第7章 频率调制与解调
(高频电子线路)第七章频率调制与解调

02
频率调制
定义与原理
定义
频率调制是一种使载波信号的频率随 调制信号线性变化的过程。
原理
通过改变振荡器的反馈电容或电感, 使其等效谐振频率随调制信号变化, 从而得到调频信号。
调频信号的特性
线性关系
调频信号的频率与调制信号成线性关系, 即f(t)=f0+m(t),其中f(t)是瞬时频率, f0是载波频率,m(t)是调制信号。
介绍了多种调频解调的方法,包括相 干解调和非相干解调,并比较了它们
的优缺点和应用场景。
调频信号的特性分析
详细分析了调频信号的频率、幅度和 相位特性,以及这些特性如何影响信 号的传播和接收。
频率调制与解调的应用
讨论了频率调制与解调在通信、雷达、 电子战等领域的应用,并给出了具体 的应用实例。
未来研究方向与挑战
带宽增加
调频指数
调频指数是调频信号的最大瞬时频率与 载波频率之差与调制信号幅度之比的绝 对值,表示调频信号的频率变化范围。
调频信号的带宽随着调制信号的增加 而增加,因此具有较好的抗干扰性能。
调频电路实现
01
02
03
直接调频电路
通过改变振荡器元件的物 理参数实现调频,具有电 路简单、调频范围较窄的 优点。
调频系统集成化 与小型化研究
随着电子技术的进步,未来 的研究将更加注重调频系统 的集成化和小型化。这涉及 到系统架构的设计、电路的 优化以及新型材料的应用等 多个方面。
调频技术的跨领 域应用探索
除了传统的通信和雷达领域 ,频率调制与解调技术还有 望在物联网、无人驾驶、生 物医疗等领域发挥重要作用 。未来的研究将探索这些新 的应用场景,并寻求技术与 具体领域的结合点。
高频电子线路最新版课后习题解答第七章——角度调制与解调答案

第七章 思考题与习题7.1 什么是角度调制?解:用调制信号控制高频载波的频率(相位),使其随调制信号的变化规律线性变化的过程即为角度调制。
7.2 调频波和调相波有哪些共同点和不同点,它们有何联系?解:调频波和调相波的共同点调频波瞬时频率和调相波瞬时相位都随调制信号线性变化,体现在m f MF ∆=;调频波和调相波的不同点在:调频波m f m f k V Ω∆=与调制信号频率F 无关,但f m f k V M Ω=Ω与调制信号频率F 成反比;调相波p p m M k V Ω=与调制信号频率F 无关,但m f m f k V Ω∆=Ω与调制信号频率F 成正比;它们的联系在于()()d t t dtϕω=,从而具有m f MF ∆=关系成立。
7.3 调角波和调幅波的主要区别是什么?解:调角波是载波信号的频率(相位)随调制信号的变化规律线性变化,振幅不变,为等福波;调幅波是载波信号的振幅随调制信号的变化规律线性变化,频率不变,即高频信号的变化规律恒定。
7.4 调频波的频谱宽度在理论上是无限宽,在传送和放大调频波时,工程上如何确定设备的频谱宽度? 解:工程上确定设备的频谱宽度是依据2m BW f =∆确定7.5为什么调幅波调制度 M a 不能大于1,而调角波调制度可以大于1?解:调幅波调制度 M a 不能大于,大于1将产生过调制失真,包络不再反映调制信号的变化规律;调角波调制度可以大于1,因为f fcmmV M k V Ω=。
7.6 有一余弦电压信号00()cos[]m t V t υωθ=+。
其中0ω和0θ均为常数,求其瞬时角频率和瞬时相位解: 瞬时相位 00()t t θωθ=+ 瞬时角频率0()()/t d t dt ωθω==7.7 有一已调波电压1()cos()m c t V A t t υωω=+,试求它的()t ϕ∆、()t ω∆的表达式。
