差减杂交的基本原理
克隆技术简介

克隆技术介绍张勋学号:160820216摘要克隆技术是生命科学技术领域里非常重要的部分,随着新时代的到来,克隆技术在人类生产生活中将发挥更加重要的作用。
人们享受着克隆技术带来的巨大好处,但与此同时,克隆技术对人类的可持续发展也提出了问题和挑战。
本文是通过从实质、方法、应用价值等方面对克隆技术进行一些介绍。
一、克隆技术实质1963 年J.B.S.Haldane在题为“人类种族在未来二万年的生物可能性”的演讲上采用“克隆(Clone)”的术语。
学家把人工遗传操作动物繁殖的过程叫“克隆”,这门生物技术叫“克隆技术”,其本身的含义是无性繁殖,即由同一个祖先细胞分裂繁殖而形成的纯细胞系,该细胞系中每个细胞的基因彼此相同。
早在1938年,德国胚胎学家Speman 最早提出克隆设想。
1962年,英国剑桥大学的Gurdon进行了青蛙胚胎核移植,获得成年蛙。
在经历半个多世纪的研究后,终于在1996年的7月5日,在苏格兰罗斯林研究所中,随着用体细胞克隆出来的小羊多莉的诞生,哺乳动物克隆技术真正的来到我们面前。
克隆技术作为人类在生物科学领域取得的一项重大技术突破,反映了细胞核分化技术、细胞培养和控制技术的进步,它对于扩大良种动物群体,提高畜群的遗传素质和生产能力,拯救濒危动物等的方面而言是迄今为止最为理想手段。
克隆也可以理解为复制,就是从原型中产生出同样的复制品,它的外表及遗传基因与原型完全相同,但大多行为思想不同。
时至今日,“克隆”的含义已不仅仅是“无性繁殖”,凡是来自同一个祖先,无性繁殖出的一群个体,也叫“克隆”。
这种来自同一个祖先的无性繁殖的后代群体也叫“无性繁殖系”,简称无性系。
简单讲就是一种人工诱导的无性繁殖方式。
但克隆与无性繁殖是不同的。
克隆是指人工操作动物繁殖的过程,无性繁殖是指:不经过两性生殖细胞的结合由母体直接产生新个体的生殖方式。
植物基因的克隆技术是生命科学研究的重要组成部分,是现代生命科学技术中最核心的内容,它是随着20 世纪70 年代初DNA 体外重组技术的发明而发展起来的,其目标是识别和分离特异基因并获得基因完整序列,确定其在染色体上的位置,阐明其生化功能,并利用生物工程手段应用到生产实践中去。
基因差异表达分析方法及其在作物遗传育种中的应用

基因差异表达分析方法及其在作物遗传育种中的应用苏在兴高闰飞李强【摘要】植物基因的差异表达是细胞形态和功能多样性的根本原因,也是各种生理及病变过程的物质基础.分析基因差异表达是近30年来分子生物学研究的重点,研究方法也从最早的差减杂交、差异显示PCR和cDNA代表性差异分析等,不断地发展到基于测序的表达系列标签和转录组测序技术,其中高通量测序技术的应用,使得分子生物学进入后基因组时代,特别是转录组测序可高效率、大批量地获取差异表达基因.通过基因差异表达分析,可挖掘农作物的优异农艺性状、高品质、抗性以及杂种优势等相关基因,辅助常规育种,提高农作物的品质、产量、抗性等综合性状,并为探究其机理、机制奠定基础.【期刊名称】《江苏师范大学学报:自然科学版》【年(卷),期】2017(035)001【总页数】8页(P38-45)【关键词】基因差异表达;转录组测序;农艺性状;品质性状;抗性;杂种优势【作者】苏在兴高闰飞李强【作者单位】[1]江苏徐淮地区徐州农业科学研究所/农业部甘薯生物学与遗传育种重点实验室,江苏徐州221131;[2]中国农业科学院甘薯研究所,江苏徐州221131;[3]江苏师范大学生命科学学院,江苏徐州221116【正文语种】中文【中图分类】Q786植物基因差异表达是在转录水平上对基因的表达情况进行研究,包括2个及2个以上材料之间存在差异基因或者差异基因在相同环境条件下具有不同的表达模式,以及同一材料在不同处理下,同一基因呈现不同的表达模式2种情况.在真核生物基因组中,仅约10%~15%的基因在细胞中表达,而且在不同发育阶段、不同生理状态和不同类型的细胞中基因表达也不同[1].基因的差异性表达是细胞形态及功能多样性的根本原因,也是植物生长发育和各种生理及病变的物质基础[2].通过基因差异表达,分离新的功能基因、挖掘和鉴定差异表达基因的新功能等,对作物遗传改良具有十分重要的意义.目前,分子生物学技术逐步应用到作物遗传育种中,分子标记辅助育种、转基因育种以及分子设计育种正在成为作物遗传改良的重要手段[3].1990年代开始,基因差异表达分析方法逐渐得到发展[4-12],并在挖掘新的功能基因以及揭示基因的新功能方面表现出优势.随着研究的深入,对差异性表达基因的富集程度要求更高,从而促使基因差异表达的筛选方法不断得以丰富和改进,尤其是测序技术的发展,使得差异表达基因的获得更加便捷,数量更多,效率更高[13].本实验室也采用基因差异表达分析技术,解析徐薯18和徐781 2个甘薯品种在新陈代谢、抗逆性和碳水化合物积累等方面的机理机制,已获得一批与新陈代谢、抗逆性、物质积累等相关的功能基因.本文简要综述不同基因差异表达分析方法的特点、原理及优缺点,进一步阐述基因差异表达分析技术在作物农艺性状分析、品质性状分析、抗性分析以及杂种优势分析等方面的应用,以期对后续的研究工作有所裨益.1.1 基因差异表达分析方法1.1.1 差减杂交(subtractive hybridization,SH) 最初由Lamar等[4]于1984年报道,用于分离老鼠Y染色体的特异性探针.该方法也叫扣除杂交或减法杂交.差减杂交是对2种遗传背景大致相同而性状有差异的材料进行研究,基因组DNA或者mRNA(反转录成cDNA)经特定的核酸限制性内切酶消化后,在一定的条件下进行分子杂交,选择性地去除2部分共有基因杂交后形成的复合物,将含有目的基因的未杂交部分收集后装入载体,从而构建差减文库.