最新人教版初中九年级上册数学第二十五章《概率初步》知识点
九年级数学人教版(上册)第25章小结与复习

乙转盘
第一回 第二回
1
2
3
1
2
3
4
2
3
4
5
3
4
5
6
共有9种等可能结果,其中中奖的有4种;
∴P(乙)=
4; 9
(2)如果只考虑中奖因素,你将会选择去哪个超市
购物?说明理由.
选甲超市.理由如下:
∵P(甲)>P(乙), ∴选甲超市.
侵权必究
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究
课堂小结
必然事件
事 件 不可能事件
从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是( A )
A. 2
B. 3
C. 8
D. 1 3
5
5
25
25
4. 一个袋中装有2个黑球3个白球,这些球除颜色外,大小、形状、质地完全相
同,在看不到球的情况下,随机的从这个袋子中摸出一个球不放回,再随机的
从这个袋子中摸出一个球,两次摸到的球颜色相同的概率是( A )
随机事件 与概率
概
率
初
步 列举法求
概
率
用频率估 计概率
侵权必究
概率
随机事件
定义
刻画随机事件发生可能 性大小的数值
计算 公式
P(A) m (m为试验总结果数, n
n为事件A包含的结果种数)
直接列举法 列表法
画树状图法
适合于两个试验因素或分两步进行 适合于三个试验因素或分三步进行
频率与概 率的关系
在大量重复试验中,频率具有 稳定性时才可以用来估计概率
那么重转一次,直到指针指向 4 3
某一份为止).
12
人教版九年级数学上册第25章 概率初步1 用列表法求概率

解:根据题意,列表数的结果有2 种,数字之积为偶数的
结果有4 种,∴P(数字之积为奇数) = =
P(数字之积为偶数) = =
.
∵ × = × ,∴这个游戏对双方公平.
率公式求出概率.
注意:(1)要弄清楚事件所包含的是哪个或哪些结果.
(2)要弄清楚一次试验中所有等可能结果.
(3)直接列举试验结果时,要有一定的顺序性,保证
结果不重不漏.
教师讲评
知识点2.列表法求概率(重点)
用表格的形式反映事件发生的各种结果出现的次数和
列表法求概率
方式,以及某一事件发生的可能的次数和方式,并求
(1)用列表的方法列出所有等可能出现的结果;
解:(1)列表如下:
纵坐标
1
横坐标
1
-2
(-2,1)
3
(3,1)
-2
3
(1,-2)
(1,3)
(-2,3)
(3,-2)
例4 一个不透明袋子中装有三只大小、质地都相同的小球,球面上分
别标有1,-2,3,搅匀后先从中任意摸出一个小球(不放回),记下
数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,
小颖、小明和小凡都想去看周末的电影,但是只有一张电影票,三
人决定通过做游戏来决定谁去看电影.
游戏规则如下:
连续掷两枚质地均匀的硬币,若两枚硬币均正面 朝 上,则小明获胜
;若两枚硬币均反面朝上,则小颖获胜;若一枚硬币正面朝上一枚
硬币反面朝上,则小凡获胜.你认为这个游戏公平吗?
人教版九年级上册数学《用列举法求概率》概率初步研讨复习说课教学课件

课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
S2 (S1,S2)
—
(S3,S2)
S3 (S1,S3) (S2,S3)
—
共有 6 种等可能的情况,必须闭合开关 S3 灯泡才亮,即能让灯泡发光的概率是46
=23. 答案:C
第二十五章 概率初步
上一页 返回导航 下一页
数学·九年级(上)·配人教
基础过关
课件 课件
课件
课件
A.12 C.23
第二十五章 概率初步
B.13 D.14
上一页 返回导航 下一页
数学·九年级(上)·配人教
分析:列表如下:
S1
S2
S3
S1
—
(S2,S1) (S3,S1)
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
1 和等于5的概率是___3___.