如果它是调频波或调相波,它们相应的调制电压各为什么?解:()t ϕ∆=21A t ω,()()12d t t A t dtϕωω∆∆==若为调频波,则由于瞬时频率()t ω∆变化与调制信号成正比,即()t ω∆=()f k u t Ω=12A t ω,所以调制电压()u t Ω=1fk 12A t ω 若为调相波,则由于瞬时相位变化()t ϕ∆与调制信号成正比,即 ()t ϕ∆=p k u Ω(t )所以调制电压()u t Ω=1pk 21A t ω 由此题可见,一个角度调制波可以是调频波也可以是调相波,关键是看已调波中瞬时相位的表达式与调制信号:与调制信号成正比为调相波,与调制信号的积分成正比(即瞬时频率变化与调制信号成正比)为调频波。
实验三频率调制与解调

实验三频率调制与解调一、实验目的1、理解频率调制的定义及调频波的实质;2、了解如何用电压控制振荡器(VCO)产生调频信号;3、了解两种调频波解调的方法,即用锁相环路PLL (Phase lock loop)来鉴频和用脉冲计数式鉴频。
二、实验原理调频信号的时域表达式为:s FM(t)=Acos[ωc t+K f∫m(t)dt]式中,K f为频偏常数(调制常数),表示调频器的调制灵敏度,单位为rad/(V·s)。
调频信号的最大频率偏移:ΔωFM=K f∣m(t)∣max调频信号的最大相位偏移(又称调频指数):βFM=ΔθFM= K f∣∫m(t) dt∣max直接产生调频信号的方法之一是设计一个振荡器,使它的振荡频率随输入电压而变。
当输入电压为0时(或没有输入信号时),振荡器产生一频率为f c的正弦波,可看着载波信号。
当输入基带信号的电压变化时,该振荡频率作相应变化。
称这样的振荡器为电压控制振荡器(V oltage Controlled Oscillator)。
用VCO产生FM信号的原理如图3-1(a)所示。
图3-1(b)显示当输入信号为正弦波的FM信号波形。
(a) (b)图3-1 用VCO产生FM信号的原理及波形图FM信号的解调有很多种方法,在这个实验中我们将使用过零检测法,其原理如图3-2所示。
FM信号经限幅产生矩形波序列,触发脉冲信号发生器,产生与频率变化相对应的脉冲序列。
这个序列代表了调频波的过零点,也就包含了基带信号的信息,经低通滤波后可还原基带信号。
图3-2 过零检测器图3-3所示为一加到过零检测器输入端的FM信号,和对应的脉冲序列产生器的输出波形。
图3-3 FM波形及对应脉冲序列三、实验设备1、主机TIMS-301F2、TIMS基本插入模块(1)TIMS-148音频振荡器(Audio Oscillator)(2)TIMS-155双脉冲信号产生(Twin Pulse Generator)(3)TIMS-156共享模块(Utilities)(4)TIMS-157电压控制振荡器(VCO)3、计算机4、Pico虚拟仪器四、实验步骤1、将VCO的频率选择置于“L0”状态,此时VCO的输出频率为800Hz ~17kHz。
频率调制与解调

通过连续发射载波信号并调制频率,实现目标的测距和定位。
雷达测距与定位的优点
高精度、远距离、实时性强。
05 频率调制与解调的优缺点
优点
抗干扰能力强
频率调制技术通过改变信号的频率来传输信息,能够有效抵抗各种 干扰,如噪声和多径干扰,从而提高信号的传输质量和可靠性。
频带利用率高
频率调制技术可以在有限的频带内传输更多的信息,提高了频谱利 用率。
卫星通信
1 2
卫星电视信号传输
通过将视频和音频信号调制到高频载波上,实现 卫星电视信号的传输。
卫星电话通信
利用频率调制技术,实现远距离的语音通信。
3
卫星导航定位
通过频率调制技术,实现高精度的定位和导航服 务。
雷达测距与定位
脉冲雷达
利用频率调制技术,发射脉冲信号并接收反射回来的信号,通过 测量信号往返时间来计算目标距离。
动态频谱管理
利用智能化的动态频谱管 理技术,实现频谱资源的 灵活分配和高效利用。
新技术的应用与展望