佘卫炜等[14]用该方法成功地分离到6条与藏红花苷合成相关的特异性表达cDNA片段.该方法克服了示差筛选技术的局限性,灵敏度较高,也能有效检测转录丰度低的基因[15],但操作难度大,费时费力,重复性较差,并且在酶切不彻底等情况下很难得到满意的结果[16].1.1.2 mRNA差异显示逆转录PCR(differential display of reverse transcriptional PCR,DDRT-PCR) 1992年,Liang等[5]根据高等生物成熟的mRNA具有poly(A)尾巴的特性,建立了mRNA差异显示逆转录PCR.该方法利用含Oligo(dT)n的寡聚核苷酸作为锚定引物,通过逆转录酶的催化,将真核生物细胞中全部表达的mRNA逆转录为cDNA,通过PCR扩增,利用变性聚丙烯酰胺凝胶电泳将有差异的片段分开,从而筛选出差异表达基因.张弛等[17]利用该方法研究水稻77-170(Oryza Sativa var. Japoinca)及其耐盐突变体M-20在盐胁迫下基因表达的差异,克隆到13个与盐诱导相关的cDNA片段,其长度范围在200~600 bp 之间.该方法具有技术应用成熟、效率高、灵敏度高的优点,实验每一步均可检测,无需实验结束,但假阳性率高,最高达70%,所得的cDNA片段较短,很难扩增到ORF(open reading frame)内部[18-19].1.1.3 cDNA代表性差异分析(cDNA-RDA) 在Lisitsyn等[20]建立的DNA代表性差异分析(representational difference analysis,RDA)方法的基础上,1994年,Hubank等[6]建立了cDNA代表性差异分析技术.该技术对2组材料的cDNA 进行酶切消化,并为酶切片段连接特异寡聚核苷酸接头,进行PCR扩增,分别获得实验组(T)和对照组(D)的扩增子.再次酶切2组扩增子并对T组扩增子添加新接头,然后将T组扩增子与富余的D组扩增子混合,形成杂交体,用与新接头互补的特异引物对杂交体进行PCR扩增,其中T/T杂交体进行指数扩增,T/D杂交体进行线性扩增,D/D杂交体不扩增.对差异产物进行多轮PCR后,可用普通琼脂糖凝胶检测差异表达条带[21-22].Ling等[23]将该技术运用于分离大豆不同萌发期子叶中的差异表达基因,并成功克隆到CysP1和CysP2 2个编码半胱氨酸蛋白酶的新基因.1.1.4 表达系列标签(serial analysis of gene expression,SAGE) 1995年,Velculescua等[7]首先提出基因表达系列分析技术,该方法通过限制性酶切含有生物素标记的cDNA,产生能够代表其相应转录物的cDNA短标签(9~14 bp),然后随机连接并进行测序分析.单一转录体由其特异性的短标签所代替,用SAGE软件定量分析标签的丰度,代表转录体的表达水平.Song等[24]采用SAGE法分析超级杂交稻LYP9及其亲本93-11、PA64s在不同时期、不同组织部位的差异表达基因,获得12种主要的基因表达模式,其中406个基因上调表达,469个基因下调表达,这些基因可能与水稻的杂种优势有关.该方法可以将多个短标签串联测序,能够寻找低丰度的转录物,但其依赖已测序的基因序列,过短的序列标签所涵盖的信息无法被准确注释到基因组上[25-26].1.1.5 抑制差减杂交(suppression subtractive hybridization,SSH) 1996年,Diatchenko等[8]提出抑制差减杂交,也叫抑制性消减杂交,结合了抑制PCR和差减杂交技术,利用抑制性PCR,选择性地扩增目的cDNA片段,显著增加了低丰度差异表达cDNA获得的概率.Tirumalaraju等[27]应用SSH技术从抗花生根结线虫和感花生根结线虫2份材料中获得70个差异表达ESTs,并证实各种非生物、生物(含根结线虫)胁迫和植物应答此类胁迫时与水杨酸(SA)、茉莉酸(JA)及乙烯信号传导之间的关系.这些差异表达候选基因为获得抗根结线虫种质资源并培育优良抗性花生新品种提供可能.该方法简单、成熟、易操作,且效率高,筛选周期短,通常3~4 d可获得基因差异表达片段.但是SSH技术得到的cDNA是限制酶消化的cDNA,不是全长cDNA;材料之间最好是存在细微差异,小片段缺失时也不能有效检测;实验中酶切后的cDNA与接头连接的效率是该方法的关键,若连接效率低,有些差异表达的基因就会漏检[18].1.1.6 cDNA限制性片段长度多态性分析(cDNA-AFLP) 在Botstein等[28]建立的限制性片段长度多态性(restriction fragment length polymorphism,RFLP)方法的基础上,1995年,Vos等[29]结合PCR扩增提出一种新的DNA指纹技术,即扩增片段长度多态性(amplification fragment length polymorphism,AFLP).1996年,Bachem等[9]结合RT-PCR和AFLP提出cDNA-AFLP技术,用于对转录组表达情况进行分析.该技术采用2种不同的内切酶切割cDNA片段,并添加含有与引物序列互补的人工接头,进行PCR预扩增后用聚丙烯酰胺凝胶区分差异条带.Nie等[30]运用cDNA-AFLP技术从玉米亲本和杂交种的叶、根和成熟胚中分别分离到180、170和108个差异表达基因,为揭示玉米杂种优势提供了线索.cDNA-AFLP 技术具有很好的重复性,假阳性比较低,不需要预先知道基因的序列信息,能够通过扩增条带显色强度判断基因表达量的差异[31].1.1.7 基因芯片(DNA Chips)技术是指把大量核酸片段固定在载体上,组成密集的按序排列的探针群,通过与标记样品的核酸杂交,判断靶核苷酸的有无或数量多少的一项技术,主要包括芯片的制备、杂交与检测等3个步骤.