(精选)线性代数期末综合测试题

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。

2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。

四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。

答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 0; 0, 0]2. 如果向量v = (3, -2),那么其对应的单位向量是什么?A. (1, -2/3)B. (3/√13, -2/√13)C. (3/√29, -2/√29)D. (3/√10, -2/√10)3. 对于矩阵A,|A|表示其行列式,那么|A| = 0表示:A. A是单位矩阵B. A是零矩阵C. A不是满秩矩阵D. A是可逆矩阵4. 矩阵的特征值是什么?A. 矩阵的对角元素B. 矩阵的迹C. 满足Av = λv的非零向量v对应的λD. 矩阵的行列式5. 下列哪个矩阵是对称矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, -1; 1, 1]D. [1, 0; 0, 1]二、填空题(每题3分,共15分)6. 如果矩阵A的秩为1,那么A的零空间的维数是_________。

7. 对于任意非零向量α和β,如果α + β和α - β都是零向量,那么向量α和β_________。

8. 一个向量空间的一组基的向量数量至少是_________。

9. 如果矩阵A是n阶方阵,且A^2 = I(单位矩阵),那么矩阵A是_________矩阵。

10. 对于实数域上的向量空间,任意两个非零向量的标量积是_________的。

三、简答题(每题10分,共20分)11. 解释什么是线性变换,并给出一个线性变换的例子。

12. 证明如果矩阵A和B是可交换的,即AB = BA,那么它们的行列式之积等于各自行列式的乘积,即|AB| = |A||B|。

四、计算题(每题15分,共30分)13. 给定矩阵A = [4, 1; 3, 2],求A的逆矩阵A^-1。

14. 设向量空间V是所有2x2实对称矩阵的集合,证明V是一个向量空间,并找出一组基。

线代期末试题及答案

线代期末试题及答案

线代期末试题及答案一、选择题(每题3分,共30分)1. 在三维向量空间中,以下向量中线性无关的是:A) (1, 0, 0)B) (0, 1, 0)C) (0, 0, 1)D) (1, 1, 1)答案:D2. 设矩阵A = [a b; c d],若行列式det(A) = 0,则以下哪个等式成立?A) ad - bc = 0B) ab - bc = 0C) ac - bd = 0D) ad - bd = 0答案:A3. 给定矩阵A = [1 2 3; 4 5 6; 7 8 9],则A的逆矩阵为:A) [-1/6 -1/3 1/6; -1/6 2/3 -1/6; 1/6 -1/3 1/6]B) [-1 -2 -3; -4 -5 -6; -7 -8 -9]C) [1/6 1/3 -1/6; 1/6 -2/3 1/6; -1/6 1/3 -1/6]D) [1 2 3; 4 5 6; 7 8 9]答案:A4. 给定矩阵A = [2 0; 0 3],B = [1 2; 3 4],则A与B的乘积为:A) [2 4; 6 8]B) [2 0; 0 3]C) [1 2; 9 12]D) [4 6; 6 12]答案:B5. 给定向量a = (1, 2, 3)和b = (4, 5, 6),则a与b的内积为:A) 32B) 22C) 14D) 6答案:C6. 若向量a = (1, 2, 3),b = (4, -2, 5),c = (3, 1, -2),则以下哪个等式成立?A) a × b = cB) b × c = aC) c × a = bD) a × c = b答案:B7. 给定矩阵A = [1 2; 3 4],则A的特征值为:A) 1, 2B) 2, 3C) 3, 4D) 4, 5答案:A8. 设向量a = (1, 2, 3),b = (4, 5, 6),c = (2, 1, 3),则向量集合{a, b, c}的维数为:A) 1B) 2C) 3D) 4答案:C9. 给定矩阵A = [1 2; 3 4],A的转置矩阵为:A) [1 3; 2 4]B) [4 3; 2 1]C) [1 2; 3 4]D) [3 4; 1 2]答案:A10. 设矩阵A = [2 1; 3 4],则A的伴随矩阵为:A) [4 -1; -3 2]B) [2 -1; 3 4]C) [-4 1; 3 -2]D) [-2 1; -3 -4]答案:A二、计算题(共70分)1. 设矩阵A = [1 2; 3 4],求A的逆矩阵。

