射频同轴连接器特性阻抗的计算

合集下载

射频同轴连接器技术简介

射频同轴连接器技术简介
3、插合特性
插合特性主要是通过机械方法检查弹性插孔的 弹性,其性能优劣与接触电阻和连接器耐久性有直 接联系。
4、中心接触件固定性 无论哪种连接器,其中心接触件都要同电缆芯线、
微带或其它导体连接。连接器使用时中心接触件将受 到轴向推拉力和力矩的作用,如果中心接触件固定不 好,将导致尾部连接点受力过大而松脱或断裂。
IEC标准 • IEC标准是指导性标准,不是强制性标准,
因此很少被直接引用;值得一提的是德 国在某些专用新型连接器方面也有一些 优势,例如:DIN47223 7/16(L29) 系 列、DIN47297 SAA系列 DIN41626、 DSA系列,这些系列产品在通信领域应用 较广泛,德国的标准和产品已得到全世 界认可,但美国尚无这些标准出现。
• 九十年代出现表现贴装射频同轴连接器,并大 量用一于手机产品中。
我国射频同轴连接器的发展
• 我国从五十年代开始由整机厂研制RF连接器; • 六十年代组建专业工厂,开始了专业化生产; • 一九七二年国家组织集中设计,使国产的RF连
接器是自成体系,只能在国内使用,产品标准
水平低,且不能与国际通用产品对接互换; • 八十年代起开始采用国际标准,根据IEC169和
这项试验主要模拟沿海工作环境条件下, 连接器抗锈蚀能力,实际主要是检验镀层质量。
( 四 ) 材料方面 1、弹性材料
按GJB要求,除非另有规定,中心接触件的 弹性零件应采用铍青铜制成。 2、绝缘材料
一般产品选用聚四氟乙烯(TFE),精密型连 接器采用交链聚苯乙烯,气密封连接器除外。 3、壳体材料
按美军标规定RF连接器壳体可用黄铜、磷铜、 铝、无磁易切不锈钢和铍青铜五种材料。这里要 特别注意在军标中规定连接器壳体材料的导磁率 要小于2.0, 这就是我们不能采用一般钢材作过 连接器壳体的原因。

射频同轴电缆阻抗及其测试方法研究应用

射频同轴电缆阻抗及其测试方法研究应用

当接上 电缆 时 ,反射 系数与电缆输入阻抗的关系式为 :
r=
Z + Z0
或 z =Zc )
”1一 厂


电缆输 入阻抗
反射系数为矢量 ,包含幅度和相位信息。分 别反映反射 信 号与入射信号 的幅度 比值和相位 差。反射 系数可 以通过 网
31 3谐 振 频 率 法 在 GBT 1 7 7 1 2 0 / 3 .— 0 0标 准 中特 性 阻 抗 : 7

络 分析仪 的参数 S 1 ¥ 2获得 。 1 或 2
采 用 网 络 分 析 仪 Smt R i 式 ) 试 功 能 ,可 以得 i h( +X模 测 到如下图形 :
式 中:



试 样 总 电 容 ,PF ( 用 电容 表 或 电 容 电桥 测 试 ) 采
△f 0 MH 频率下试样相位 变化 3 0度所 对应 的频率 :2 0 z 6 变化 利用谐振 频率测试 时 ,需要 用电容仪测 出试样 总电容 ,
Zc =
223各种 方法 主要 侧 重 点
212局部 特性阻抗 :电缆沿线的各点特性 阻抗 。又称 时域 特性 阻抗 。 213平均特性阻抗 :定义为特性阻抗在高频 时的渐进 值。 平均特性 阻抗是沿线的所有局部特性阻抗的算术平均值。
214 输 入 阻抗 ( , ,定 义 为 :始 端 电压 与 始 端 电 流 .. Z )
关 键 词 :特性阻抗 ;平均特性 阻抗 ;输入 阻抗 ;传输法 ;反射 法 ;时域法 。 Doi 0.9 9 j s n.6 3 51 7.01 . 30 3 : 3 6 /. s 1 7 — 3 2 0 0 .0 1 i
1、 引 言

