于数集M 中的每一个数值y ,数集D 中都有惟一的数值x 与之对应,也就是说变量x 是变量y 的函数,这个函数称为函数)(x f y =的反函数.记作)(1y f x -=.其定义域为M ,值域为D .习惯上自变量用x 表示,因变量用y 表示.因此,我们将定义6中,函数)(x f y =的反函数)(1y f x -=记作)(1x f y -=.注意 (1)函数)(x f y =与其反函数)(1x f y -=的图形关于直线x y =对称.(2)只有在定义区间上单调的函数才有反函数.(3)函数)(x f y =与其反函数)(1x fy -=互为反函数. 例5 求下列函数的反函数:(1)31+=x y ; (2)x x y +-=11. 解(1)由31+=x y ,解得 13-=y x , x 与y 互换得函数31+=x y 的反函数为13-=x y . (2)由x xy +-=11,解得 y y x +-=11, x 与y 互换得函数x xy +-=11的反函数为x xy +-=11.五、初等函数1.基本初等函数(1)幂函数 αx y =(α为任意实数).(2)指数函数 x a y = (0>a 且1≠a ,a 为常数).(3)对数函数 x y a log = 10(≠>a a 且,a 为常数).常用对数函数 x y lg =,自然对数函数 x y ln =.(4)三角函数正弦函数 x y sin =,余弦函数 x y cos =,正切函数 x y tan =,余切函数 x y cot =,正割函数 x y sec =,余割函数 x y csc =.(5)反三角函数反正弦函数 x y arcsin =,反余弦函数 x y arccos =,反正切函数 x y arctan =,反余切函数 x arc y cot =.定义7 幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数.基本初等函数的图形和性质在初等数学中已经学习过,在此就不再详述(详见附录Ⅱ).2.复合函数在某些实际问题中,讨论的函数并非都是基本初等函数本身或仅仅由基本初等函数通过四则运算所得到的函数.例如,在自由落体运动中,物体的动能E 是速度v 的函数221mv E =,而速度v 又是时间t 的函数gt v =,因此,物体的动能E 通过速度v 而成为时间t 的函数2)(21gt m E =.对于这样的函数,我们引入复合函数的概念.定义8 设函数)(u f y =的定义域为1U ,函数)(x u ϕ=的值域为2U .如果φ≠21U U ,则y 通过变量u 成为变量x 的函数,这个函数称为由函数)(u f y =和)(x u ϕ=复合而成的复合函数.记作[])(x f y ϕ=.其中,变量u 称为中间变量.例如,由函数 221mv E = 和 gt v = 复合而成的复合函数为2)(21gt m E =.注意 不是任何两个函数都能够复合成一个复合函数的.例如,函数 u y arcsin = 和 22+=x u 就不能复合成一个复合函数.因为函数22+=x u 的值域[)∞+,2 与函数 u y arcsin = 的定义域[]11,-没有共同的元素.有时,一个复合函数可能由三个或更多的函数复合而成.例如,由函数 v u u y sin ln ==, 和 2x v = 复合而成的复合函数为2sin ln x y =.其中u 和v 都是中间变量.同时,我们还必须掌握好复合函数的复合过程,即“分解”复合函数,这对于导数、微分、不定积分及定积分的学习很有益处.例如,复合函数 10)53(+=x y 是由函数10u y = 和 53+=x u复合而成的;也是由函数2u y = 和 5)53(+=x u复合而成的;也是由函数5u y = 和 2)53(+=x u复合而成的.由此可见,一个复合函数的复合过程并不是惟一的.为了便于今后的学习,我们要求掌握第一种复合函数的复合过程.例6 指出下列复合函数的复合过程:(1)x y 5sin ln =; (2)x y 5sin 2=.解 (1)复合函数 x y 5sin ln = 是由函数x v v u u y 5sin ln ===,,复合而成的.(2)复合函数 x y 5sin 2= 是由函数x v v u u y 5sin 2===,, 复合而成的.3.初等函数定义9 由常数和基本初等函数经过有限次四则运算和有限次的函数复合所构成并可用一个数学解析式表示的函数称为初等函数.例如,函数15sin ln 5sin ln 12+==-=x y x y x y ,,都是初等函数.本书中所讨论的函数绝大多数都是初等函数.*六、关于函数)sin(ϕ+=wx A y 图形的学习探究在初等数学中,学习函数)sin(ϕω+=x A y (其中A>0,ω>0)的图形这一内容时,都要研究正弦函数x y sin =图形和函数)sin(ϕω+=x A y 图形的关系.在《高中数学》教材中,详细给出了解决此问题的5个步骤.然而,学生在做函数)sin(ϕω+=x A y 图形的练习和作业时,实际上大多数学生是凭记忆在机械地完成,并没有达到对此种方法真正意义上的理解、掌握和应用.究其原因是学生认为解决这一问题只有《高中数学》教材中介绍的一种方法.事实上,这是一种完全错误的认识.对于此问题,我们下面举例进行关于函数)sin(ϕω+=x A y 图形的学习探究.例 画出函数)32sin(3π+=x y ,∈x R的简图.解 根据《高中数学》教材中给出的解决此问题的如下5个步骤:我们就可以画出函数)32sin(3π+=x y ,∈x R 的简图,如图1-7(1)所示(注意图1-7(1)中的序号).这一方法也就是《高中数学》教材中给出的方法.一、创设情境、提出问题回顾上例中画出函数)32sin(3π+=x y 图形的5个步骤并仔细观察图1-7(1)中由正弦函数x y sin =图形得到函数)32sin(3π+=x y 图形的变化过程,为启发学生思维我们将这一变化过程记为方法1:x y sin = → ? → ? → )32sin(3π+=x y⇒x y sin = → )3sin(π+=x y →)32sin(π+=x y →)32sin(3π+=x y .然后从原问题出发提出如下问题:⑴ 解决这一问题的方法是否惟一? ⑵ 若不惟一,共有几种方法?⑶ 此例中给出的方法是否为最优? 二、适当提示、猜想结论在给学生一定的时间进行思考的同时,重点提示学生们解决问题的方法是随着函数)sin(ϕω+=x A y 中A 、ω、ϕ不同顺序的依次确定而确定. 鼓励学生勇于猜想,对有思路的学生再给予进一步的提示,并同思路较为清晰的学生进行适当的讨论,而后,请其仿照方法1的写法到黑板上写出他们不同于方法1的方法.至此,问题⑴得到解决. 三、相互交流、完善结论问题的解决需要学生相互之间的合作与交流,这有利于发展学生合作交流的意识与能力.随着上述学生板书的结束,学生们的探究热情将会逐渐高涨,在此基础上,进一步鼓励全体学生继续猜想、验证、交流是否还有其它方法,并同时提醒学生找到的解决问题的方法不能重复、不能遗漏;运用分类讨论和穷举的方法引导学生完整地求得解决问题的全部方法,把成功的机会留给学生,让学生亲身经历学习探究的过程,感受真正参与合作学习、交流的快乐. 学生在求解中,不断优化策略,找到各种不同的方法,将极大地展示他们的智慧,最终引导学生们一致判定解决问题的方法有且仅有六种. 随着学生的踊跃交流、积极思考、主动探究,解决问题的6种方法逐渐明晰起来.为了体现六种方法的内在规律性,分别记为:方法1:x y sin = → )3sin(π+=x y →)32sin(π+=x y → )32sin(3π+=x y 方法2:x y sin = → )3sin(π+=x y →)3sin(3π+=x y → )32sin(3π+=x y ; 方法3:x y sin = → x y sin 3= →x y 2sin 3= → )32sin(3π+=x y ; 方法4:x y sin = → x y sin 3= →)3sin(3π+=x y → )32sin(3π+=x y ;方法5:x y sin = → x y 2sin = → )32sin(π+=x y → )32sin(3π+=x y ; 方法6:x y sin = → x y 2sin = → x y 2sin 3= → )32sin(3π+=x y .这6种方法所对应的图形变化过程分别如图1-7(1)、(2)、(3)、(4)、(5)、(6)所示.至此,问题⑵得到圆满解决.(1) (2)(3) (4)(5) (6)图1-7四、全面比较、选择最优 为了画出函数)32sin(3π+=x y 的图形,经过师生的共同探究,找到了由正弦函数x y sin =图形得到函数)32sin(3π+=x y 图形仅有的6种方法. 这些方法不要求学生、也没必要要求学生全都掌握,只是要求学生通过亲自体验,真正做到理解、掌握和应用其中的最优方法.在这6种方法中,哪种方法为最优?