常见的芯片可分为2大类:一种是原位合成,适用于寡核苷酸;另一种是直接点样,多用于大片段DNA.姜兆远等[32]将Affymetrix表达谱芯片运用于水稻与稻瘟病不同小种的互作研究,水稻与稻瘟病菌非亲和互作的基因表达谱及其亲和互作的基因表达谱之间存在较大差异,将基因芯片筛选到的差异表达基因通过GO注释,明确了差异基因的分子功能及信号通路,有利于进一步了解植物抗病机制,并可能为稻瘟病防治提供新的途径.该方法同时将大量的探针固定于支持物上,可以同时对大量序列进行检测,克服了传统的核酸印迹杂交操作复杂、自动化程度低,且检测序列数量少等缺点.但该方法所用仪器及软件价格较昂贵,探针的合成和固定比较复杂,难以检测低丰度表达的基因[33].1.1.8 半定量RT-PCR和实时荧光定量PCR 半定量逆转录多聚合酶链式反应(reverse transcription polymerase chain reaction,RT-PCR)是探究基因差异表达的有效手段之一[10].采用PCR技术同时对2组或多组材料的目的基因和内参基因(internal reference genes)进行扩增,运用琼脂糖凝胶电泳PCR扩增产物,并调节内参基因条带强度一致,便可直观地呈现出目的基因在不同组织或者不同材料中是否表达,且能对比其表达丰度[11,34].1993年,Higuchi等[35]根据PCR延伸阶段随着DNA双链的生成,含有荧光的EB(ethidium bromide)染料能嵌入DNA链内部而激发荧光,提出实时荧光定量PCR(real time quantitative RT-PCR,qRT-PCR)的概念.荧光定量PCR具有很好的特异性,重复性好,操作简单快捷,全反应过程在一个封闭的PCR管中进行,可以实时地进行监测,而且扩增结束后不需要进一步处理.Applied Biosystems、Bio-RAd等公司推出实时荧光定量PCR配套的仪器和试剂,使得该技术在研究基因表达方面逐渐成为主流手段[36]. Fu等[37]采用SSH法从3份水稻材料中获得一批抗旱相关的基因,并用半定量RT-PCR和实时荧光定量PCR对300多条特异条带进行确证,为完善水稻抗旱相关QTLs及获得候选功能基因奠定基础.1.1.9 转录组测序(RNA-Seq)技术转录组(transcriptome),广义上指特定组织或细胞在某一发育阶段或功能状态下转录出来的所有RNA的总和,主要包括信使RNA(message RNA,mRNA)、核糖体RNA(ribosome RNA,rRNA)、转运RNA(transport RNA,tRNA)和非编码RNA(non-coding RNA,ncRNA).狭义上,一般指特定组织或细胞中转录的全部mRNA[25].转录组测序就是利用高通量技术对转录组进行测序分析,并对获得的读段进行过滤、组装以及生物信息学分析.RNA-Seq需要将mRNA反转录成cDNA,并对合成的cDNA作末端修复、加poly(A)尾巴及连接测序接头,片段化为测序平台所需的长度,PCR扩增,构建测序文库,利用相应的测序平台进行序列测定.对于有参考基因组序列的物种,可根据其参考序列(reference assembly)组装,没有参考基因组序列的物种,则进行从头组装(denovo assembly)[12,38].根据组装情况,以单位长度的转录物上覆盖的读段数来衡量基因的表达水平(reads per kilo bases per million reads,RPKM).RNA-Seq 主要用于研究2个及以上样本中基因的差异表达情况,如正常条件下的棉花幼苗和盐胁迫下的棉花幼苗等[39].转录组测序技术具有较高的灵敏度,可以同时获得组织内的全部转录本;能检测出SNP等单个核苷酸的差异,具有很高的精确度;通过组装分析能得出基因家族中的不同拷贝或可变剪接.随着测序仪器的升级,RNA-Seq 费用逐渐下降,除了从测序数据中挖掘差异表达基因外,还可以挖掘SSR、SNP信息以及组装出尽可能完整的Unigenes序列,为后续的基因克隆和功能验证奠定坚实基础[40-45].1.1.10 基因编辑技术近年来,锌指核酸酶(zinc-finger nucleases,ZFNs)、类转录激活样效应核酸酶(artificial transcription activator-like effector nucleases,TALENs)和CRISPR-Cas9等[46]基因编辑技术(gene editing)逐步发展并得到广泛应用.基因编辑技术能在基因组水平上对DNA序列进行剪辑或插入,从而导致目的基因的表达受到抑制或表达产物失去相应的功能.Piffanelli等[47]发现,在与小麦亲缘关系较近的大麦中,MLO基因功能的缺失突变使其对白粉病产生广谱和持久的抗性.Wang等[48]采用TALEN和CRISPR-Cas9技术对小麦MLO基因进行编辑,已经获得具有广谱抗白粉病的小麦材料.Qi等[49]结合qRT-PCR检测NgAgo酶与不同引导序列组合作用下目标基因fabp11a的差异表达情况,表明NgAgo技术在降低基因表达水平方面表现出优异的特性.1.2 基因差异表达方法的特点比较SH、DDRT-PCR、cDNA-RDA等方法都是研究基因差异表达的有效工具(表1),其中SAGE、cDNA-AFLP等5种技术能检测出差异表达基因的表达丰度,而其他4种方法则不能;除SH外,其他基因差异表达分析方法均基于PCR技术.