射频同轴连接器设计和计算

射频同轴连接器设计和计算

毫米波同轴连接器的结构与特性刘洪扬【摘要】随着毫米波技术的发展与应用,电子设备不断向小型化发展,迫切需要研制毫米波同轴连接器已势在必行。

本文对国外自70年代中期发展的3.5mm连接器直到90年代初发展到1.0mm连接器的产品结构、设计要点和产品性能作了比较详细的论述,并指出了在我国发展毫米波同轴连接器今后研究工作的重点。

【关键词】毫米波连接器结构性能一、前言同轴线和同轴连接器是应用较早的一种元件。

早期认为它的应用范围适合分米直到10厘米波段(即300MHz~3GHz),当波长再短时会出现传输功率容量小,衰减大,制造困难等一系列的缺点。

因此,早期在厘米波段中同轴线几乎完全被波导所代替。

由于技术上的困难,同轴系统被认为是不能应用到毫米波系统上。

这主要还是同轴电缆插入损耗大,当工作频率升高以后有高次杂模出现,使其无法传播电磁信号。

另一方面在一对同轴连接器接头处也会产生较强的电磁波辐射,会造成很大的电磁干扰。

正因为这些原因,就使得同轴线及其连接器无法广泛应用到毫米波频段。

很长一个时期内毫米波主要靠波导来传输。

但是波导频带较窄,甚至在某些情况下,在所给定的频带内,在其边缘还会出现重叠的现象。

由于同轴系统能够传输从直流到超高频频谱的电磁波信号,并且同轴器件具有体积小、重量轻、使用同轴器件组装的系统具有不受物理位置限制等一系列优点,因此又一直吸引着各国的同轴器件专家们去克服同轴系统存在的这些固有的困难。

自第二次世界大战结束到90年代初,同轴连接器的性能没有重要的改进。

SMA是当时使用频率最高的一种小型同轴连接器,工作频率到22GHz、60~70年代重点是发展精密同轴连接器,如14、7、3.5(mm)精密连接器。

精密同轴连接器的研制成功是同轴连接器技术发展史上的一项重大成就。

它使同轴线电压驻波比的测量精度由百分之几提高到千分之几。

这对毫米波连接器技术的发展起了很大的影响。

随着各种新型微波器件的出现,很多电子系统的传输功率不再像电子管时代那样高,再加上精密测量技术的发展和精密机械加工技术的进步,近十几年来,毫米波同轴连接器技术有了突飞猛进的发展。

同轴射频电缆阻抗计算

同轴射频电缆阻抗计算

同轴射频电缆阻抗计算射频同轴电缆是一种广泛应用于通信、雷达、导航等领域的传输线。

它由内导体、绝缘层、外导体和护套组成,具有低损耗、高带宽、抗干扰能力强等优点。

在射频系统中,阻抗匹配是非常重要的一个环节,因为它直接影响到信号的传输质量和系统的性能。

因此,对射频同轴电缆的阻抗计算具有重要意义。

一、射频同轴电缆的基本参数1. 内导体:射频同轴电缆的内导体通常采用铜或铝制成,其截面积和长度会影响电缆的阻抗。

2. 绝缘层:绝缘层的主要作用是防止内外导体之间的短路,同时保证射频信号的传输。

绝缘层的材料和厚度也会影响电缆的阻抗。

3. 外导体:外导体通常采用铜管或铝管制成,其直径和长度会影响电缆的阻抗。

4. 护套:护套的主要作用是保护电缆,防止外部环境对电缆的影响。

护套的材料和厚度也会影响电缆的阻抗。

二、射频同轴电缆的阻抗计算公式射频同轴电缆的阻抗计算公式为:Z = R + jX,其中Z表示阻抗,R表示电阻,X表示电抗,j表示虚数单位。

1. 电阻R的计算:电阻R主要由内导体的电阻决定,其计算公式为:R = ρL/A,其中ρ表示导体材料的电阻率,L表示内导体的长度,A表示内导体的截面积。

2. 电抗X的计算:电抗X主要由绝缘层的电容和外导体的电感决定,其计算公式为:X = 2πfL/D,其中f表示射频信号的频率,L表示外导体的长度,D表示外导体的直径。