第二十五章 概率初步
上一页 返回导航 下一页
数学·九年级(上)·配人教
7 . 【 教 材 P140 习 题 25.2T3 变 式 】 一 个 不 透 明 的 口 袋 中 有 四 个 完 全 相 同 的 小
球 , 把 它 们 分 别 标 号 为 1,2,3,4. 随 机 摸 取 一 个 小 球 然 后 放 回 , 再 随 机 摸 取 一 个 小
第二十五章 概率初步
上一页 返回导航 下一页
数学·九年级(上)·配人教
12 . 随 着 信 息 技 术 的 迅 猛 发 展 , 人 们 去 商 场 购 物 的 支 付 方 式 更 加 多 样 、 便
数学九年级上册第二十五章《概率初步》小结与复习(共27张PPT)

B)
A.布袋中有2个红球和5个其他颜色的球
B.如果摸球次数很多,那么平均每摸7次,就有2次
摸中红球
C.摸7次,就有2次摸中红球
D.摸7次,就有5次摸不中红球
2.下列事件中是必然事件的是( D ) A.从一个装有蓝、白两色球的缸里摸出一个球,摸 出的球是白球 B.小丹的自行车轮胎被钉子扎坏 C.小红期末考试数学成绩一定得满分 D.将油滴入水中,油会浮在水面上
第二十五章 概率初步
小结与复习
复习目标
1.梳理本章的知识要点,回顾与复习本章知识. 2.巩固并能熟练运用列举法、列表法和树状图法求 概率.(重、难点) 3.能应用频率估计概率解决生活中的实际问题.
要点梳理
一、事件的分类及其概念
事件
不可能事件:必然不会发生的事件
随机事件:在一定条件下可能发生也可能不发生 的事件
考点二 概率的计算 例2 (1)一个口袋中装有3个红球,2个绿球,1 个黄球,每个球除颜色外其他都相同,搅匀后
1
随机地从中摸出一个球是绿球的概率是___3___.
(2)三张分别画有平行四边形、等边三角形、圆的 卡片,它们的背面都相同,现将它们背面朝上,
从中任取一张,卡片上所画图形恰好是中心对称 2
(2) 如果只考虑中奖因素,你将会选择去哪个超市购 物?说明理由.
(2) 选甲超市.理由如下: ∵P(甲)>P(乙), ∴选甲超市.
成活 数
47
235 369 662 1335 3203 6335 8073 12628
成活 频率
0.94
0.87 0.923 0.883 0.89 0.915 0.905 0.897 0.902
由此可以估计该种幼树移植成活的概率约为( C ) (结果保留小数点后两位)
九年级数学上册第二十五章概率初步知识点总结全面整理(带答案)

九年级数学上册第二十五章概率初步知识点总结全面整理单选题1、抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,下列理解正确的是()A.可能有50次反面朝上B.每两次必有1次反面朝上C.必有50次反面朝上D.不可能有100次反面朝上答案:A分析:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现,据此逐项判断即可.解:抛掷一枚质地均匀的硬币,“反面朝上”的概率为0.5,那么抛掷一枚质地均匀的硬币100次,可能有50次反面朝上,故选:A.小提示:本题主要考查了概率的意义和应用,要熟练掌握,解答此题的关键是要明确:概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.2、如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m2答案:B分析:本题分两部分求解,首先假设不规则图案面积为x ,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.假设不规则图案面积为x ,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为:x 20 , 当事件A 实验次数足够多,即样本足够大时,其频率可作为事件A 发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:x 20=0.35,解得x =7.故选:B .小提示:本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.3、有4张分别印有实数0,-0.5,−√2,-2的纸牌,除数字外无其他差异。
九年级数学上册第二十五章概率初步知识点总结归纳完整版(带答案)