应用DDRT-PCR时,结合PCR扩增,可检测出低丰度的mRNA样品,而cDNA-RDA、SSH和cDNA-AFLP等需要经过2~3次PCR扩增,高度富集差异表达基因,保证有较高的特异性,减少假阳性率;SH、cDNA-RDA和SSH技术需要在2个材料之间进行杂交,故仅能检测2组mRNA的差异表达,其他方法可以同时比较多组材料;SAGE 和RNA-seq需要结合测序以及相应软件分析,才能获取差异表达片段以及各自的表达量,其他技术则通过扩增或杂交即可;DNA Chips和RT-PCR/qRT-PCR分别在设计杂交探针和扩增引物时需要预先知道基因序列信息,其他方法均不需要[8,11,28].2.1 挖掘重要农艺性状相关基因农艺性状是指农作物的株高、生育期、育性及产量等可以代表作物特点的重要因子,是作物育种重要考察指标.Firon等[41]通过分析甘薯起始膨大根(initiating storage roots,ISRs)和纤维根(fibrous roots,FRs)的转录组信息,发现至少2.5倍的表达差异短片段8 353个,采用qRT-PCR法对其中Sporamin、AGPase和GBSS1等9个基因进行检测,表明这些差异表达基因参与碳水化合物的代谢和淀粉合成,促使储藏根的形成.Tao等[43]利用Illumina paired-end(PE)转录组测序技术,结合重头组装策略对甘薯7个不同组织的转录组进行分析,为甘薯组织特异表达基因和非生物逆境基因的研究奠定基础.程立宝等[50]对莲藕进行转录组测序分析,发现86个可能与莲藕根茎膨大相关基因,得到10 个贮藏蛋白合成和5 个淀粉合成相关基因,其中Lrplp8和Lrgbss对莲藕根状茎的膨大起到重要作用.育性是有性繁殖作物重要的农艺性状.雄性不育性的发现及三系配套育种、光温不育等概念的提出及成功运用,为新品种的培育和推广带来了极大的方便[51].黄鹂等[52]利用拟南芥ATH1基因芯片与3种不同类型的白菜不育系及其共同保持系的花蕾的mRNA进行杂交,发现各不育系与保持系的花蕾中基因表达存在巨大差异,不同类型不育系之间花蕾转录组的组成特征也有差异.由于3种不育系与保持系花蕾的差异仅表现在花粉的形成和绒毡层的发育上,而其他花器官均无差别,从而推断这些差异表达的基因可能与花粉花药的发育有关.刘冬梅等[53]用陆地棉洞A 的不育株和可育株小孢子单核早期花药进行转录组测序,获得51个激素相关差异表达基因,首次分析小孢子时期激素相关基因在转录组水平上的差异,并对其中2个关键基因进行验证,为深入研究陆地棉洞A的不育机理和挖掘关键基因奠定了基础.2.2 挖掘重要品质性状相关基因随着农作物新品种的更迭以及栽培技术的革新,我国的粮食产量已达到比较理想的水平,人均收入逐步提高的同时,人们的食物消费开始转向有营养、益健康且口感佳的方向,所以对农产品的外观品质和营养品质等要求更高.外观品质是农产品商品价值的重要指标,如水稻种子灌浆不充分、胚乳中的淀粉粒等营养物质排列疏松导致垩白,影响稻米的外观品质[54].Chen等[55]采用RNA-Seq法,在垩白率及胚乳垩白度均低的籼稻品种PYZX和垩白率及胚乳垩白度均高的粳稻品种P02428中发现5 552个差异表达基因,与PYZX相比,P02428中表达量较高的基因有3 603个,较低的基因1 949个;而与2亲本的高垩白重组自交系(recombinant inbred lines,RIL)混样相比,低垩白RIL混样中有88个基因表达量较高,623个基因表达量较低,从中分析确定33个可能与垩白相关的候选差异表达基因,为后续的基因功能验证和育种应用奠定了基础.营养品质包括淀粉及可溶糖等碳水化合物、蛋白质、脂肪酸等,不同加工用途对营养成分的要求不尽相同[56].小麦、甘薯等是重要的淀粉类作物,利用基因差异表达技术分析淀粉合成相关的基因,对育种研究至关重要.小麦材料CB037A具有A 型(直径>10 μm)、B型(直径5~10 μm)和C型(直径<5 μm)3种淀粉粒,而PI330483仅有A型淀粉粒,Cao等[57]采用qRT-PCR法对这2份小麦材料的淀粉粒大小与AGPase大亚基、AGPase小亚基、SSⅠ、SSⅡa和SBEⅠ等淀粉合成相关基因的表达模式进行研究,发现SBEⅡa、SBEⅡb、WaxyD1和AGPase大亚基基因在2份材料中呈截然不同的表达模式.2.3 挖掘耐逆相关基因全球气候逐渐恶化,极端天气逐渐增多,其中干旱是非常普遍的现象,正考验着农业生产.Li等[58]利用基因芯片对玉米抗旱相关小RNA的基因差异表达进行分析,得到miR156、miR159、miR319等3个与抗旱相关的家族基因.Deng等[59]用差异表达的方法从耐旱玉米品系中分离到4个差异表达cDNA片段,并用实时荧光定量PCR分析这4个基因在干旱胁迫下的6个玉米近交系中的表达模式,证实候选基因在耐旱品系中呈上调表达,而在干旱敏感品系则相反.现代农业的投入逐渐加大,而农药、除草剂、化肥以及工业废弃物等各种形式的土地污染严重影响我国的粮食和其他经济作物的产出,植物功能基因的差异表达使其能最大限度地耐受逆境胁迫.Gao等[60]通过转录组测序技术获得紫花地丁镉处理与非镉处理条件下892个差异表达基因,且随机选取15个DEGs进行qRT-PCR 结果验证,为进一步研究其耐镉胁迫机制提供遗传学基础.印莉萍等[61]比较正常供铁和缺铁胁迫下铁高效型小麦(京-411)和铁低效型小麦(三属麦-3)的基因表达差异模式,获得ATP结合转运体(ATP binding cassette,ABC)的cDNA片段并进行Northern杂交,证明它的基因表达受缺铁胁迫的抑制.Kato等[62]利用基因芯片分析硝酸铵诱导下拟南芥和水稻中eIF6(eukaryotic translation initiation factor 6)基因的差异表达,发现该基因在这2种植物中呈现出不同的表达模式,表明eIF6基因在不同的物种中具有表达特异性.