提出两个标准:其一是有利于学生理解、掌握和应用;其二是由正弦函数x y sin =图形得到函数)32sin(3π+=x y 图形的变化过程中,函数)32sin(3π+=x y 的图形在坐标系中的位置最为清晰、突出.让学生尝试着从所有找到的6种方法中,寻求适合学生自己的解答问题的最佳方法.根据以上两个标准,学生们经过充分的思考、实际练习、交流,对6种方法及对应图形的认真比较,最后,全体学生必将在上述6种方法中选择其中自己认为最优的的一种方法(学生选择的最优方法有可能不是教材中所给出的方法1).为了使学生更好地观察、归纳、总结、理解、掌握和应用,我们还可以利用《几何画板》向学生演示由正弦函数x y sin =图形向函数)32sin(3π+=x y 图形变化的过程.最后,问题⑶又得到了解决. 五、严谨思维、提高能力关于函数)sin(ϕω+=x A y 图形的学习探究活动必将使学生们体会到学习探究活动的乐趣和成功的喜悦、提高学生学习《高等数学》课程的兴趣,同时,也将极大地提升学生获得数学地分析问题和解决问题能力的渴望.2006年6月,胡锦涛总书记在两院院士大会上的讲话中指出:“在尊重教师主导作用的同时,更加注重培育学生的主动精神,鼓励学生的创造性思维.”因此,在高职《高等数学》课程教学过程中,应使学生的数学学习活动不应只限于接受、记忆、模仿和练习,应倡导自主探索、动手实践、合作交流等学习数学的方式,通过各种不同形式的自主学习、探究活动,让学生体验数学发现和创造的过程,发展他们的创新意识.虽然问题解决的学习探究有利于学生数学能力的培养,但是由于各种条件的制约,实际教学中却不能更多地给予学生这种学习探究的机会.因此,我们高职院校师生在高职《高等数学》课程教学过程中应充分挖掘高职《高等数学》课程中具有发散性和持续性的宝贵教学资源,在高职《高等数学》课程教学时为学生提供合作学习、主动探究的机会,充分发挥学生的学习主体作用,在体验成功的的快乐氛围中激发学生学习探究热情,为学生今后持续性学习、为提高学生数学地分析问题和解决问题的能力,为提高学生创新思维能力和实践操作能力奠定基础,从而有效地培养学生的数学能力和学习探究能力.习 题 1—11.设13)(5--=x x x f ,求)1(f ,)2(f .2.设)2)(1()1(++=+x x x x f ,求.)(x f3.判断下列各对函数是否为相同的函数: (1)2)()(x x g x x f ==,;(2)31)(-⋅=x x x f ,334)(x x x g -=;(3)1)(-=x x x f 23)(x x x g -=,;(4)1)(=x f xx x g =)(,.4.求下列函数的定义域: (1)34422+--=x x x y ;(2)42-=x y ;(3)2112++-=x x y ; (4)211x xy --=.5.判断下列函数的奇偶性: (1))1()(22x x x f -=; (2)233)(x x x f -=;(3))1)(1()(+-=x x x x f ; (4)1cos sin )(++=x x x f . 6.求下列函数的反函数: (1)2+=x x y ;(2)[)∞+∈-=,,242x x x y .7.在下列各题中,求由所给函数复合而成的复合函数: (1)x u u y sin 2==,; (2)21x u u y +==,; (3)x e u u y ==,2; (4)xv v u e y u 1sin ===,,.8.指出下列复合函数的复合过程: (1);42+=x y(2)x e y arctan =;(3)x y 5sin =; (4)12cos +=x y ;(5)x y 2sin ln =; (6)2cos ln x y =;(7))32(sin 2x y -=; (8)x e y sin ln =.9.利用正弦函数的图形作出下列函数的图形: (1)x y sin =; (2)x y sin =.第二节 函数的极限极限是高等数学中的一个重要概念,是由于求某些实际问题的精确解答而产生的.例如,我国古代数学家刘徽利用圆内接正多边形来推算圆面积的方法——割圆术,就是极限思想在几何学上的典型应用.高等数学中的连续、导数、定积分等概念都是在极限的基础上定义的.本节主要讨论当∞→x 时,函数)(x f 的极限;当0x x →时,函数)(x f 的极限两种情形.一、∞→x 时,函数)(x f 的极限我们从函数xy 1=的图形(图1-8)可以看出,当自变量x 取正值无限增大(记为+∞→x )时,函数xy 1=的值无限趋近于常数0(记为1→x).此时,我们称常数0为函数xy 1=当+∞→x 时的极限.记作01lim=+∞→x x .图1-8同样地,当自变量x 取负值并且它的绝对值无限增大(记为-∞→x )时,函数xy 1=的值也无限趋近于常数0.此时,我们称常数0为函数xy 1=当-∞→x 时的极限.记作01lim=-∞→xx .定义1 如果当+∞→x 时,函数)(x f 无限趋近于一个确定的常数A ,则称常数A 为函数)(x f 当+∞→x 时的极限.记作.)(lim A x f x =+∞→也可记作A x f →)((+∞→x 当).定义2 如果当-∞→x 时,函数)(x f 无限趋近于一个确定的常数A ,则称常数A 为函数)(x f 当-∞→x 时的极限.记作.)(lim A x f x =-∞→也可记作A x f →)((-∞→x 当).定义3 如果Ax f A x f x x ==-∞→+∞→)(lim )(lim 且,则称常数A 为函数)(x f 当∞→x 时的极限.记作.)(lim A x f x =∞→也可记作A x f →)((∞→x 当).由定义3,我们有如下极限运算公式和定理1.c c x =∞→lim (c 为常数),01lim=∞→xx .定理1 A x f x =∞→)(lim 的充分必要条件是A x f x f x x ==-∞→+∞→)(lim )(lim . (1-1)例1 求下列极限:(1)x x 2lim -∞→; (2)x x )21(lim +∞→ ;(3)⎪⎩⎪⎨⎧<-=>=∞→.,,,,,,010001)()(lim x x x x f x f x解(1)由图1-9及定义2可得xx 2lim -∞→=0.(2)由图1-9及定义1可得0)21(lim =+∞→xx . (3)由图1-10及定义1、定义2可得1)(lim =+∞→x f x ,1)(lim -=-∞→x f x ,所以,由定理1得)(lim x f x ∞→不存在.图1-9 图1-10二、0x x →时,函数)(x f 的极限我们从函数1+=x y 和112--=x x y 的图形(图1-11、图1-12)可以看出,无论函数1+=x y 在点1=x 处有定义,还是函数112--=x x y 在点1=x 处无定义,当自变量x 无限趋近于1时,两个函数的值都无限趋近于常数2.此时,我们称常数2为函数1+=x y 和112--=x x y 当1→x 时的极限.分别记作2)1(lim 1=+→x x ,211lim21=--→x x x .图 1-11 图1-12定义4 设函数)(x f 在)0)(()(0000>+-δδδx x x x ,, 内有定义.如果在)()(0000δδ+-x x x x ,, 内,当0x x →时,函数)(x f 无限趋近于一个确定的常数A,则称常数A 为函数)(x f 当0x x →时的极限.记作A x f x x =→)(lim 0.也可记作A x f →)((当0x x →).A x f x x =→)(lim 0也称为函数)(x f 在点0x x =处的极限.由定义4可知,当0x x →时,极限)(lim 0x f x x →是否存在,与函数)(x f 在点0x 处是否有定义无关.同时,我们有如下极限运算公式.c c x x =→0lim (c 为常数).00lim x x x x =→.有时,我们只需考虑自变量x 小于0x 而趋近于0x (记为-→0x x )时,或自变量x 大于0x 而趋近于0x (记为+→0x x )时,函数)(x f 的极限,因此,我们给出左极限、右极限的定义.定义5 如果当-→0x x 时,函数)(x f 无限趋近于一个确定的常数A ,则称常数A 为函数)(x f 当0x x →时的左极限.记作A x f x x =-→)(lim 0.定义6 如果当+→0x x 时,函数)(x f 无限趋近于一个确定的常数A ,则称常数A 为函数)(x f 当0x x →时的右极限.记作Ax f x x =+→)(lim 0.由定义4我们有如下定理.定理2 A x f x x =→)(lim 0的充分必要条件是A x f x f x x x x ==+-→→)(lim )(lim 0. (1-2)例2 求函数110011)(2>≤≤<⎪⎩⎪⎨⎧+=x x x x x x f ,,,,, 在点0=x 和1=x 处的极限.解 函数)(x f 的图形如图1-13所示.