人工智能与机器学习
利用人工智能和机器学习技术对调频信号进行智能分析和优化, 提高信号处理效率和可靠性。
物联网与5G通信
结合物联网和5G通信技术,实现大规模、高密度、低延迟的调 频信号传输和处理。
软件定义无线电
01
03
调频信号的解调方法有多种,包括相干解调、非相干 解调等。相干解调需要使用到载波信号的相位信息,
而非相干解调则不需要。
04
频率调制的基本原理是将输入信号控制载波的频率变 化,从而实现信息的传输。解调则是通过检测载波的 频率变化来还原出原始信息。
对实际应用的指导意义
01
02
03
频率调制与解调实验报告

频率调制与解调实验报告1.熟悉LM566单片集成电路的组成和应用。
2.掌握用LM566单片集成电路实现频率调制的原理和方法。
3.了解调频方波、调频三角波的基本概念。
4.掌握用LM565单片集成电路实现频率解调的原理,并熟悉其方法。
5.了解正弦波调制的调频方波的解调方法。
6.了解方波调制的调频方波的解调方法。
二、实验准备1.做本实验时应具备的知识点:• LM566单片集成压控振荡器• LM566组成的频率调制器工作原理• LM565单片集成锁相环• LM565组成的频率解调器工作原理2.做本实验时所用到的仪器:•万用表•双踪示波器• AS1637函数信号发生器•低频函数发生器(用作调制信号源)•实验板5(集成电路组成的频率调制器单元)三、实验内容1.定时元件RT 、CT对LM566集成电路调频器工作的影响。
2.输入调制信号为直流时的调频方波、调频三角波观测。
3.输入调制信号为正弦波时的调频方波、调频三角波观测4.输入调制信号为方波时的调频方波、调频三角波观测。
5.无输入信号时(自激振荡产生)的输出方波观测。
6.正弦波调制的调频方波的解调。
7.方波调制的调频方波的解调。
四、实验步骤1.实验准备⑴在箱体右下方插上实验板5。
接通实验箱上电源开关,此时箱体上±12V、±5V电源指示灯点亮。
⑵把实验板5上集成电路组成的频率调制器单元右上方的电源开关(K5)拨到ON位置,就接通了 5V电源(相应指示灯亮),即可开始实验。
2.观察RT 、CT对频率的影响(RT= R3+Wl、CT=C1)⑴实验准备① K4置ON位置,从而C1连接到566的管脚⑦上;②开关K3接通,K1、K2断开,从而W2和C2连接到566的管脚⑤上;③调W2使V5=3.5V(用万用表监测开关K3下面的测试点);④将OUT1端接至AS1637函数信号发生器的INPUT COUNTER来测频率。
⑵改变W1并观察输出方波信号频率,记录当W1为最小、最大(相应地RT为最小、最大)时的输出频率,并与理论计算值进行比较,给定:R3=3kΩ,W1=1kΩ,C1=2200pF。
《高频电子线路》频率调制与解调实验报告

《高频电子线路》频率调制与解调实验报告课程名称:高频电子线路实验类型:验证型实验项目名称:频率调制与解调一、实验目的和要求通过实验,学习频率调制与解调的工作原理、电路组成和调试方法,学习用锁相环电路实现频率调制、斜率鉴频实现调频信号的解调的设计方法,利用Multisim仿真软件进行仿真分析实验。
二、实验内容和原理1、实验原理所谓调制,就是用一个信号(原信号也称调制信号)去控制另一个信号(载波信号)的某个参量,从而产生已调制信号,解调则是相反的过程,即从已调制信号中恢复出原信号。
根据所控制的信号参量的不同,调制可分为:调幅,使载波的幅度随着调制信号的大小变化而变化的调制方式。
调频,使载波的瞬时频率随着调制信号的大小而变,而幅度保持不变的调制方式。
调相,利用原始信号控制载波信号的相位。
这三种调制方式的实质都是对原始信号进行频谱搬移,将信号的频谱搬移到所需要的较高频带上,从而满足信号传输的需要。
2、实验内容(1)设计实现中心频率为100kHz的调频信号发生器。