九年级数学上册第二十五章概率初步知识点总结归纳完整版单选题1、小明在一次用“频率估计概率”的实验中,把对联“海水朝朝朝朝朝朝朝落,浮云长长长长长长长消”中的每个汉字分别写在同一种卡片上,然后把卡片无字的面朝上,随机抽取一张,并统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的实验最有可能是()A.抽出的是“朝”字B.抽出的是“长”字C.抽出的是独体字D.抽出的是带“氵”的字答案:D分析:根据利用频率估计概率得到实验的概率在0.2左右,再分别计算出四个选项中的概率,然后进行判断.根据拆线图知:概率在0.2左右,,不符合题意;A:抽出的是“朝”字的概率是720,不符合题意;B:抽出的是“长”字的概率是720,不符合题意;C:抽出的是独体字的概率是920=20%,符合题意,D:抽出的是带“氵”的字的概率为420故选:D.小提示:本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.2、分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()A .B .C .D .答案:A分析:结合图形求出各个阴影部分所占的比例即为小球落在阴影部分的概率,进行比较即可. 解:A 、小球落在阴影部分的概率为14; B 、小球落在阴影部分的概率为12; C 、小球落在阴影部分的概率为59;D 、小球落在阴影部分的概率为39=13; 小球落在阴影部分的概率最小的是A , 故选:A .小提示:题目主要考查概率的基本计算方法,理解题意,掌握概率的基本计算方法是解题关键.3、孟德尔被誉为现代遗传学之父,他通过豌豆杂交实验,发现了遗传学的基本规律.如图,纯种高茎豌豆和纯种矮茎豌豆杂交,子一代都是高茎豌豆,子一代种子种下去,自花传粉,获得的子二代豌豆由DD 、Dd 、dd 三种遗传因子控制.由此可知,子二代豌豆中含遗传因子D 的概率是( )A .14B .38C .12D .34 答案:D分析:画出遗传图解,即可得到答案. 解:画图如下:共有4种情况,而出现高茎的有3种结果, ∴子二代豌豆中含遗传因子D 的概率是34,故选:D小提示:本题主要考查了求概率,正确画出树状图是解答本题的关键.4、《田忌赛马》原文:忌数与齐诸公子驰逐重射.孙子见其马足不甚相远,马有上、中、下辈.于是孙子谓田忌曰:“君弟重射,臣能令君胜.”田忌信然之,与王及诸公子逐射千金.及临质,孙子曰:“今以君之下驷与彼上驷,取君上驷与彼中驷,取君中驷与彼下驷.”既驰三辈毕,而田忌一不胜而再胜,卒得王千金. 小建同学用数学模型来分析:齐王与田忌的上中下三个等级的三匹马的战斗力分别用数字标记如下表.每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.若齐王的三匹马和田忌的三匹马都随机出场,则田忌能赢得比赛的概率为( )A .2B .3C .4D .6答案:D分析:通过列表法或树状图把所有可能的情况列出来,然后利用概率公式求出事件发生的概率进行判断即可. 解:画树状图如图所示,从图中可以看出,齐王与田忌赛马,共有18种等可能的情况,其中田忌能赢有3种情况, P 田忌赢=318=19. 故选:D .小提示:本题考查了用列表法与树状图求概率,列表法适应于两步完成的事件概率的求法,树状图法适应于两步或两步以上完成的事件概率的求法.5、某人在做抛掷硬币试验中,抛掷n 次,正面朝上有m 次,若正面朝上的频率是P =mn ,则下列说法正确的是( )A .P 一定等于0.5B .多投一次,P 更接近0.5C .P 一定不等于0.5D .投掷次数逐渐增加,P 稳定在0.5附近 答案:D分析:大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做此事件概率的估计值,从而可得答案.解:根据频率和概率的关系可知,投掷次数逐渐增加,P 稳定在0.5附近, 故选:D .小提示:考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意随机事件可能发生,也可能不发生.6、在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49 B .13 C .29D .19答案:A分析:首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验. 