图1-13(1)因为1)1(lim )(lim =+=--→→x x f x x 00,0lim )(lim 2==++→→xx f x x 00,即 )(lim )(lim x f x f x x +-→→≠00,所以,)(lim x f x 0→不存在.(2)因为1lim )(lim 211==--→→xx f x x ,11lim )(lim 11==++→→x x x f ,即 )(lim )(lim 11x f x f x x +-→→=,所以 1)(lim 1=→x f x .三、无穷小与无穷大1.无穷小定义7 如果当∞→x (或0x x →)时,函数)(x f 的极限为零,则称函数)(x f 为当∞→x (或0x x →)时的无穷小量(简称无穷小).记作0)(lim =∞→x f x (或0)(lim 0=→x f x x ).例如,因为01lim=∞→xx ,所以,函数x1为当∞→x 时的无穷小.因为0lim 0=→x x ,所以,函数x 为当0→x 时的无穷小.因为0sin lim 0=→x x ,0tan lim 0=→x x ,所以,正弦函数x sin 、正切函数x tan 都是当0→x 时的无穷小.注意 (1)常数中只有数0是无穷小.因为0的极限是0.(2)说某个函数是无穷小,必须同时指出自变量的变化趋势.因为无穷小是用极限来定义的.(3)在定义7中,自变量x 的变化趋势可以换成如下四种情形中的任何一种情形.即+∞→x ,-∞→x ,-→0x x ,+→0x x .2.无穷大定义8 如果当∞→x (或0x x →)时,函数)(x f 的绝对值)(x f 无限增大,则称函数)(x f 为当∞→x (或0x x →)时的无穷大量(简称无穷大).记作∞=∞→)(lim x f x (或∞=→)(lim 0x f x x ).例如,当0→x 时,函数x1为无穷大.记作∞=→x x 1lim.当∞→x 时,函数3x 为无穷大.记作∞=∞→3lim x x .定义9 如果当∞→x (或0x x →)时,函数0)(>x f 且无限增大,则称函数)(x f 为当∞→x (或0x x →)时的正无穷大.记作+∞=∞→)(lim x f x (或+∞=→)(lim 0x f x x ).定义10 如果当∞→x (或0x x →)时,函数0)(<x f 且)(x f -无限增大,则称函数)(x f 为当∞→x (或0x x →)时的负无穷大.记作-∞=∞→)(lim x f x (或-∞=→)(lim 0x f x x ).例如,+∞=∞→2lim x x , -∞=-∞→)(lim 2x x .注意 (1)常数中没有数是无穷大.(2)说某个函数是无穷大,必须同时指出自变量的变化趋势.(3)在定义8、定义9、定义10中,自变量x 的变化趋势可以换成如下四种情形中的任何一种情形.即+∞→x ,-∞→x ,-→0x x ,+→0x x .3.无穷小与无穷大之间的关系定理3 在自变量x 的同一变化趋势下, (1)如果 ∞=)(lim x f ,则0)(1lim=x f ;(2)如果 0)(lim =x f ,且0)(≠x f ,则∞=)(1limx f .四、两个重要极限1. 1sin lim=→xx x .2. ex xx =⎪⎭⎫ ⎝⎛+∞→11lim 或 ()e x x x =+→11lim .常数e 是无理数,它的值是590457182818284.2=e ….指数函数x e y =与自然对数函数x y ln =中的底e 就是这个常数e .注意 读者应掌握两个重要极限的结构形式特点:1sin lim=→, e =⎪⎭⎫ ⎝⎛+∞→ 11lim 或 ()e =+→101lim . 只要符合上述结构形式的,极限公式总是成立的.例如 155sin lim5=→xx x ,122sin lim2=→x x x ,e x x x =⎪⎪⎪⎪⎭⎫⎝⎛-+-∞→-22211lim .习 题 1-21.设xx x f =)(,xx x g =)(,作出它们的图形,并求(1))(lim 0x f x -→,)(lim 0x f x +→,)(lim 0x g x -→,)(lim 0x g x +→;(2))(lim 0x f x →,)(lim 0x g x →.2.设⎪⎩⎪⎨⎧-<≤≤->--=,,,,,,11111)(2x x x x x x x f 作出)(x f 的图形,并求)(lim 1x f x -→,)(lim 1x f x →.3.下列数中,哪些数是无穷小?哪些数是无穷大?10010,100100,0,10010-,100100-.4.判断题:(1)当0→x 时,函数xx 1cos是无穷小. ( )(2)当∞→x 时,函数x x sin +不一定是无穷大. ( )(3)非零常数与无穷大的乘积必为无穷大. ( ) (4)无穷小与无穷大的乘积必为无穷小. ( ) (5)在自变量的同一变化趋势下,无穷大的倒数必为无穷小. ( )第三节 极限的运算一、极限的运算法则定理1 如果B x g A x f ==)(lim )(lim ,,则(1)[]B A x g x f x g x f ±=±=±)(lim )(lim )()(lim ; (2)[]B A x g x f x g x f ⋅=⋅=⋅)(lim )(lim )()(lim ; (3)BA x g x f x g x f ==)(lim )(lim )()(lim)0(≠B .推论1 []kA x f k x kf ==)(lim )(lim (k 为常数). 推论2 [][]n n n A x f x f ==)(lim )(lim (n 为正整数). 由推论2可得极限运算公式:nnx x x xlim =→ (n 为正整数), 01lim=∞→nx x(n为正整数).定理1中的(1)、(2)可推广到有限个函数的情形.例如,如果)(lim 1x f 、)(lim 2x f 、)(lim 3x f 都存在,则[])(lim )(lim )(lim )()()(lim 321321x f x f x f x f x f x f --=--,[])(lim )(lim )(lim )()()(lim 321321x f x f x f x f x f x f ⋅⋅=⋅⋅.定理2 有限个无穷小的代数和仍是无穷小. 定理3 有限个无穷小的乘积仍是无穷小.定理4 有界函数与无穷小的乘积仍是无穷小. 推论 常数与无穷小的乘积仍是无穷小.定义1 在自变量x 的同一变化趋势下,如果0)(lim =x f ,0)(lim =x g ,且1)()(lim=x g x f ,则称函数)(x f 与)(x g 为等价无穷小.记作)(x f ~)(x g .例如,0lim 0=→x x ,0sin lim 0=→x x ,由重要极限1sin lim=→xx x 可知,函数x sin 与x 当0→x 时为等价无穷小.记作当0→x 时,x sin ~x .定理5 设0lim =α,0lim =β,0lim ='α,0lim ='β.如果α~α',β~β',且αβ''lim存在,则 =αβlimαβ''lim.此定理也就是说:求两个无穷小商的极限时,分子与分母都可用其等价无穷小来代替,从而使极限的计算简化.二、极限运算的十个基本公式1.c c =lim (c 为常数).2.n n x x x x 00lim =→ (n 为正整数).3.01lim=∞→nx x(n 为正整数).4.[])(lim )(lim )()(lim x g x f x g x f ±=±.5.[])(lim )(lim )()(lim x g x f x g x f ⋅=⋅.6.)(lim )(lim )()(limx g x f x g x f =(0)(lim ≠x g ).7.[])(lim )(lim x f k x kf = (k 为常数). 8.[][]nnx f x f )(lim )(lim = (n 为正整数).9.1sin lim=→xx x . 10.e xxx =+∞→)11(lim 或e x x x =+→1)1(lim .三、极限运算的十个基本类型例1 求)123(lim 22+-→x x x .解 )123(lim 22+-→x x x =22221lim )2(lim )3(lim →→→+-x x x x x=1lim 2lim 3222+-→→x x x x=122232+⋅-⋅ =9.事实上,设多项式函数nn na xa x a x f +++=- 110)(,则 )(lim )(lim 1100n n n x x x x a x a x a x f +++=-→→=n x x n x x n x x a x a x a 0lim lim lim 110→-→→+++=n n n a x a x a +++- 1100=)(0x f .即 )()(lim 00x f x f x x =→. (1-3)例2 求352lim232+--→x x x x .