除了非生物胁迫外,病虫害等生物胁迫也给农业生产造成巨大的损失,所以挖掘生物胁迫应答基因,辅助选育抗病虫新品种,能有效地缓减农药的使用,增加农民收入和提高生产效率.Evers等[63]以抗马铃薯晚疫病品系Solanum phureja和感晚疫病双单倍体S. tuberosum subsp. tuberosum为材料,用差异显示mRNA法,获得与抗病性、胁迫应答、初级新陈代谢和次级新陈代谢相关的基因.2.4 挖掘与作物杂种优势相关的基因作物杂种优势是杂种后代在表型上优于亲本的现象,涉及作物病虫抗性、高产、高油以及高蛋白等多个方面.杂种优势在自然界比较普遍,但对其具体机理却知之甚少.近年来研究者试图运用基因差异表达技术揭示杂种优势的成因,并取得一定的进展.Zhao等[64]用棉花杂交种及其亲本进行杂种优势研究,发现其中差异表达基因有定量和定性的区别,定性差异是在亲本中高表达或低表达的基因在杂交种中显著高表达;而定量差异有4种基本模式,即在双亲中表达,但后代不表达(BPnF1);其中一个亲本表达,后代不表达(UPnF1);亲本均不表达,后代表达(UF1nP);双亲之一有表达,同时后代也表达(UPF1).在亲本及其后代整个生长期叶片中观察到的基因差异表达可能是杂种优势现象的成因.Wang等[65]通过分析12个玉米近交系及其配组的33个杂交系的基因差异表达情况,发现基因在双亲及其杂种后代中均表达的模式占大多数,故杂种优势不仅与基因表达与否有关,还与基因的表达丰度有关;在玉米雌幼穗发育初期,杂交种的基因表达与双亲的基因表达差异最大;另外,某些基因在杂种中不表达,可以促进籽粒的发育并抑制幼穗中小花发育.利用基因差异表达分析技术,能挖掘新的功能基因,揭示基因的新功能等,为探究农作物的农艺性状、品质性状以及抗逆性等方面的机理机制奠定基础.随着生命科学进入后基因组时代,通过测序及功能注释将对DNA序列、基因表达通路、蛋白质结构及其互作关系等进行初步的鉴定.高通量测序技术和生物信息学的运用,结合qRT-PCR验证提高研究的准确性,也加快了该领域的研究进程.本课题组采用转录组测序技术,对比分析甘薯徐薯18和徐781的转录组信息,在一定程度上解释2种材料的淀粉含量差异和抗性差异(数据未发表),但其具体的调控机制有待进一步研究.未来,从基因差异表达分析入手获得相关功能的候选基因,采用基因编辑技术对目标基因进行敲除或降低其表达量,可逐步实现分子设计育种的目标[66-67].*通讯作者:李强,男,研究员,博士,主要从事甘薯遗传与分子育种研究,E-mail:****************.【相关文献】[1] 吴乃虎.基因工程原理[M].2版.北京:科学出版社,1998.[2] 刘凯,曾继吾,夏瑞,等.mRNA差异显示技术及其在园艺植物上的应用(综述)[J].亚热带植物科学,2009,38(1):78.[3] 黎裕,王建康,邱丽娟,等.中国作物分子育种现状与发展前景[J].作物学报,2010,36(9):1425.[4] Lamar E E,Palmer E.Y-encoded,species-specific DNA in mice:evidence that the Y chromosome exists in two polymorphic forms in inbred strains[J].Cell,1984,37(1):171. [5] Liang P,Pardee A B.Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J].Sci,1992,257(5072):967.[6] Hubank M,Schatz D G.Identifying differences in mRNA expression by representational difference analysis of cDNA[J].Nucl Acids Res,1994,22(25):5640.[7] Velculescu V E,Zhang L,Vogelstein B,et al.Serial analysis of geneexpression[J].Sci,1995,270(5235):484.[8] Diatchenko L,Lau Y F,Campbell A P,et al.Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J].Proc Natl Acad Sci USA,1996,93(12):6025.[9] Bachem C W,van der Hoeven R S,de Bruijn S M,et al.Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP:analysis of gene expression during potato tuber development[J].Plant J,1996,9(5):745.[10] Cottrez F,Auriault C,Capron A,et al.Quantitative PCR:validation of the use of a multispecific internal control[J].Nucl Acids Res,1994,22(13):2712.[11] 金凤媚,薛俊,郏艳红,等.