画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果, ∴两次都摸到黄球的概率为49,故选A .小提示:此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.7、如图,已知正六边形ABCDEF 内接于半径为r 的⊙O ,随机地往⊙O 内投一粒米,落在正六边形内的概率为( )A .3√32πB .√32πC .√34πD .以上答案都不对 答案:A分析:连接OB ,过点O 作OH ⊥AB 于点H ,由正六边形的特点可证得△OAB 是等边三角形,由特殊角的三角函数值可求出OH 的长,利用三角形的面积公式即可求出△OAB 的面积,进而可得出正六边形ABCDEF 的面积,即可得出结果.解:如图:连接OB ,过点O 作OH ⊥AB 于点H ,∵六边形ABCDEF 是正六边形, ∴∠AOB =60°, ∵OA =OB =r ,∴△OAB 是等边三角形, ∴AB =OA =OB =r ,∠OAB =60°,在Rt △OAH 中,OH =OA ⋅sin∠OAB =r ×√32=√32r , ∴S △OAB =12AB ⋅OH =12r ×√32r =√34r 2, ∴正六边形的面积=6×√34r 2=3√32r 2, ∵⊙O 的面积=πr 2,∴米粒落在正六边形内的概率为:3√32r 2πr 2=3√32π, 故选:A .小提示:本题考查了正多边形和圆、正六边形的性质、等边三角形的判定与性质、解直角三角形;熟练掌握正六边形的性质,通过作辅助线求出△OAB 的面积是解决问题的关键.8、如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C ,都可使小灯泡发光.任意闭合其中一个开关,则小灯泡发光的概率等于( ).A .12B .13C .14D .34答案:C分析:让小灯泡发光的情况数除以总情况数即为发光的概率. 解:共有4个开关,闭合其中一个开关,有4种情况, 只有闭合D 才能使灯泡发光, ∴小灯泡发光的概率=14. 故选:C .小提示:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.9、用图中两个可自由转动的转盘做“配紫色”游戏:分别转动两个转盘,若其中一个转出红色,另一个转出蓝色,即可配成紫色(若指针指在分界线上,则重转),则配成紫色的概率为( )A .16B .13C .12D .23答案:C分析:列表得出所有等可能的情况数,找出能配成紫色的情况数,即可求出所求的概率. 解:列表如下:3种, 则P (配成紫色)=36=12, 故选:C .小提示:本题考查的是用列表法或画树状图法求概率,熟练掌握概率=所求情况数与总情况数之比是解题的关键.10、从−√2,0,√4,π,3.5这五个数中,随机抽取1个,则抽到无理数的概率是( )A .15B .25C .35D .45答案:B解:这里的无理数有−√2,π,共2个, ∴P (抽到无理数)=25. 故选:B .小提示:本题主要考查了列举法求概率,解决问题的关键是熟练掌握用列举法求概率的方法. 填空题11、现有张正面分别标有数字0,1,2,3,4,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程x 2−2x +a2=0有实数根,且关于x 的分式方程1−ax x−2+2=12−x有解的概率为______.答案:16分析:根据一元二次方程有实数根,求出a 的取值范围,再根据分式方程有解,求出a 的取值范围,综合两个结果即可得出答案.一元二次方程x 2−2x +a2=0有实数根,∴4−4×a2≥0. ∴a ≤2, ∴a =0,1,2, 关于x 的分式方程1−ax x−2+2=12−x的解为:x =22−a,且2−a ≠0且x ≠2, 解得:a ≠2且a ≠1, ∴a =0,∴使得关于x 的一元二次方程,x 2−2x +a2=0有实数根,且关于x 的分式方程1−axx−2+2=12−x 有解的概率为:16. 所以答案是:16小提示:本题考查一元二次方程有实数根、分式方程有解和概率的计算公式,掌握一元二次方程有实数根和分式方程有解是解题的关键.12、盒中有x枚黑棋和y枚白棋,这些棋除颜色外无其他差别.从盒中随机取出一枚棋子,如果它是黑棋的概率是38,则x和y满足的关系式为 __.答案:y=53x分析:根据盒中有x枚黑棋和y枚白棋,得出袋中共有(x+y)个棋,再根据概率公式列出关系式即可.