绘出电路原理图,采用锁相调频的方式,给出仿真结果图。
(2)对产生的调频信号,采用斜率鉴器进行鉴频,设计失谐网络和包络检波器,绘出电路图,给出仿真结果图。
三、主要仪器设备计算机、Multisim仿真软件、双踪示波器、函数发生器、直流电源。
四、操作方法与实验步骤及实验数据记录和处理1、采用锁相环路实现调频信号,调频信号的中心频率为100kHz。
2、对调频信号进行解调,采用斜率鉴器,对调频信号进行解调。
将AD741输出的100kHz 的调频信号加到电容C7与地之间,设计失谐网络和包络检波器。
C21nFR65kΩR550ΩC71µF L11.2mHU2AD741CH3247651U3AD741CH3247651R131kΩR141kΩR152kΩR164kΩD21N4150D31N4150V712VV812VC81µFXSC1A BExt Trig++__+_C3160nFR810kΩR71kΩR111kΩR121kΩC4160nFC510µF C9160nF4、分析说明U2、U3、D2、D3的作用。
第7章频率调制与解调ppt课件

uPM=Ucos(ωct+mpcosΩt)
=Ucosωctcos(mpcosΩt)-Usin(mpcosΩt)sinωct
当mp≤π/12时,上式近似为
uPM≈Ucosωct-UmpcosΩtsinωct
(7―20)
第7章 频率调制与解调
f (t)
∑ AM
放大 器
+
cos ct -
(a)
f (t) 放大 器
第7章 频率调制与解调
至于PM波的频谱及带宽,其分析方法与FM相同。 调相信号带宽为
Bs 2(mP 1)F
u
积分
调相
FM
u
微分
PM 调频
(a)
(b)
图7―9 调频与调相的关系
第7章 频率调制与解调
2.调频波与调相波的比较 调频波与调相波的比较见表7―1。 在本节结束前,要强调几点: (1)角度调制是非线性调制,在单频调制时会出现 ( ωc±nΩ ) 分 量 , 在 多 频 调 制 时 还 会 出 现 交 叉 调 制 (ωc±nΩ1±kΩ2+…)分量。 (2)调频的频谱结构与mf密切相关。mf大,频带宽。 (3)与AM制相比, 调角方式的设备利用率高,因其 平均功率与最大功率一样。
(7―22) (7―23)
第7章 频率调制与解调
将式(7―23)代入式(7―21),得
Cj
(1
EQ
C0 U
cos t )
u
C0 (1 EQ )
(1
1 U cos t)
u
EQ u
CQ (1 m cos t)
(7―24)
第7章 频率调制与解调
2) 变容二极管直接调频性能分析
(1)Cj为回路总电容。图7―13为一变容二极管直 接调频电路,Cj作为回路总电容接入回路。图7-13(b) 是图7―13(a)振荡回路的简化高频电路。
幅值调制与解调和频率调制与解调电子技术

幅值调制与解调和频率调制与解调 - 电子技术由于传感器输出的电信号一般为较低的频率重量(在直流至几十千赫兹),当被测量信号比较弱时,为了实现信号的传输尤其是远距离传输,可以接受直流放大或调制与解调。
信号传输过程中简洁受到工频及其他信号的干扰,若接受直流放大器则在传输过程中必需接受有限措施抑制干扰信号的影响。
而在实际中,往往接受更有效的先调制而后沟通放大,即在被测信号上叠加一高频信号,将它从低频区推移到高频区,也可以提高电路的抗干扰力量和信号的信噪比。
对应于信号的三要素:幅值、频率和相位,依据载波的幅值、频率和相位随调制信号而变化的过程,调制可以分为调幅、调频和调相。
其波形分别称为调幅波、调频波和调相波。
一、幅值调制与解调调幅是将一个高频简谐信号(载波信号)与测试信号(调制信号)相乘,使载波信号随测试信号的变化而变化。
调幅的目的是为了便于缓变信号的放大和传送,然后再通过解调从放大的调制波中取出有用的信号。