半定量RT-PCR技术的研究及应用[J].天津农业科学,2008,14(1):10.[12] 张春兰,秦孜娟,王桂芝,等.转录组与RNA-Seq技术[J].生物技术通报,2012,28(12):51.[13] 白根本,沈昕,王沙生.差减杂交方法的原理和应用[J].生物工程进展,1998,18(6):54.[14] 佘卫炜,郭志刚,刘瑞芝.用扣除杂交法分离藏红花苷合成相关基因的克隆[J].清华大学学报(自然科学版),2004,44(12):1592.[15] 李捷,印莉萍,刘维仲.示差扣除杂交法及其在分子生物学中的应用[J].生物技术通报,1999,15(3):9.[16] 白根本,沈昕,王沙生.胡杨盐诱导基因与盐抑制基因的差减杂交显示研究[J].林业科学,2003,39(2):168.[17] 张弛,陈受宜.利用DDRT-PCR技术分析在盐胁迫下水稻耐盐突变体中特异表达的基因[J].中国科学(B辑),1995,25(8):840.。
基因的克隆方法大全

1.2.3 差异显示PCR〔DD RT-PCR〕
最先由Liang等于1992年报道,目前已广 泛在实验室使用.
主要LY〔A〕结构,在其3`端设计象5`-
T11GA样引物,该引物可与mRNA总数的
十二分之一结合,从而使这部分基因得到
逆转录,同时结合5`端的随机引物〔20条
染色体 T-DNA
染色体 目的基因野生株构建基因组 基因苗构建基因组文 库基因苗
阳性克隆
获得阳性克隆 目的基因
基因序列分析2,4 确定为基因
转座子标签法
转座子又称转座因子或者跳跃因 子,实际上也是DNA片段,它可以在生 物的染色体组中移动,从染色体的一个 位点跳到另一个位点,或从一条染色体 跳到另一条染色体上,引起基因功能的 改变.
8
已发展的相应基因克隆方法:
差减杂交〔SH〕 抑制性差减杂交〔SSH〕 差异显示PCR〔DD RT-PCR〕 DNA代表性差异分析〔DNA RDA〕 扩增限制性片段长度多样性〔AFLP〕 cDNA微阵列
9
差减杂交〔SH〕
最早由Lamar和Palmer于1984年提 出并用于雄鼠Y染色体的DNA研究.
10-mer〕,可m以RN使A不同长度的基因得到扩
增5. `
RP
A T C G
AAAAAAAA
A C
TTTTTTTTTT
G
3`
15
mRNA
5` RP
A T C G
AAAAAAAA
A C
TTTTTTTTTT
G
3`
AATTTTTTTT
ACTTTTTTTT
AGTTTTTTTT
TATTTTTTTT
TCTTTTTTTT
41
抑制性差减杂交技术_SSH_在植物学研究中的应用

抑制性差减杂交技术( SSH) 在植物学研究中的应用
阎爱华, 王冬梅
( 河北农业大学 生命科学学院, 河北 保定 071001)
摘要 : 抑制性差减杂交是一种基于转录水平的杂交技术, 能将差异表达 基因扩增 千倍后富集, 具有 高效、灵 敏、操 作简单, 假阳性率低等特点, 已经越来越多的被应用在植物学研究领域。就该 技术的原理、特点 及其在植物 学方面的 应用研究进展作一简要介绍。
DNA 微阵列技术 DNA microarray
巨克隆技术 M egaclone
将基因片段、寡聚核苷酸、cDNA 等固定 在硅质、塑料、玻 璃或尼龙膜 上, 用不 同组 织或 来源 的 mRNA 制 成探 针, 与芯片杂 交, 根 据信 号 查找 差 异 片段 并 进行 克 隆 和分 析。 cDNA 连上不 同的标签 ( tag ) , 与 带有 antitag 的 microbeads 杂交, 固定 cDNA, 并 且每 个 microbead 上 只与 一个 c。
基因差异表达分析方法
Methods of different gene expression techniques
基本原理
The basic principles of different gene expression techniques
优点 Advantage
缺点 Disadvantage
mRNA 差异显示 PCR mRNA differential display
收稿日期: 2008- 08- 11 基金项目: 国家自然科学基金资助项目( 30671244) ; 河北省应有基础研究计 划重点基础研究 项目资助( 08965505D) ; 河北省自然科 学基金
差减杂交技术在细菌学研究中的应用

菌株中存在的基因区域。差减杂交技术( ut cv Sb ate r i h b dzt n S 就 是针 对此 目的而 出现 的 , y r i i ,H) i ao 其操 作 简便 , 价格低廉 , 在细菌学的研究方面具有强大的吸 引力 。
1 差 减杂 交的历 史 19 9 0年 ,t u 等 发 明 了一 种 称 之 为基 因组 差 S as r 减 的技术 , 首次被用于酵母 菌缺失突变体缺失基 因 的研究 。此方 法 包 含 了 S H技 术 的主 要 特 征 , 主要
生物素标记 的经机械切割 的 D vr N i r e D A杂交后 , 用 抗 生蛋 白链 菌素 包 被 的磁 珠 , 除 野 生 型及 突 变型 去 细菌共 同存在 的基 因, 而差异 基 因即可 以通 过与 A at 相应 的 引 物 通 过 P R后 被 扩 增 , 而可 经 dpo r C 从
抑制性 差 减 杂 交 ( u pes n sbrci y r S p rsi u t t eh b — o a v i
差异等一系列问题 , 一直困扰着众多细菌学方面的 研究 人员 。为 何猪 链 球 菌 2型菌 株 会 有毒 力 菌株 、