解:∵盒中有x枚黑棋和y枚白棋,∴袋中共有(x+y)个棋,∵黑棋的概率是38,∴可得关系式xx+y =38,∴x和y满足的关系式为y=53x.所以答案是:y=53x.小提示:此题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13、小林掷一枚质地均匀的正方体骰子(骰子的每个面上分别标有1、2、3、4、5、6,他把第一次掷得的点数记为x,第二次掷得的点数记为y,则分别以这两次掷得的点数值为横、纵坐标的点A(x,y)恰好在直线y=−2x+8上的概率是______.答案:112分析:首先根据题意列出表格,然后由表格求得所有等可能的结果与点B(x,y)恰好在直线y=−2x+8上的情况,再利用概率公式求得答案.解:列表如下:),(2,4),(3,2),∴点B(x,y)恰好在直线y=−2x+8上的概率是:336=112.所以答案是:112.小提示:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.14、口袋里装有红球和白球共10个,这些球除颜色外其余均相同.每次将球搅拌均匀,任意摸出一个球,记下颜色后再放回口袋里,摸了100次,其中发现有69次摸到白球,则白球的个数约为___________个.答案:7分析:利用频率估计概率可估计摸到白球的概率,再用口袋里球的总个数乘以摸到白球的频率即可得出答案.解:∵共摸了100次球,发现有69次摸到白球,∴摸到白球的概率为0.69,∴口袋中白球的个数大约10×0.69≈7(个).所以答案是:7.小提示:本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.15、现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m,n,则点P(m,n)在第二象限的概率为__________.答案:316分析:画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=316.所以答案是:316.小提示:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.解答题16、2019年第六届世界互联网大会在桐乡乌镇召开,现从全校学生中选出15名同学参加会议相关服务工作,其中9名男生,6名女生.(1)若从这15名同学中随机选取1人作为联络员,求选到男生的概率.(2)若会议的某项服务工作只在A,B两位同学中选一人,准备用游戏的方式决定谁参加.游戏规则是:四个乒乓球上的数字分别为1,2,3,6(乒乓球只有数字不同,其余完全相同),将乒乓球放在不透明的纸箱中,从中任意摸取两个,若取到的两个乒乓球上的数字之和大于6则选A,否则选B,从是否公平的角度看,该游戏规则是否合理,用树状图或表格说明理由.答案:(1)35;(2)该游戏规则合理;理由见解析.分析:(1)直接根据概率公式计算;(2)先画出树状图,展示所有12种等可能的结果数,再找出两个数字之和大于6所占的结果数,计算出选A的概率和选B的概率,然后比较两概率大小判断该游戏规则是否合理.(1)选到男生的概率=915=35;(2)画树状图:共有12种等可能的结果数,其中两个数字之和大于6占6种,所以选A的概率=612=12,则选B的概率=1−12=12,由于选甲的概率等于选乙的概率,所以该游戏规则合理.小提示:本题考查列表法与树状图法,解题的关键是利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.17、根据公安部交管局下发的通知,自2020年6月1日起,将在全国开展“一带一盔”安全守护行动,其中就要求骑行摩托车、电动车需要佩戴头盔.某日我市交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“30≤x<40”部分所对应扇形的圆心角的度数为_______;(3)在这50人中女性有______人;(4)若从年龄在“x<20”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树状图的方法,求恰好抽到2名男性的概率.答案:(1)10;(2)180°;(3)18;(4)P(恰好抽到2名男性)=16.