解 由例1得03)35(lim 22≠-=+-→x x x ,6)2(lim 32=-→x x ,则 )35(lim )2(lim 352lim2232232+--=+--→→→x x x x x x x x x=22222323lim lim 5lim 2lim lim →→→→→+--x x x x x x x x=32522223+⋅--=36-=2-.例3 求93lim23--→x x x .解 由例1得0)3(lim 3=-→x x ,0)9(lim 23=-→x x ,因此,不能直接应用商的极限运算法则求此极限. 由函数93)(2--=x x x f 得092≠-x ,从而有03≠-x .因此,首先对函数93)(2--=x x x f 进行简化,然后再应用商的极限运算法则.)3)(3(3lim93lim323+--=--→→x x x x x x x=31lim 3+→x x =)3(lim 1lim 33+→→x x x=61.例4 求36443lim 323+--+∞→x x x x x .解 因为∞=-+∞→)443(lim 23x x x ,∞=+-∞→)36(lim 3x x x ,所以,不能直接应用商的极限运算法则.首先用分子、分母多项式中最高次幂3x去除分子、分母,然后再应用商的极限运算法则.323323316443lim36443limxxxx x x x x x x +--+=+--+∞→∞→=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+∞→∞→323316lim 443lim x x x x x x=006003+--+=21.例5 求36243lim32+--+∞→x x x x x .解 首先用分子、分母多项式中最高次幂3x 去除分子、分母,然后再应用商的极限运算法则.323232316243lim36243limxxxx xx x x x x x +--+=+--+∞→∞→ = ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-+∞→∞→3232316lim 243lim x x x x x x x=006000+--+=0.例6 求下列极限: (1)332lim2+++∞→x x x x ; (2)93lim23-+→x x x .解 (1)因为22232131lim323limxxx x x x x x x +++=+++∞→∞→=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+∞→∞→22321lim 31lim x x x x x x=0100+++=0,即函数3232+++x x x 为当∞→x 时的无穷小.所以,函数3322+++x x x 为当∞→x 时的无穷大.即∞=+++∞→332lim2x x x x .(2)因为)3(lim )9(lim 39lim32323+-=+-→→→x x x x x x x=6=0,即函数392+-x x 为当3→x 时的无穷小.所以,函数932-+x x 为当3→x 时的无穷大.即∞=-+→93lim23x x x .由例4、例5、例6(1)可得,当m b a ,,0000≠≠和n 为正整数时,有.当,当,当,,,n m n m n m b a b xb x b a xa xa nn nm m m x ><=⎪⎪⎩⎪⎪⎨⎧∞=++++++--∞→0lim110110 (1-4) 例7 求下列极限: (1)xx x sin lim 0→ ; (2)x x x tan lim 0→ ;(3)xkxx sin lim→ )0(≠k ; (4)bxax x sin sin lim 0→ )00(≠≠b a ,;(5)2cos 1limxxx -→.解 当0→x 时,有)0(0≠→k kx . (1) xx xx x x sin 1limsin lim0→→=xx x x sin lim1lim 0→→=11=1=.(2) xx xxx x x cos sin lim tan lim00→→= xx x x cos sin lim→=xx xx x cos lim sin lim 00→→=11=1=.(3) kx kx k xkx x x sin limsin lim→→=kx kx k kx sin lim→= kxkx k kx sin lim→=1⋅=k k=.(4) x bx x ax bxax x x sin sin limsin sin lim→→= xbx x ax x x sin limsin lim 0→→=ba)3(.又因为,当0→x 时,ax sin ~ax ,bx sin ~bx , 所以 bxax x sin sin lim→ 5定理 bxax x 0lim→ba x 0lim→=ba =.(5) 2222sin2limcos 1limxx xxx x →→=-22222sinlim⎪⎭⎫ ⎝⎛=→x x x2022sin lim 21⎪⎪⎪⎪⎭⎫⎝⎛=→xx x20222sin lim 21⎪⎪⎪⎪⎭⎫ ⎝⎛=→x x x=20222sin lim21⎪⎪⎪⎪⎭⎫ ⎝⎛→x x x=2121⋅=21.例8 求下列极限:(1)xx x 211lim ⎪⎭⎫ ⎝⎛+∞→; (2)xx x ⎪⎭⎫ ⎝⎛+∞→21lim ;(3)xx x ⎪⎭⎫ ⎝⎛-∞→21lim ; (4)xx x x ⎪⎭⎫⎝⎛--∞→32lim .解 当∞→x 时,有)0(≠∞→k kx . (1) xx x 211lim ⎪⎭⎫ ⎝⎛+∞→=211lim ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+∞→xx x211lim ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=∞→x x x 2e=.请读者自己推导:nnxx e x =⎪⎭⎫ ⎝⎛+∞→11lim (n 为非零整数).(2)xxxx xx⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+∞→∞→211lim21lim22211limxx x⋅∞→⎪⎪⎪⎪⎭⎫⎝⎛+=222211lim⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫⎝⎛+=∞→xx x222211lim⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫⎝⎛+=∞→xx x2e=.(3)xxxx xx⎪⎪⎪⎪⎭⎫⎝⎛-+=⎪⎭⎫⎝⎛-∞→∞→211lim21lim)2(22211limxx x--∞→-⎪⎪⎪⎪⎭⎫⎝⎛-+=)2(222111limxxx-∞→-⎪⎪⎪⎪⎭⎫⎝⎛-+==2222111lim⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫⎝⎛-+-∞→-x x x=2222211lim 1lim ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫⎝⎛-+-∞→-∞→-x x xx=222211lim 1⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎪⎪⎭⎫⎝⎛-+-∞→-x x x21e=2-=e.请读者自己综合(2)、(3)推导:nxx e x n =⎪⎭⎫ ⎝⎛+∞→1lim (n 为非零整数). (4)由(3)得221lim -∞→=⎪⎭⎫ ⎝⎛-e x xx , 331lim -∞→=⎪⎭⎫ ⎝⎛-e x xx , 则 xx xx x x x x ⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛--∞→∞→32lim 32limxx x x ⎪⎪⎪⎪⎭⎫⎝⎛--=∞→3121limxxx x x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=∞→3121limxx xx x x ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=∞→∞→31lim 21lim32--=eee =.例9 求xx x sin lim ∞→.解 因为1sin ≤x ,且01lim=∞→xx , 即函数x sin 为有界函数,且当∞→x 时,函数x1为无穷小.所以,当∞→x 时,函数xx sin 为无穷小.即sin lim=∞→xx x .例10 求xx x -+-→222lim 2.解 因为)22(lim 2=+-→x x ,0)2(lim 2=-→x x ,所以,不能直接应用商的极限运算法则求此极限.首先进行分子有理化,然后再应用商的极限运算法则.)22)(2()22)(22(lim222lim22++-+++-=-+-→→x x x x xx x x)22)(2(2lim2++--=→x x xx=221lim2++→x x。