弱毒 力菌 株及 无毒力 菌株 的 区分 ?为什么 结核杆 菌 经连 续传代 后 , 毒力 会丢 失?诸 如 此类 的诸 多 问题 ,
假阳性 。最早于 19 96年被 Da hno等报道 , icek t 并于 19 年首次被 A oy t等应用于幽门螺杆菌的研 98 kpa s n 究 。 目前 Cot h公 司 已推 出 了商 业 化 的 S H 试 l e nc S
剂 盒 , Co t h P R sl tb c r lgn m u — 即 l e C — e at a e o e sb n c ec e i
抑制差减杂交技术原理及常见操作结果分析

将RsaI酶切完全的cDNA用adapter1和adapter2R两 种接头连接。通过PCR扩增检测连接效率。 PCR的引物根据RsaI位点和adapter1、adapter2R 的序列设计。这一般要求扩增的片段中不含RsaI 位点序列。在扩增后琼脂糖胶电泳检测结果中, 如果用一个基因特异性引物和一个接头引物所得 到的带亮度与两个基因特异性引物所得到的带的 亮度一致,说明连接较好;如果用一个基因特异性 引物和一个接头引物所得到的带亮度只有两个基 因特异性引物所得到的带的亮度的25%,则说明连 接效率不到25%,应检查RsaI酶切效果并重新连接。
3 抑制差减杂交技术的优缺点
3.1 与其他几种方法相比,SSH技术具有较明显的优越性: (1)通过两步消减杂交和两次抑制PCR可DDRTPCR和cDNA-RDA法中,低丰度的 mRNA一般不易被检测到,SSH方法所做的均等化和目 标片段的富集,保证了低丰度mRNA 也可被检测出。 (3)速度快,效率高。一次SSH反应可 以同时分离几十或成百个差异表 达基因。
抑制差减杂交技术原理 及常见操作结果分析
摘要
抑制差减杂交 (SuppressionSubtractiveHybridization,SSH)是一种 高效鉴定和分离克隆差异表达基因的新技术。 目前,该技术在分子生物学研究的各个领域得 到了广泛的应用作了较全面的介绍,可为研究者们 提供参考。
2.4 第一次杂交、第二次杂交和PCR扩增
将经RsaI消化的drivercDNA和分别连接有adapter1、 adapter2R的testercDNA混合进行第一次杂交。再将第一次 杂交的两个样本混合在一起,同时加入新鲜的drivercDNA, 以进一步富集差异表达序列。在两端具不同接头的差异 表达的cDNA形成新的杂交分子。
抑制性差减杂交技术及其在柑橘上的应用

21 0 2cde cP ro clo r P o u t rc sig a mi e dia f i Fam rd csP oe sn
No4 .
Ap . r
文章编号 :17 — 6 6 (0 2 4 0 0 - 3 6 1 94 2 1)0 — 0 8 0
2 C U g f o d S i n e S u h s Un v ri , C o g i g 4 0 1 , C i a . o e e o o ce c , o t we t i e s F y t h n qn 0 7 5 hn ;
3 Ct s eerhIstt,C ieeA ae yo gi l rl c ne ,C og ig 4 0 1 ,C ia . iu sac tue hn s cd m f r u ̄ a Si cs hn q 0 7 2 hn) r R ni A c e n
‘ 为通讯作者 :王 1葵 (92 3 16一 ) ,男 ,广西人 ,副研究员 ,研究方向 :果蔬采后 机理及应用 。E m i wk 13 o . — a: r@ 6. r l e cn
21 年第 4 02 期
杨 明,等 :抑制性差 减杂交技术及其在柑橘上的应用
・9 ・
的接 头 连 接 ;③ 将 上 述 加 接 头 的 e N D A分 别 与 过 量 的 Di r D A混合 ,变性后退火杂交 ;④两轮抑制 re cN v 性 P R扩增与接头相连的 T s r D A分子 ; )C C et N ee  ̄P R 产 物 克 隆 纯 化 ,构 建 差 减 文 库 并 对 文 库 进 行 筛 选 、
摘要 :抑制性差减杂交技术是 一种 高效 分离和鉴定差异表达基 因的生物学手段 。介 绍了抑制性差减杂 交技术 的基本 原理、技术方法 以及在柑橘 中的应用 。 关键词 :抑制性差减杂交 ;差 异表达基 因;柑橘
利用抑制性差减杂交技术筛选草原龙胆花器官发育特性基因

[ 文献 标 识 码 】 A
P r i ma r y S c r e e n i n g o f Ho me o t i c Ge n e s Du r i n g F l o r a l De v e l o p me n t wi t h S u p p r e s s i o n
[ Ab s t r a c t 】 Ob j e c t i v e :T o a n a l y z e t h e m o l e c u l a r m e c h a n i s m s o f l f o r a l d e v e l o p m e n t i n l i s i a n t h u s( E u s t o m a g r a n d i l f o r u m ) ,