三、射频同轴电缆阻抗计算实例假设我们要设计一根射频同轴电缆,要求其工作频率为10GHz,内导体采用铜制,截面积为1mm²,长度为1m;绝缘层采用聚乙烯材料,厚度为0.05mm;外导体采用铜管,直径为0.5mm,长度为1m;护套采用聚氨酯材料。

根据上述参数,我们可以计算出射频同轴电缆的阻抗。

1. 计算内导体的电阻:首先我们需要知道铜的电阻率ρ约为1.68×10^-8Ω·m。

代入公式R = ρL/A,得到R = 1.68×10^-8 ×1000/1 = 1.68×10^-7Ω。

射频同轴连接器设计理论基础

射频同轴连接器设计理论基础

学习好资料_____________________________________________射频传输线、连接元件和过渡元件简述第一节射频传输线__________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________学习好资料_______________________________________________________________________________________________射频同轴连接器的设计1970.12一、同轴传输线的特性阻抗1 同轴传输线的特性阻抗的一般公式射频同轴连接器由一段同轴传输线、连接机构绝缘支架组成。

射频同轴连接器设计要点

射频同轴连接器设计要点

③与外壳做成 整 体,降 低 了 过 去 两 体 压 配 面 间 的接触电阻;
④可承受较大轴向连接压力。 (2)中 心 导 体 接 插 部 位 设 计 除了平接头以 外,所 有 射 频 同 轴 连 接 器 中 心 导 体 的 连 接 形 式 都 是 以 接 插 头 形 式 连 接 的 ,如 图 11 所 示。
SomedesignartforRFcoaxialconnectors
FengLiangping XuLan
(ShangHaiTOKO ElectronElementCo.,Ltd.201801)
Abstract:Thispaperinvestigatedreflectionproblematisolatesupportandsizeabruptofin-outconductofcoaxialconnectors,throughtheanalysisandresearchof microwavetransmittheoryand EDAdesignofHFSS.Finally,itsolvedthecompensationproblemoffourmajorreflectionsources. SomeinstancesofstructuredesignofRFcoaxialconnectorsarepresented. Keywords:RFcoaxialconnector,isolatesupports,co-planecompensative,simulateinvestigated.
(5)
K75Ω =3.04
42
国外电子测量技术
第 24 卷
图8 台阶式过渡轴向错位
为了验证上述结 论,取 出 N 型 转 SMA 型 的 台 阶 过 渡处一段图,进行 仿 真 计 算,再 对 尺 寸 修 正 完 善,得 到图9所示验证结果。

射频同轴连接器基本知识

射频同轴连接器基本知识

射频同轴连接器基本知识射频同轴连接器基本知识1、单位换算和一些常数:1.1 1GHz=103MHz =106KHz =109Hz1.2 1Kg = 9.8N1.3 1in = 25.4mm1.4 1bf.in = 0.112985N.m1.5 1标准大气压= 101325 Pa1.6 电磁波真空中的速度Co=3×108m/s1.7 空气介质的相对介电常数εr空=11.8 聚四氟乙烯的相对介电常数:国内用εr=2.05IEC常用εr=2.011.9 空气介质的导磁率μ空= 11.10 常用铅黄铜(Hpb59-1)的密度= 8.4g/cm32、请写出下面名词的定义:2.1电接触——各个导电件处于紧密地机械接触状态,对两个方向的电流能提供低电阻通路;2.2接触件——元件内的导电体,它与对应的导电件相插合提供电通路(提供电接触):2.3弹性接触件——能对插合的零件产生压力具有弹性的接触件;2.4连接器——通常装接在电缆或设备上,供传输线系统电连接可分离元件(转接器除外)2.5转接器——连接两根带有不能直接插合连接器传输线的两端口装置;2.6无极性连接器——能与本身等同的连接器相插合的连接器;2.7类型——表征连接器对的与结构和尺寸有关的具体插合面和锁紧机构的术语;2.8品种——表示同一类型的具体型式、形状以及组合。