分析:(1)用50-4-25-8-3可求出m的值;(2)用360°乘以年龄在“30≤x<40”部分人数所占百分比即可得到结论;(3)分别求出每个年龄段女性人数,然后再相加即可;(4)年龄在“x<20”的4人中,男性有2人,女性有2人,分别用A1,A2表示男性,用B1,B2表示女性,然后画出树状图表示出所有等可能结果数,以及关注的事件数,然后利用概率公式进行求解即可.解:(1)m=50-4-25-8-3=10;所以答案是:10;(2)360°×2550=180°;所以答案是:180°;(3)在这50人中女性人数为:4×(1-50%)+10×(1-60%)+25×(1-60%)+8×(1-75%)+3×(1-100%)=2+4+10+2+0=18;所以答案是:18;(4)设两名男性用A1,A2表示,两名女性用B1,B2表示,根据题意:可画出树状图:或列表:2种,故P(恰好抽到2名男性)=212=16.小提示:此题考查了列表法或树状图法求概率以及频数分布表.用到的知识点为:概率=所求情况数与总情况数之比.18、从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).答案:(1)13(2)12分析:(1)利用例举法例举所有的等可能的情况数,再利用概率公式进行计算即可;(2)先列表得到所有的等可能的情况数以及符合条件的情况数,再利用概率公式进行计算即可.(1)解:由甲一定参加比赛,再从其余3名学生中任意选取1名,共有甲、乙,甲、丙,甲、丁三种等可能,符合条件的情况数有1种,∴甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是13.(2)列表如下:所以一定有乙的概率为:612=1 2 .小提示:本题考查的是利用例举法,列表的方法求解简单随机事件的概率,概率公式的应用,掌握“例举法与列表法求解概率”是解本题的关键.。
人教版九年级数学上册第25章:概率

第二十五章 概率初步
25.1 随机事件与概率
25.1.2 概 率
学习目标
1.理解一个事件概率的意义. 2.掌握在具体情境中求一个事件的概率的方法.(重点) 3.会进行简单的概率计算及应用.(难点)
新课导入
问题1 什么是必然事件,不可能事件和随机事件? 必然事件:在一定条件下,必然会发生的事件. 不可能事件:必然不会发生的事件. 随机事件:可能会发生,也可能不发生的事件.也叫 不确定性事件.
பைடு நூலகம்
A. A B.
C.
D.
1
1
3
1
2
4
20
10
随堂即练
2.不透明袋子里有1个红球,2个白球和3个黄球,每一个球除颜 色外都相同,从中任意摸出一个球,则
1 (1)P(摸到红球)= 6 ;
1
(2)P(摸到白球)= 3 ;
1
(3)P(摸到黄球)= 2 .
随堂即练
3.已知一个口袋装有7个只有颜色不同,其他都相同的球,其中3
5
新课讲解
活动2 掷一枚骰子,向上一面的点数有6种可能,即1,2,3,4,5,6.
因为骰子形状规则、质地均匀,又是随机掷出,所以
每种点数出现的可能性大小相等.我们用 每一种点数出现的可能性大小.
1表示
6
新课讲解
★概率的定义
数值
1 5
和
1 6
刻画了试验中相应随机事件发生的可能性
大小.
一般地,对于一个随机事件A,我们把刻画其发生可 能性大小的数值,称为随机事件A发生的概率,记为 P(A).
新课讲解
解:掷一枚质地均匀的骰子时,向上一面的点数可能
是1,2,3,4,5,6,共6种.这些点数出现的可能性相等.
人教版九年级上册数学《用频率估计概率》概率初步教学说课复习课件巩固

n
n
随着试验次数的增大,频率 m 稳定在0.5的附近。
n
探究一:通过频率估计概率
活动3
m
掷图钉,观察随着抛掷次数的增加,“针尖向上”的频率 n 的变化趋势。
可能有同学会觉得老师用大量重复试验的方法得到掷一枚硬币 出现“正面向上”的概率未免也太大费周章了,而且最终还只是一 个概率的近似值!
谁都知道掷一枚硬币出现“正面向上”的概率为0.5,那么这种
探究一:通过频率估计概率
大家知道随机抛掷一枚图钉出现“针尖向上”的概率是多少 吗?
有的同学回答“针尖向上”概率为0.5,其实由于图钉不是 均匀物体,所以“针尖向上”和“针尖向下”两种事件的结果出 现的可能性不一样大。
你能想办法得到“针尖向上”的概率吗?
探究一:通过频率估计概率
类似抛掷硬币的活动,通过大量重复试验的频率估计“针尖向上”的概率。
200
250
销售人员首先从所有的柑橘中随机 300
抽取若干柑橘,进行“柑橘损坏率”统 350
400
计,并把获得的数据记录在右表中.请 450
你帮忙完成此表.