函数的性态分析

函数的性态分析

高考中函数的热点问题一、函数的性态例题1 已知函数xxx x f -+-=11log 1)(2,求函数f (x)的定义域,并讨论它的奇偶性和单调性.,并说明理由。

思路点拨:函数的奇偶性的范围应在定义域上加以分析,而函数增减单调性区间可选择定义域上或定义域的子集上考虑问题()()0()(1,0)(0,1).1011001x f x xxf x x ≠∴-⋃+>--⋃∴⎧⎪⎨⎪⎩ 解:函数的定义域为函数()的定义域,,关于原点对称,对于定义域内的每一个,211log .1x f x f x f x xx--=--==-∴+ ()(),()是奇函数()()121212222211221221()0,1,0,1,11111122()()log log ()[log 1log 1],1111f x x x x x f x f x x x x x x x x x <∈++-=--+=-+-------⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭研究在上的单调性设()()2212122111220,log 1log 10,()()0,110110.f x f x x x x x f x f x f x ->--->∴->---⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭即()在,上单调递减,由于()是奇函数,()在,上单调递减在研究函数()()()F x f x g x =±的相关问题时,如果函数()f x 与函数()g x 具备相同的单调性或奇偶性,则可以借助此性质去研究其它问题。

例题2、若2525(log 3)(log 3)(log 3)(log 3)x x y y ---≥-,则有( )(A )0x y +> (B )0x y +< (C )0x y +≥ (D )0x y +≤解:令25()(log 3)(log 3)x x F x =-,2()(log 3)x f x = 与5()(log 3)x g x =-都是增函数,()F x ∴是增函数,又原式可转化为()()F x F y ≥-,则有x y ≥-,∴选取(C )点评:把题中的不等式问题,转化为一个和差函数的单调性来研究,是解题的捷径。

4.3 函数的性态(1)

4.3 函数的性态(1)
y
y
y 3 x 2 的单增区间为(0, ), 单减区间为( ,0).
o x
arctan x . Example 3. 当x 0时, 证明 ln(1 x ) 1 x Proof. 当 x=0 时, 等号成立.
当 x 0时, 设 f ( x ) (1 x ) ln(1 x ) arctan x , 1 f ( x ) ln(1 x ) 1 1 x2 2 x ln(1 x ) 0 ( x 0) 2 1 x 所以 f(x) 单调递增.
同理可证得结论(2),(3)成立.
极值存在的第一充分条件的图形记忆法. y y
o y : 0
x
极大
o y : 0 极小
x
y
y
o
y :
x
o
y :
x
没有极值
4. 极值存在的第二充分条件 定理3. 设f ( x )在 U ( x0 , )内二阶可导, 且f ( x0 ) 0, f ( x0 ) 0.则
二.函数极值的判别法
1. 函数极值的定义与图形:
y
o
x
注意: (1) 极值是局部性质. (2) 极大值不一定比极小值大,反之亦然.
2. 极值存在的必要条件 ------Fermat定理
定理1. 设函数f ( x )在x0可导, 若x0为极值点, 则f ( x0 ) 0. 注意: (1) 导数为0的点称为函数的驻点.( f ( x0 ) 0) (2) 可导函数的极值点一定是驻点. (3) 驻点只是可能的极值点.
Proof. 由极值的定义来证明.
(1) 当x x0时, f ( x ) 0,
故 f(x) 单调递增. f ( x ) f ( x0 ).

数学强化班(武忠祥)-高数第一章 函数、极限、连续

数学强化班(武忠祥)-高数第一章 函数、极限、连续

第 函数 极限 连续第一节 函 数1. 函数的概念(定义、定义域、对应法则、值域) 2. 函数的性态 1)单调性定义:单调增: ).()(2121x f x f x x <⇒< 单调不减: ).()(2121x f x f x x ≤⇒< 判定:(1)定义:(2)导数:设)(x f 在区间I 上可导,则 a) )(0)(x f x f ⇔≥'单调不减; b) )(0)(x f x f ⇒>'单调增; 2)奇偶性定义:偶函数 );()(x f x f =- 奇函数 ).()(x f x f -=- 判定:(1)定义:(2)设)(x f 可导,则:a))(x f 是奇函数⇒ )(x f '是偶函数;b))(x f 是偶函数⇒ )(x f '是奇函数; (3)连续的奇函数其原函数都是偶函数;连续的偶函数其原函数之一是奇函数。

3)周期性定义:)()(x f T x f =+ 判定:(1)定义;(2)可导的周期函数其导函数为周期函数; (3)周期函数的原函数不一定是周期函数; 4)有界性定义:若;)(,,0M x f I x M ≤∈∀>∃则称)(x f 在I 上有界。

判定:(1)定义:(2))(x f 在],[b a 上连续)(x f ⇒在],[b a 上有界;(3))(x f 在),(b a 上连续,且)0()0(-+b f a f 和存在)(x f ⇒在)(b a ,上有界;(4))(x f '在区间I (有限)上有界)(x f ⇒在I 上有界; 3.复合函数与反函数 (函数分解成简单函数的复合,分段函数的复合) 4.基本初等函数与初等函数 基本初等函数:常数,幂函数 ,指数,对数,三角,反三角。

了解它们定义域,性质,图形. 初等函数:由基本初等函数经过有限次的加、减、乘、除和复合所得到且能用一个 解析式表示的函数.题型一 复合函数例1.1已知)1(+x f 的定义域为),0(],,0[>a a ,则)(x f 的定义域为 (A) ]1,1[--a (B) ]1,1[+a(C) ]1,[+a a (D) ],1[a a - 解 应选 (B)例1.2已知,1)]([,)(2x x f e x f x -==ϕ且,0)(≥x ϕ求)(x ϕ及其定义域。

高数上知识点总结

高数上知识点总结

高数上知识点总结(zǒngjié)高数上知识点总结(zǒngjié)高等数学(shùxué)是考研数学的重中之重,所占分值较大,需要复习的内容也比拟(bǐnǐ)多。

主要包括8方面(fāngmiàn)内容。

1、函数、极限与连续。

主要考查分段函数极限或极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比拟;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2、一元函数微分学。

主要考查导数与微分的求解;隐函数求导;分段函数和绝对值函数可导性;洛比达法那么求不定式极限;函数极值;方程的根;证明函数不等式;罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理及辅助函数的构造;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形,求曲线渐近线。

3、一元函数积分学。

主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明题;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4、向量代数和空间解析几何。

主要考查求向量的数量积、向量积及混合积;求直线方程和平面方程;平面与直线间关系及夹角的判定;旋转面方程。

5、多元函数微分学。

主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;二元、三元函数的方向导数和梯度;曲面和空间曲线的切平面和法线;多元函数极值或条件极值在几何、物理与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。