所以调幅过程就相当于频谱“搬移”过程。
而解调的目的是为了恢复被调制的信号。
把调幅波再次与原载波信号相乘,则频域图形将再一次进行“搬移”,其结果如图5-12所示。
当用一低通滤波器滤去频率大于fm的成分时,则可以复现原信号的频谱。
与原频谱的区分在于幅值为原来的一半,这可以通过放大来补偿。
这一过程称为同步解调,同步是指解调时所乘的信号与调制时的载波信号具有相同的频率和相位。
用等式表示为:二、频率调制与解调调频比较简洁实现数字化,特殊是调频信号在传输过程中不易受到干扰,所以在测量、通信和电子技术的很多领域中得到了越来越广泛的应用。
调频是利用信号电压的幅值把握一个振荡器,振荡器输出的是等幅波,但其振荡频率偏移量和信号电压成正比。
信号电压为正值时调频波的频率上升,负值时则降低;信号电压为零时,调频波的频率就等于中心频率。
调频波的瞬时频率为:式中:f0 为载波频率;Δf 为频率偏移,与调制信号的幅值成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=ωct+ΔφmcosΩt=ωct+mpcosΩt 从而得到调相信号为
uPM(t)=UCcos(ωct+mpcosΩt) 式中Δφm = kpUΩ=mp为最大相偏,mp称为调相指数, kp 为调相灵敏度,表示单位调制电压所引起的相位 偏移值。
调相波的瞬时角频率为
u
2 FM
(t
)
RL
由于余弦项的正交性 , 总和的方均值等于
各项方均值的总和, 故可得
PFM
1 2RL
U
2 c
J
n
2 n
(mf
)
J
2 n
(mf
)
1
n
PFM
1 2RL
U
2 c
Pc
7.1.5 调频波与调相波的比较
1.调相波
调相波是其瞬时相位以未调载波相位φc为 中心按调制信号规律变化的等幅高频振荡。如 uΩ(t)=UΩcosΩt, 并令φ0=0, 则其瞬时相位为
若被控制的是张弛振荡器,因张弛振荡器的 振荡频率取决于充放电的速度,故可用调制信号 去控制电容的充放电电流,从而控制张弛振荡器 的重复频率。对张弛振荡器进行调频,产生的是 非正弦波调频信号。
恒流源 发生器
Jn(mf)= -J-n(mf),
n为奇数
因而, 调频波的级数展开式为
uFM (t) UC Re[
J n (m f )e j(ctnt) ]
n
UC Jn (m f ) cos(c n)t
n
2.调频波的频谱结构和特点 uFM(t)=UC[J0(mf)cosωct+J1(mf)cos(ωc+Ω)t
调相波也为等幅疏密波,如不知原调制信号,则在 单音频调制时无法从波形上分辨是FM波或PM波。
PM波的带宽为 Bs=2(mp+1)F
u
积分
调相
FM u
微分
PM 调频
(a)
(b)
图7―9 调频与调相的关系
应注意以下几点:
(1)角度调制是非线性调制, 在单频调制时 会出现(ωc±nΩ)分量, 在多频调制时还会出现 交叉调制(ωc±nΩ1±kΩ2+…)分量。
7.2.2 调频方法
1.直接调频法
用调制电压直接控制振荡器的振荡频率, 使振荡频率f(t)按调制电压的规律变化。若被控 制的是LC振荡器, 则只需控制振荡回路的某个 元件(L或C), 使其参数随调制电压变化, 就可达 到直接调频的目的。
在直接调频法中,振荡器与调制器合二为 一,其优点是在实现线性调频的要求下,可获 得较大的频偏;缺点是频率稳定度差,在许多 场合须对载频采取稳频措施或对晶体振荡器实 施直接调频。
将它展开为傅氏级数 , 其基波角频率为Ω, 即
e jmf sin t
J n (m f )e jnt
n
式中Jn(mf)是宗数为mf的n阶第一类贝塞尔
函数, 它可以用无穷级数进行计算:
J n
(m f
)
m0
(1)m ( m f )n2m 2
m!(n m)!