500
5.50 10.50 15.15 19.42 24.25 30.93 35.32 39.24 44.57 51.54
0.110 0.105 0.101 0.097 0.097 0.103 0.101 0.098 0.099 0.103
探究二:频率估计概率在生活实际问题中的应用
例2:小颖和小红两位同学在学习“概率”时,做投掷骰子(质地 均匀的正方体)试验,她们共做了60次试验,试验的结果如下表:
朝上的点数 1 出现的次数 7
23 98
456 11 15 10
(1)计算“3点朝上”的频率和“5点朝上”的频率; (2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十五章 概率初步
25.1 随机事件与概率
1.随机试验与样本空间
具有下列三个特性的试验称为随机试验:
(1) 试验可以在相同的条件下重复地进行;
(2) 每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果;
(3) 每次试验前不能确定哪一个结果会出现.
试验的所有可能结果所组成的集合为样本空间,用Ω表示,其中的每一个结果用e 表示,e 称为样本空间中的样本点,记作{}e Ω=.
2.随机事件
在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某 种规律性的事情称为随机事件(简称事件).通常把必然事件(记作Ω)与不可能事件(记作φ) 看作特殊的随机事件.
3.频率与概率的定义
(1) 频率的定义
设随机事件A 在n 次重复试验中发生了A n 次,则比值A n /n 称为随机事件A 发生的频率,记作()n f A ,即 ()A
n n f A n =.
(2) 概率的统计定义
在进行大量重复试验中,随机事件A 发生的频率具有稳定性,即当试验次数n 很大时,频率()n f A 在一个稳定的值p (0<p <1)附近摆动,规定事件A 发生的频率的稳定值p 为概率,即()P A p =.
(3) 古典概率的定义
具有下列两个特征的随机试验的数学模型称为古典概型:
(i) 试验的样本空间Ω是个有限集,不妨记作
12{,,,}n e e e Ω=; (ii) 在每次试验中,每个样本点i e (1,2,,i n =)出现的概率相同,即
12({})({})({})n P e P e P e ===.
在古典概型中,规定事件A 的概率为
()A n A P A n ==Ω中所含样本点的个数中所含样本点的个数.
(4) 几何概率的定义
如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为
()A P A =的长度(或面积、体积)
样本空间的的长度(或面积、体积)·
25.2 用列举法求概率
1、当一次试验中,可能出现的结果是有限个,并且各种结果发生的可能性相等时,可以用被关注的结果在全部试验结果中所占的比分析出事件中该结果发生的概率,此时可采用列举法.
2、列举法就是把要数的对象一一列举出来分析求解的方法.但有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况,尽可能减少列举的问题可能解的数目.
3、利用列表法或树形图法求概率的关键是:①注意各种情况出现的可能性务必相同;②其中某一事件发生的概率各种情况出现的次数
某一事件发生的次数=;③在考查各种情况出现的次数和某一事件发生的次数时不能重复也不能遗漏;
4、用列表法或树形图法求得的概率是理论概率,而实验估计值是频率,它通常受到实验次数的影响而产生波动,因此两者不一定一致,实验次数较多时,频率稳定于概率,但并不完全等于概率。
25.3 用频率估计概率
在做大量重复试验时,随着试验次数的增加,一个随机事件出现的频率应该稳定于该事件发生的概率。
事件发生的频率与概率既有区别又有联系:事件发生的频率不一定相同,是个变数,而事件发生的概率是个常数;但它们之间又有密切的联系,随着试验次数的增加,频率越来越稳定于概率。
在具体操作过程中,大家往往发现:虽然多次试验结果的频率逐渐稳定于概率,但可能无论做多少次试验,两者之间存在着一定的偏差。
应该注意:这种偏差的存在是经常的,并且是正常的。
另外,由于受到某些因素的影响,通过试验得到的估计结果往往不太理想,甚至有可能出现极端情况,此时我们应正确地看待这样的结果并尝试着对结果进行合理的解释。
对试验结果的频率与理论概率的偏差的理解也是形成随机观念的一个重要环节。
在实际应用中,当试验次数越大时,出现极端情况的可能性就越小。
因此,我们常常通过做大量重复试验来获得事件发生的频率,并用它作为概率的估计值。
试验次数越多,得到的估计结果就越可靠。
作者留言:
非常感谢!您浏览到此文档。
为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!。