6、多元函数的积分学。

这局部是数学一的内容,主要包括二、三重积分在各种坐标下的计算,累次积分交换次序;第一型曲线和曲面积分计算;第二型(对坐标)曲线积分计算、格林公式、斯托克斯公式;第二型(对坐标)曲面积分计算、高斯公式;梯度、散度、旋度的综合计算;重积分和线面积分应用;求面积,体积,重量,重心,引力,变力作功等。

7、无穷级数。

三次函数形态的五个要点

三次函数形态的五个要点

三次函数性态的五个要点三次函数的一般形式为y=f(x)=ax3+bx2+cx+d (不妨a>0,a、b、c、d∈R) ,近几年的全国各省市高考试卷以导数为工具,有重点地考查了有关三次函数的单调性、极值、在闭区间上的最值、对参数式的取值范围的探究等函数性态,凸显“在知识网络交汇点上命题”的理念,本文结合相关试题阐述三次函数性态的要点。

要点1.三次函数y=f(x)在(-∞,+∞)上的极值点的个数简析:若函数f(x)在点x0的附近恒有f(x)≥f(x) (或f(x)≤f(x)),则称函数f(x)在点x0处取得极大值(或极小值),称点x为极大值点(或极小值点)。

据此有结论:三次函数y=f(x)在(-∞,+∞)上的极值点要么有两个,要么不存在极值点。

论证如下:令f′(x)=3ax2+2bx+c,y=f(x)的极值点就是方程 f/(x)=0的实根。

①当Δ=4b2-12ac>0时,方程f/(x)=0有两个不等的实根,记为x1、x2,则x1、x2是f(x)在(-∞,+∞)上的两个极值点;②当Δ=4b2-12ac =0时,该方程有两个等根:x1=x2=x,由下表可知y=f(x)在(-∞,+∞)上单调增,此时y=f(x)没有极值点;③当Δ=4b2-12ac<0时,f/(x)=0无实根,f(x)没有极值点,结论得证。

[试题链接]:错解剖析例1.(2004年湖北高考文考卷)已知b>-1,c>0,函数f(x)=x+b的图象与函数g(x)=x2+bx+c的图象相切,(Ⅰ)求b与c的关系式(用c表示b);(Ⅱ)设函数F(x)=f(x).g(x)在(-∞,+∞)内有极值点,求c的取值范围。

解:(Ⅰ)依题意,函数f(x)=x+b的斜率为1,∴g′(x)=1,得2x+b=1,故x=(1-b)/2为切点的横坐标,将x=(1-b)/2分别代入f(x)、g(x)的函数解析式,得 f[(1-b)/2]=g[(1-b)/2],化简为(b+1)2=4c∵b>-1,c>0,∴b=-1+2c1/2(Ⅱ)F(x)=f(x).g(x)=x3+2bx2+(b2+c)x+bc,F′(x)=3x2+4bx+b2+c=0,令3x2+4bx+b2+c=0,Δ=16b2-12(b2+c)=4(b2-3c),当Δ=0时,则F′(x)=0有两个等根x;当Δ>0时,F′(x)=0有两个不等的实根x1、x2(设x1<x2),综上所述,当且仅当Δ≥0时,函数F(x)在(-∞,+∞)上有极值点。

三次函数性态的五个要点解读

三次函数性态的五个要点邳州市岔河高级中学解俊三次函数的一般形式为y=f(x)=ax3+bx2+cx+d (不妨a>0,a、b、c、d∈R) ,近几年的全国各省市高考试卷以导数为工具,有重点地考查了有关三次函数的单调性、极值、在闭区间上的最值、对参数式的取值范围的探究等函数性态,凸显“在知识网络交汇点上命题”的理念,本文结合相关试题阐述三次函数性态的要点。

要点1.三次函数y=f(x)在(-∞,+∞)上的极值点的个数简析:若函数f(x)在点x0的附近恒有f(x)≥f(x) (或f(x)≤f(x)),则称函数f(x)在点x0处取得极大值(或极小值),称点x为极大值点(或极小值点)。

据此有结论:三次函数y=f(x)在(-∞,+∞)上的极值点要么有两个,要么不存在极值点。

论证如下:令f′(x)=3ax2+2bx+c,y=f(x)的极值点就是方程 f/(x)=0的实根。

①当Δ=4b2-12ac>0时,方程f/(x)=0有两个不等的实根,记为x1、x2,则x1、x2是f(x)在(-∞,+∞)上的两个极值点;②当Δ=4b2-12ac =0时,该方程有两个等根:x1=x2=x,由下表可知y=f(x)在(-∞,+∞)上单调增,此时y=f(x)没有极值点;③当Δ=4b2-12ac<0时,f/(x)=0无实根,f(x)没有极值点,结论得证。

[试题链接]:错解剖析例1.(2004年湖北高考文考卷)已知b>-1,c>0,函数f(x)=x+b的图象与函数g(x)=x2+bx+c的图象相切,(Ⅰ)求b与c的关系式(用c表示b);(Ⅱ)设函数F(x)=f(x).g(x)在(-∞,+∞)内有极值点,求c的取值范围。

解:(Ⅰ)依题意,函数f(x)=x+b的斜率为1,∴g′(x)=1,得2x+b=1,故x=(1-b)/2为切点的横坐标,将x=(1-b)/2分别代入f(x)、g(x)的函数解析式,得 f[(1-b)/2]=g[(1-b)/2],化简为(b+1)2=4c∵b>-1,c>0,∴b=-1+2c1/2(Ⅱ)F(x)=f(x).g(x)=x3+2bx2+(b2+c)x+bc,F′(x)=3x2+4bx+b2+c=0,令3x2+4bx+b2+c=0,Δ=16b2-12(b2+c)=4(b2-3c),当Δ=0时,则F′(x)=0有两个等根x;当Δ>0时,F′(x)=0有两个不等的实根x1、x2(设x1<x2),综上所述,当且仅当Δ≥0时,函数F(x)在(-∞,+∞)上有极值点。

高等数学考试点归纳

第一篇:高等数学一:函数的几种特性有界性、单调性、奇偶性、周期性在函数的几种特性这里还是可能出到考题的1:有界性:〔1〕:概念〔2〕:函数,原函数导函数有界性的判断问题。

函数在定义域有界,导函数和原函数不一定有界,可以用找特殊函数的方法来思考2:单调性〔1〕:判断方法,利用一阶导数判断〔2〕:函数、原函数、导函数单调性的关系〔3〕:单调性和区间相关3:奇偶性〔1〕:定义〔2〕:判断:首先是定义域关于原点对称,要是定义域都不关于原点对称的话,肯定不是奇偶函数〔3〕:判断时不能简单的利用定义式子,还有可能进展数学等式的变化。

这里才是考试的重点〔4〕:组合问题:即奇函数和偶函数组合出来的函数是什么函数等等一系列的问题。

用定义去解决,注册工程师的考试顶多也就考到这种程度了。

〔5〕:函数、原函数、导函数的奇偶性问题:还是利用定义去完成推断。

4:周期性〔1〕:定义〔2〕:最小正周期的概念〔3〕:注意:某周期函数的原函数不一定是周期函数,利用根本积分原理即可解决该问题。

二:函数的极限问题〔一〕:求极限的方法〔1〕:四那么运算方法:加减乘除〔2〕:洛必达法那么〔上下同时趋于零或者趋无穷大〕,即不定式的极限〔3〕:等价无穷小当x→0时,sinx~x,tanx~x,arcsinx~x,arctanx~x,1-cosx~(1/2)*〔x^2〕〔a^x〕-1~x*lna 〔e^x〕-1~xln(1+x)~x,[(1+x)^1/n]-1~〔1/n〕*x,loga(1+x)~x/lna。