Jn(mf)=J-n(mf),
n为偶数
第7章 频率调制与解调
角度调制包括频率调制和相位调制。
调频(FM):高频振荡信号的频率按调制信号的 规律变化(瞬时频率变化的大小与调制信号成线性关 系),而振幅保持恒定;调频信号的解调称为鉴频或频 率检波。
调相(PM):相位按调制信号的规律变化,振幅 保持不变;调相信号的解调称为鉴相或相位检波。
角度调制属于频谱的非线性变换,即已调信号的频 谱结构不再保持原调制信号频谱的内部结构,且调制后 的信号带宽比原调制信号带宽大得多。
t
(t) ( )d 0
0
φ0为信号的初相位。
为了分析方便, 设φ0=0
(t)
t
( )d
0
ct
m
sin
t
ct
mf
sin
t
c
(t)
式中, m
mf
为调频指数。FM波表示式为
uFM (t) U c cos(ct m f sin t) Re[U ce jct e jmf ] sint
Δωm 是相对载频的最大角频偏(峰值角频偏) Δωm=kfUΩ,kf表示单位调制电压产生的角频偏值,称 为调制灵敏度(由调制电路决定)。
(2)调频的频谱结构与mf密切相关。mf大, 频带宽。
(3)与AM制相比, 角调方式的设备利用率高, 因其平均功率与最大功率一样。
表7―1 调频波与调相波的比较表
7.2 调频器与调频方法
7.2.1 调频器 (1)调制特性线性要好。 (2)调制灵敏度要高。 (3)载波性能要好。
图7―10 调频特性曲线
7.1 调频信号分析
7.1.1 调频信号的参数与波形
设调制信号为单一频率信号uΩ(t)=UΩcosΩt , 未调载波电压为uC=UCcosωct , 则调频信号的瞬时 角频率为
(t) c (t) c k f u (t) c m cos t
kf为比例常数。调频信号的瞬时相位φ(t)是瞬时角频 率ω(t)对时间的积分, 即
7.1.3 调频波的信号带宽 对于一般情况,信号的频带宽度应包括幅
度大于未调载波10%以上的边频分量 , 即 |Jn(mf)| ≥0.1
带宽为 Bs=2(mf+1)F=2(Δfm+F)
此式即为卡森(Carson)公式。
7.1.4 调频波的功率
调频信号uFM(t)在电阻RL上消耗的平均功率为
PFM
-J1(mf)cos(ωc-Ω)t+J2(mf)cos(ωc+2Ω)t
+J2(mf)cos(ωc-2Ω)t+J3(mf)cos(ωc+3Ω)t -J3(mf)cos(ωc-3Ω)t+…]
由此可见,单一频率调频波是由许多频率分量组 成,故为非线性调制。频谱成分为ωc及ωc±nΩ, 边频对称分布在载频两边,其幅度取决于调制指 数mf。
0
u 0
(t) c
(a)
(b) m
0 (c)
IFM(t) 0
(d) (t)
t t
t t c
4 2
0 Tc 2Tc
mf (e)
(t) t
图7―1 调频波波形
图7―2 调频波Δfm、mf与F的关系
7.1.2 调频波的频谱
1.调频波的展开式
e jmf sint 是周期为2π/Ω的周期性时间函数 , 可以
(t)
d dt
(t)
c
m p sin
t
c
m
sin
t
mp
fm
fm
mp
0
F
图7―8 调相波Δfm、mp与F的关系
ic 0
u 0
(t)
0
(t)
0
(t) c
0 iPM (t)
0
P M(t)
(a ) (b ) (c) (d ) (e) (f )
ห้องสมุดไป่ตู้t t t t
t t
c
m
0
t
(g )
图7―7 调相波波形