例如:自由端连接器和固定连接器,直式连接器和直角连接器,同类型内直角和直角转换器;2.9规格——表示品种在特定细节方面的变化,如电缆入口处尺寸的变化;2.10等级——连接器在机械和电气精密度方面特别是在规定的反射系数方面的水平。

3、产品基本知识和性能:3.1请分别写出7/16型、N型和SMA型连接器的连接螺纹,并解释螺纹标识中每个字母及数学所表示的含义(对于公制螺纹请说明是粗牙普通螺纹还是细牙普通螺纹)7/16型——M29×1.5表示标称直径为29mm(1.141in),螺距为1.5mm(0.059in)的公制螺纹,该螺纹为细牙普通螺纹。

微波传输理论公式.

微波传输理论公式.

微波传输理论公式一、特性阻抗及相关公式同轴线单位长度串联阻抗 Z 1=R 1+ωL 1R 1为单位长度串联电阻 L 1为单位长度串联电感 同轴线单位长度并联导纳 Y 1=G 1+ωC 1G 1为单位长度并联电导 C 1为单位长度并联电容 ω 为工作角频率 则特性阻抗为: 1111110C j G L j R Y Z Z ωω++==(1) 对于无损耗长线 R 1→0, G 1→0 故 110C L Z =(2)均匀同轴线在理想条件下单位长度的电感和电容为:ab L ln 21πμ=(3)abC ln21πε=其中b 是外导体内径,a 是内导体外径。

μ为介质的导磁系数,ε为介电系数。

将(3)代入(2)式可得:abZ ln 210εμπ=(4a ) 令:0μμμr = 其中米亨70104-⨯=πμ0εεεr = 其中米法9361010-⨯=πεr r με和为介质的相对介电常数和导磁率。

将εμ、代入式(4a )得:ab Z r r ln 600εμ= (4b )因光在真空中的速度及导磁率精确值为:米亨秒米77001056637.121042.1458,792,299--⨯=⨯=±=πμC则0ε精确值为: 854185.89503.351090==-πε法米所以我们可以得到一组精确公式:⎪⎪⎪⎭⎪⎪⎪⎬⎫Ω==⋅==)(ln 9584916.59)()()/(ln 200000)/(ln /632.5511011a brr ab r a b r PF C PH L Z m PH L m PF C εμμε (5) 在任何媒质中,εμ、和电磁波速度的关系是: με1=v (6)设真空中光速为0C ,则:米法/10854185.8112200-⨯==c με(7) Ω50同轴线内外径比可由式(4a )获得:[]302926.2250ln 01=⨯=-μμεεπr r ab所以单位长度空气线的电感、电容分别为:米法米亨11ln 2170110673442.610668363.1ln 20--⨯==⨯==a b r C L a br επεπμμ 其中 9,648,000.14,000,000.1==r r εμ(空气的相对介电常数和导磁率)对TEM 波,主模在传输线中的速度为: 111C L v =(8) 对非铁磁性介质,有0=r μ,结合(6)、(7)式可得:rc v ε0=(8a )将式(8)、(8a)代入(2)式得:1810101031c c c vc Z r r ⨯===εε (9) 由此可见,只要能算出传输线每单位长度的电容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

射频同轴连接器特性阻抗的计算
文章介绍了射频同轴连接器特性阻抗的计算方法之一,快速简便的获得阻抗值,方便采购与检验等环节。

标签:同轴连接器;射频转接器;特性阻抗;阻抗匹配
1 前言
微波技术在新世纪得到更广泛的发展,作为微波技术的重要器件射频同轴连接器显得至关重要,选择匹配的连接器可以提高系统的性能。