注意等价无穷小替换只能用在乘除中,且只能是自变量也趋于零时使用,还有就是等价无穷小也可以有自己的变种。

〔4〕:法那么:有界函数乘以等价无穷小,那么其极限是无穷小。

〔5〕:特殊类型的函数求极限:1:0的0型,或者0的正无穷型:不管形式怎么样,其实质都是利用复合函数求极限的方法。

将函数用自然数进展换底。

2:其他复合函数的极限,一层一层的求3:利用极限存在准那么求极限:夹逼准那么和单调有界函数必有极限定理4:变上限积分函数求极限:这可看做是和积分知识点的结合。

三次函数

三次函数百科名片三次函数基本概念与性质形如y=ax^3+bx^2+cx+d(a≠0,b,c,d为常数)的函数叫做三次函数(cubics function)。

三次函数的图像是一条曲线----回归式抛物线(不同于普通抛物线),具有比较特殊性。

目录1二.零点求法1.盛金公式12.盛金判别法13.盛金定理14.传统解法三.三次函数性态的五个要点1四.三次函数对称中心1.三次函数有对称中心12.推广五.其他性质展开编辑本段二.零点求法求函数的零点可用盛金公式、盛金判别法、或传统解法盛金公式与盛金判别法及盛金定理的运用从这里向您介绍三次方程应用广泛。

用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。

范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。

1.盛金公式一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。

重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd,总判别式:Δ=B^2-4AC。

当A=B=0时,盛金公式①:X1=X2=X3=-b/(3a)=-c/b=-3d/c。

当Δ=B^2-4AC>0时,盛金公式②:X1=(-b-(Y1)^(1/3)-(Y2)^(1/3))/(3a);X2,3=(-2b+(Y1)^(1/3)+(Y2)^(1/3))/(6a)±i3^(1/2)((Y1)^(1/3)-(Y2)^(1/3))/(6a),其中Y1,2=Ab+3a(-B±(B^2-4AC)^(1/2))/2,i^2=-1。

当Δ=B^2-4AC=0时,盛金公式③:X1=-b/a+K;X2=X3=-K/2,其中K=B/A,(A≠0)。

当Δ=B^2-4AC<0时,盛金公式④:X1= (-b-2A^(1/2)cos(θ/3))/(3a);X2,3= (-b+A^(1/2)(cos(θ/3)±3^(1/2)sin(θ/3)))/(3a),其中θ=arccosT,T= (2Ab-3aB)/(2A^(3/2)),(A>0,-1<T<1)。

三次因式分解

三次函数因式分解有以下情况:1、当三次函数的解析式的常数项为0时,如y=x^3-2x^2-3x,提出一个x,括号里面是二次函数,可以配方、分解因式。

2、另外,由多项式方程的根是常数项的因数这一定理,如果当常数项的因数是三次方程的根时,那么相应三次函数解析式可以分解因式。

3、例如,y=x^3-2x^2-x+2,常数项因数±1,±2,其中x=±1,x=2是三次方程的根,所以y=(x-1)(x+1)(x-2)。

三次函数(cubic function)指的是最高次数项为3的函数,形如y=ax³+bx²+cx+d(a≠0,b,c,d为常数)的函数。

三次函数的图象是一条曲线——回归式抛物,不同于普通抛物线。

三次函数性态的五个要点:1、三次函数y=f(x)在(-∞,+∞)上的极值点的个数。

⒉、三次函数y=f (x)的图象与x 轴交点个数。

⒊、单调性问题。

⒋、三次函数f(x)图象的切线条数。

⒌、融合三次函数和不等式,创设情境求参数的范围。

卡尔丹公式法:此外,一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax3+bx2+cx+d=0的标准型一元三次方程形式化为x3+px+q=0的特殊型。

上世纪80年代,中国的一名中学数学教师范盛金对解一元三次方程问题进行了深入的研究和探索,发明了比卡尔丹公式更实用的新求根公式——盛金公式,并建立了简明的、直观的、实用的新判别法——盛金判别法,同时提出了盛金定理,盛金定理清晰地回答了解三次方程的疑惑问题,且很有趣味。

盛金公式的特点是由最简重根判别式A=b2-3ac;B=bc-9ad;C=c2-3bd和总根的判别式Δ=B2-4AC来构成,体现了数学的有序、对称、和谐与简洁美,简明易记、解题直观、准确高效,特别是当Δ=B2-4AC=0时,盛金公式3:X⑴=-b/a+K;X⑵=X⑶=-K/2,其中K=B/A,(A≠0),其表达式非常漂亮,不存在开方(此时的卡尔丹公式仍存在开立方),手算解题效率高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三次函数性态的五个要点三次函数的一般形式为y=f(x)=ax3+bx2+cx+d (不妨a>0,a、b、c、d∈R) ,近几年的全国各省市高考试卷以导数为工具,有重点地考查了有关三次函数的单调性、极值、在闭区间上的最值、对参数式的取值范围的探究等函数性态,凸显“在知识网络交汇点上命题”的理念,本文结合相关试题阐述三次函数性态的要点。

要点1.三次函数y=f(x)在(-∞,+∞)上的极值点的个数简析:若函数f(x)在点x0的附近恒有f(x)≥f(x) (或f(x)≤f(x)),则称函数f(x)在点x0处取得极大值(或极小值),称点x为极大值点(或极小值点)。

据此有结论:三次函数y=f(x)在(-∞,+∞)上的极值点要么有两个,要么不存在极值点。

论证如下:令f′(x)=3ax2+2bx+c,y=f(x)的极值点就是方程 f/(x)=0的实根。

①当Δ=4b2-12ac>0时,方程f/(x)=0有两个不等的实根,记为x1、x2,则x1、x2是f(x)在(-∞,+∞)上的两个极值点;②当Δ=4b2-12ac =0时,该方程有两个等根:x1=x2=x,由下表可知y=f(x)在(-∞,+∞)上单调增,此时y=f(x)没有极值点;③当Δ=4b2-12ac<0时,f/(x)=0无实根,f(x)没有极值点,结论得证。

[试题链接]:错解剖析例1.(2004年湖北高考文考卷)已知b>-1,c>0,函数f(x)=x+b的图象与函数g(x)=x2+bx+c的图象相切,(Ⅰ)求b与c的关系式(用c表示b);(Ⅱ)设函数F(x)=f(x).g(x)在(-∞,+∞)内有极值点,求c的取值范围。

解:(Ⅰ)依题意,函数f(x)=x+b的斜率为1,∴g′(x)=1,得2x+b=1,故x=(1-b)/2为切点的横坐标,将x=(1-b)/2分别代入f(x)、g(x)的函数解析式,得 f[(1-b)/2]=g[(1-b)/2],化简为(b+1)2=4c∵b>-1,c>0,∴b=-1+2c1/2(Ⅱ)F(x)=f(x).g(x)=x3+2bx2+(b2+c)x+bc,F′(x)=3x2+4bx+b2+c=0,令3x2+4bx+b2+c=0,Δ=16b2-12(b2+c)=4(b2-3c),当Δ=0时,则F′(x)=0有两个等根x;当Δ>0时,F′(x)=0有两个不等的实根x1、x2(设x1<x2),综上所述,当且仅当Δ≥0时,函数F(x)在(-∞,+∞)上有极值点。

由Δ=4(b2-3c)≥0得b≤- 3c或b≥3c。

∵b=-1+2c,∴-1+2c≤3c或-1+2c≥3c,解之得0<c≤7-4•31/2或c≥7+4•31/2,故所求c的范围是(0,7-4•31/2]∪ [7+4•31/2,+∞)点评:第一小问解的好,但第二小问的解答却出了一点错误,错因剖析如下:把函数有极值的问题转化为一元二次方程F/(x)= 3x2+4bx+b2+c=0有实根,即Δ≥0。