t r a c t i v e h y b i r d i z a t i o n t e c h n o l o g y w a s a p p l i e d i n t h e s e a r c h o f f l o r a l o r g a n i d e n t i t y g e n e s d u i r n g f l o r a l d e v e l o p me n t i n l i s i a n t h u s .A s u b t r a c t i v e c DNA l i b r a y ,w r h i c h wa s e n i r c h e d f o r g e n e s r e l a t e d t o l f o we r o r g a n c h a r a c t e i r s t i c s ,w a s c o n s t r u c t —
1 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抑制差减杂交(suppression subtractive hybridization,SSH)技术是1996 年Diatchenko 等人发明的一种快速分离两种材料中差异表达基因的强有力技术,是以抑制PCR(suppression PCR)和差减杂交技术为基础,将标准化检测子cDNA 单链步骤和差减步骤合为一体的技术。
在众多差别表达基因的筛选方法中,以较为简单,假阳性低等众多的优点脱颖而出,近年来该技术在植物,动物差异表达基因的筛选中得到了最为广泛的应用,受到越来越多的重视。
运用差减杂交的方法可以用来进行两种材料中差异表达基因的分析,用来克隆缺失或突变的基因,差减杂交尤其较适合运用在一些基因组信息较为不清楚的物种上,从而分离到一些未知功能的新基因。
因此差减杂交可以为我们进一步研究差异基因或寻找新的功能基因提供基础。
它的主要原理是首先将两个真核生物mRNA样本均转化为cDNA,我们将需要检测的物种cDNA 设为“tester”,将作为对照的物种cDNA 设定为称为“driver”,通过两轮杂交,将表达没有差异的基因消减下去,差异的基因被大量富集,然后经过两轮抑致性PCR将差异的基因扩增出来。
首先将待检测的样品(Tester)和对照样品(Driver)中的总RNA 提取出来,分离出mRNA,然后将分离出的Tester和Driver中的总的mRNA合成为cDNA。
再把由mRNA 逆转录来的检测子cDNA(Tester)和驱动子cDNA(Driver)分别用同一种识别四碱基序列的限制性内切酶RsaI 消化。
一般选用Rsa I 或HaeIII 两种限制性内切酶对cDNA进行酶切,产生大小适当的末端为平头的片段。
识别四碱基酶切位点的RsaI内切酶是最为常用的内切酶,因为RsaI 酶切识别位点在基因组中相对较少,酶切后产生的片段较大。
因而既减少了基因组cDNA的复杂性,又提高了每个基因的代表性,这样可以形成适当长度平末端的cDNA片段。
然后将Tester的cDNA 平均分成两份,分别接上接头Adaptor1和Adaptor2。
Adaptor1 和Adaptor2 均为一段具有反向末端重复序列的双链DNA 片段,它由一长链(40nt)和一短链(10nt)组成,而且一端是平端的。
接头设计十分巧妙,双链的5‟端非磷酸化,以保证接头呈单一方向与cDNA 相连,都是只有长链的3‟端可以与cDNA片段连接。
接头外侧序列与第一次PCR 引物序列相同而内侧则与第二次PCR(巢式PCR)引物序列相同,这样的设计为后续PCR的筛选扩增提供了有利条件。
限制酶的酶切效率和接头的连接效率是SSH 方法成功的关键。
接下来就是两轮差减杂交,第一次消减杂交用过量Driver cDNA 样品分别加入两份连有接头的Tester cDNA 样品,热变性后退火复性,杂交后分别得到a、b、c、d 四种产物。
a是单链的Tester cDNA;b 是自身退火的Tester cDNA 双链;c 是Tester 和Driver的异源双链;d 是Driver cDNA。
该杂交方法运用了杂交二级动力学原理,即高丰度的单链cDNA 在退火时产生双链分子的速度快于低丰度的单链cDNA,而且丰度越高复性越快,因此经过第一轮差减杂交后,原来有差异的基因丰度开始趋于一致,其相对含量达到基本一致。
同时由于Tester cDNA 与Driver cDNA 序列中相同片段大都形成同源或异源双链分子,使得Tester cDNA 中差异表达基因得到第一次富集。
第二轮差减杂交在混合上述两份杂交样品的同时,加入新的变性Driver cDNA。
此次杂交只有第一次杂交后经扣除和丰度均等化的单链Tester cDNA 能与Driver cDNA 形成双链分子。
这些新的杂交体由于携带不同的接头被扩增,从而使差异表达片段得到进一步的富集。
第二次杂交进一步富集了差异表达的cDNA,并且还形成了两端分别含有不同接头的双链分子。
抑制性PCR是利用链内退火优于链间退火的特点,使非目的序列片段两端反向重复序列在退火时,产生类似发卡的互补结构而无法作为模板与引物配对,从而选择性抑制非目的基因片段的扩增。
两轮PCR 实际上是一个巢武PCR 的扩增过程,所用的两对引物分别与所加Adaptor1/2R 上的内外侧序列一致。
在PCR 扩增过程中,仅一端有接头的分子如a、c 呈线型扩增,效率很低;两端连接相同接头的分子如 b 分子在扩增过程中虽可扩增,但杂交动力学原理更倾向于“锅-柄”结构的形成,因而不能有效扩增;只有两端带有不同接头的分子如e 才能得到有效扩增。
接头单链末端的互补序列选择性地抑制了非特异性片段的扩增,因此这一过程称之为抑制性PCR。
第二轮PCR则通过一对巢式引物进一步消除了背景PCR产物,使差异表达片段再次得到特异扩增。
这样既利用了消减杂交技术的消减富集,又利用了抑制性PCR技术进行了高效率的动力学富集。
差异表达的序列经过两次抑制性PCR得以扩增,最终获得了差异表达基因文库。