而作为选择连接器的重要因素,阻抗匹配显得很重要,了解和掌握阻抗的计算方法可以一定程度的保证器件选择、产品进货检验等。

2 射频同轴连接器简介
用于射频同轴馈线系统的连接器通称为射频同轴连接器。

射频同轴连接器按连接方式分类为:螺纹式连接器,卡口式连接器,推入式连接器,推入锁紧式连接器。

常用的射频同轴连接器有SMA型、SMB型、SSMB型、N型、BNC型、TNC型等。

射频同轴连接器电气性能方面包括特性阻抗、耐压、最高工作频率等因素,特性阻抗是连接器与传输系统及电缆的阻抗匹配,是选择射频同轴连接器的主要指标,阻抗不匹配会导致系统性能的很大下降。

通过计算的阻抗来选择匹配的连接器,方便采购、检验及设计。

利用射频同轴连接器的结构尺寸计算其阻抗值的方法,快速简便。

3 射频同轴连接器特性阻抗的计算
射频同轴连接器的特性阻抗主要依据其外导体的内直径和内导体的外直径以及和填充的介质共同决定的。

如图1所示
3.3 实例2
BNC 型连接器的特性阻抗:
BNC 型连接器使用于低功率,按特性阻抗分为50Ω和75Ω两种。

不同于其它类型连接器的特点是50Ω与75Ω的内导体与外导体的尺寸一样,构成特性阻抗不同的区别在是否填充介质,也就是说有一种阻抗的连接器的填充是空气。

75Ω特性阻抗的连接器没有填充介质,即空气介质(εr=1)。

50Ω特性阻抗的在
内外导体之间填充的是常见的聚四氟乙烯介质,εr大约在2.2-2.4之间。

BNC 型连接器外导体的内直径的标称值是6.5mm,内导体的外直径是2.06-2.21mm。

同样对于外导体内直径的标称值由于机加工过程所造成的±0.05mm的误差范围,这样就可以算出在有无介质条件下的BNC 型射频同轴连接器的特性阻抗。

下面是有填充介质时的特性阻抗。

75Ω(填充介质为空气,εr=1):内导体外直径为2.06mm,外导体内直径为6.45是阻抗为68.4;当两者分别是2.21mm和6.55mm时结果为65.1
50Ω(填充介质为空气,εr=2.2):内导体外直径为2.06mm,外导体内直径为6.45是阻抗为46.2;当两者分别是2.21mm和6.55mm时结果为43.9 我们再来计算一例:
3.4 计算时的注意事项
3.4.1 內导体外直径
射频同轴连接器的内导体的外直径不是指中心插针上端的直径(较细),而是下端较粗的那部分的直径。

这部分的直径与插孔部分的外直径相同,测量两者之一既可,在计算时应该采用这部分的尺寸。

3.4.2 外导体内直径
一些接插件制作厂家没有给出外导体的内直径,给出的是外导体的外直径容易产生错误,因此在计算阻抗时不能采用,可以用游标卡尺进行测量。

下面列出了目前部分类型射频同轴连接器的外导体的内直径,仅供大家来参考。

N螺纹式7mm;BNC卡口式6.5mm;TNC螺纹式6.5mm;SMA螺纹式4.13mm;SMB插入式3mm
参照标准(IEC169)
4 结束语
在射频与微波技术及光电行业飞速发展的时代,射频同轴连接器得到很大程度的提升空间,制造企业参差不齐,产品质量鲜有保障。

在其中选择好的、适合的连接器,使设计的理念得以实现需要在这纷繁的些信息中分拣。

在企业研发条件及人员配置方面的约束下,以上的测量方法提供了一种不用仪器仪表的检验方法,快速简单,易于掌握,普通的操作人员都可以进行试验及测量。

多年来国际通用的射频同轴连接器采用两套标准,一套是MIL标准,一套是IEC标准,我国制定的标准为GB11313国标和GJB681国军标,不管是军用还是商用射频同轴连接器,只要是同一系列或同一型号的界面结构和尺寸是一致的,均可以实现机械互换性,因此,这种测量方法是通用的。

相关文档
最新文档