忽略了极值存在必须检验F′(x)的符号这一重要细节,若Δ=0,则F′(x)=0有一对等根x,F/(x)的取值符号如下表:可知x=x不是函数F(x)的极值点。

(Ⅱ)正确解法如下:∵F(x)=f(x).g(x)=x3+2bx2+(b2+c)x+bc,∴令F′(x)=3x2+4bx+b2+c=0①当Δ=16b2-12(b2+c)>0时, F′(x)=0有两个不等的实根x1、x2(令x1<x2),F′(x)的取值变化如下表:∴ x=x1是函数F(x)的极大值点,x=x2是它的极小值点。

由Δ=4(b2-3c)>0得b<- 3c或b>3c,b=-1+2c代入得0<c<347-或c>347+。

②.当Δ=0时, F/(x)=0有一对等根x,F/(x)的取值规律如下表:∴函数F(x)此时不存在极值点。

综上所述可知,当且仅当Δ>0时,F(x)在(-∞,+∞)上有极值点,∴c的取值范围是(0,347-)∪(347+,+∞)点评与反思:洞察极值存在的细节,是成功解好本题的关键。

要点2.三次函数y=f(x)的图象与x 轴交点个数交点个数的本质是多项式ax3+bx2+cx+d在实数集上怎样进行因式分解,记ax3+bx2+cx+d=a(x-x1)(x-x2)(x-x3),(ⅰ)若x1≠x2≠x3,则交点为3个;(ⅱ)若x1、x2、x3中有两个相等,不妨x1=x2≠x3,则交点为2个。

(ⅲ)若x1=x2=x3,则交点为1个;(ⅳ)若f(x)=a(x-x)(x2+dx+e),且有d2-4e<0,y=f(x)的图象与x 轴只有一个交点。

[试题链接]例2.(2000年春季高考题)已知函数f(x)=ax3+bx2+cx+d的图象如图所示,则()A .b∈(-∞,0) B.b∈(0,1)C .b∈(1,2) D. b∈(2,+∞)略解:设f(x)=a(x-1)(x-2)=a(x3-3x2+2x)∴b=-3a,c=2a,d=0 ,又a>0,∴b<0,选(A )再看一题:如图,函数y =f (x )的图象如下,则函数f (x )的解析式可以为( ) A)f (x )=(x -a )2(b -x ) B)f (x )=(x -a )2(x +b ) C)f (x )=-(x -a )2(x +b ) D)f (x )=(x -b )2(x -a )不难知,选(A )又如运用“序轴法”解一元三次不等式x (x-1)(x-2)>0,易知x 的范围是:(0,1)∪(2,+∞),我们都要先得出三次函数的图象与x 轴的交点。

要点3.单调性问题 [试题链接]例3.函数f (x )=x 3/3+ax 2/2+ax-2 (a ∈R)在(-∞,+∞)上为单调增函数,求实数a 的取值范围。

错解:令f ´(x )=x 2+ax+a >0在(-∞,+∞)上恒成立 ∴x =a 2-4a <0得0<a <4错因剖析:当f ´(x )>0时,f (x )为增函数,但反之未必为真。

举一反例:函数f (x )=x 3是实数集R 上的增函数,但f ′(0)=3x 2∣x=0=0。

回过来看例3,Δ=a 2-4a ≤0,得a ∈[0,4]为它的解。

说明1:设f (x )在区间D 上可导,则f (x )在区间D 上递增(或递减)的充要条件是:f ´(x )≥0 (或f ´(x )≤0)注释①说明2:在本例题中,当a=0时,f (x )=x 3显然在R 上单调增;当a=4时,f (x )=x 3/3+2x 2+4x-2=(x 3+6x 2+12x-8)/3+2/3=(x -2)3/3+2/3不难知函数y =x 3/3的图象按向量a =(2,32)平移就可得到y=f (x )的图象。

可见a=0、a=4也是解。

例4.已知函数f (x )=x 3/3-(4m -1)x 2+(15m 2-2m -7)x +2在实数集R上是增函数,求实数m 的取值范围。

解:∵y =f (x )在R上是单调增函数∴f ´(x )=x 2-2(4m -1)x +15m 2-2m -7≥0在R上恒成立,Δ=… =m 2-6m +8≤0得2≤m ≤4小结:三次函数y=f(x)=ax 3+bx 2+cx+d (不妨a >0,a 、b 、c 、d ∈R)为R 上的增函数,图象可分为两种形式:其一是由y =ax 3的图象平移而得;其二是由函数y =ax (x 2+sx +t )(a >0,s,t ∈R且t ≠0,s 2-3t ≤0)的图象平移而得。

附注:y =ax (x 2+sx +t )=ax 3+asx 2+atx y ´=3ax 2+2asx +at ≥0在R 上恒成立,∴Δ≤0,得 s 2≤3t 。

而x 2+sx +t >0在R 上恒成立,得s 2-4t <0。

s 2≤3t 比s 2-4t <0更进一步。

这也就是为什么附属条件不是s 2-4t <0而是s 2≤3t 的原因。

要点4.三次函数f (x )图象的切线条数 [试题链接]例5.已知曲线y = x 3/3+4/3,求曲线在点(2,4)处的切线方程解:f ´(x )=x 2,f ´(2)=4,曲线在点(2,4)处的切线斜率为k =f ´(2)=4∴代入直线方程的斜截式,得切线方程为:y -4=4(x -2), 即 y =4x -4变式:已知曲线y =x 3/3+4/3,则曲线过点(2,4)的切线方程——————。

错解:依上题,直接填上答案4x -y -4=0错因剖析:如下图所示,在曲线上的点A 处的切线与该曲线还有一个交点。

这与圆的切线是有不同的。

点(2,4)在曲线y =x 3/3+4/3上,它可以是切点也可以不是。

正确解法:设过点(2,4)的切线对应的切点为(x 0,x 03/3+4/3),斜率为k=x 02,切线方程为y -(x 03/3+4/3 )=x 02(x-x 0) 即y=x 02x- 2x 03/3+4/3点(2,4)的坐标代入,得4=2x 02- 2x 03/3+ 4/3, 2 x 03-6 x 02+8=0 , ∴x 03-3x 02+4=0, 又∵x 03+1-(3x 02-3)=0 (x 0+1)(x 02-x 0+1)-3(x 0-1)(x 0+1)=0 ∴(x 0+1)(x 02-4x 0+4)=0 ∴x 0=-1或x 0=2 ∴切线的方程为4x-4-y=0或x-y+2=0 点评:一个是“在点(2,4)”、一个是“过点(2,4)”,一字之差所得结果截然不同。

要点5.融合三次函数和不等式,创设情境求参数的范围.[试题链接]:例6.已知函数f (x )= x 3/3+ ax 2/2+ax-2(a ∈R),设A (x 1,f (x 1)),B (x 2,f (x 2))是函数f (x )的两个极值点,若直线AB 的斜率不小于- 5/6 ,求实数a 的取值范围。

解:k AB =[f (x 1)-f (x 2)]/(x 1-x 2)=[(x 13-x 23)/3+a (x 12-x 22)/2+a (x 1-x 2)]/(x 1-x 2)=(x 12+x 1x 2+x 22)/3+a (x 1+x 2)/2+a ≥-5/6在实数集上恒成立。

x 12/3+(x 2/3+a/2)x 1+x 22/3+ax 2/2+a+5/6≥0在实数集上恒成立, 2x 12+(2x 2+3a )x 1+2x 22+3ax 2+6a+5≥0 Δ=4x 22+12ax 2+9a 2-8(2x 22+3ax 2+6a+5)=-12x 22-12ax 2+9a 2-48a-40≤0在实数集上恒成立, 即12x 22+12ax 2-9a 2+48a+40≥0在实数集上恒成立,Δ=144a 2-48(-9a 2+48a+40)≤0,得实数a 的取值范围是2-661/2/3≤a ≤2+661/2/3。

相关文档
最新文档