线代期末综合考试及答案

线代期末综合考试及答案

线性代数期末综合练习(二)班级 姓名 学号一、 填空题 1、设1234555533325422221146523A =,则3132333435()()A A A A A ++-+= . 2、设1212,,,,ααββγ都是3维行向量,且行列式 112212122ααααββββγγγγ====,则12122ααββγ++= . 3、设A 是4阶矩阵,12,ξξ是齐次线性方程组0Ax =的两个线性无关的解,则A 的伴随矩阵A *= .4、方阵A 可表示成一个对称矩阵与一个反对称矩阵之和,其为 .5、设A 是n 阶可逆矩阵,若行列式1A n=-,则1A -= . 6、设矩阵0,0C A D ⎡⎤=⎢⎥⎣⎦若C 、D 可逆,则A 也可逆,且1A -= . 7、设α与β是4阶正交矩阵A 的前两列,则内积(,)αβ= . 8、设3阶矩阵A 的3个特征值为2,3,4,则行列式2A = .9、三阶矩阵122121330A ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦有一个2重特征值,其值为3, 则它的另一个特征值为 . 二、设A 是n 阶方阵,2A I =,证明矩阵的秩的关系式:()()r A I r A I n ++-=三、 计算n 阶行列式:111111111111n n n n----四、 设矩阵A 、B 满足:AB A B =+,求A B +,其中211264213A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦五、设三维向量123(1,1,1),(,1,1),(1,2,),(2,3,4)a b αααβ====,问当a 、b取何值时,(1)β可由123,,ααα线性表示,且表法不唯一. (2)β不能由123,,ααα线性表示.六、设线性方程组123123123(2)2212(5)4224(5)1x x x x x x x x x λλλλ-+-=⎧⎪+--=⎨⎪--+-=--⎩a) 问λ为何值时,方程组有唯一解,无解,有无穷多解? b) 当有无穷多解时求出其解.七、设12,αα是矩阵A 的分别属于不同特征值12λλ≠的 特征向量,证明12αα+不是A 的特征向量.八、对实对称矩阵A ,求一个正交矩阵P ,使1P AP -为一个对角矩阵.212151212A -⎛⎫⎪=-- ⎪⎪-⎝⎭线性代数期末综合练习(二)班级 姓名 学号 一、填空题1、设1234555533325422221146523A =,则3132333435()()A A A A A ++-+= 0 . 解析: 将3132333435()()A A A A A ++-+还原成行列式 即31323334351234555533()()1111102221146523A A A A A ++-+=--= 2、设1212,,,,ααββγ都是3维行向量,且行列式 112212122ααααββββγγγγ====,则12122ααββγ++= 16 . 解析:12122ααββγ++=1122αββγ++2112212121222222αααααββββββγγγγγ+=+++112212122222ααααββββγγγγ=+++ 3、设A 是4阶矩阵,12,ξξ是齐次线性方程组0Ax =的两个线性无关的解,则A 的伴随矩阵A *= 0 .解析:12,ξξ是齐次线性方程组0Ax =的两个线性无关的解,则0Ax =的基 础解系中至少含有两个解向量,则()22r A n ≤-=,所以A 中所有3阶子 式都为0。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题5分,共30分)1. 若矩阵A的秩为r(A),则下列结论正确的是()A. r(A) ≤ n,其中n是矩阵A的列数B. r(A) ≤ m,其中m是矩阵A的行数C. r(A) ≤ min(m, n)D. r(A) = max(m, n)答案:C2. 下列矩阵中,哪一个不是对称矩阵?()A. \(\begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}\)B. \(\begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}\)C. \(\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 &5 \end{pmatrix}\)D. \(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 &9 \end{pmatrix}\)答案:D3. 若向量组α1, α2, α3线性无关,则向量组()A. α1 + α2, α2 +α3, α3 + α1 线性无关B. α1 - α2, α2 - α3, α3 - α1 线性无关C. α1 + 2α2, 2α2 + 3α3, 3α3 + α1 线性无关D. α1 + α2 + α3, 2α2 + 3α3, 3α3 + α1 线性无关答案:B4. 设矩阵A是n阶可逆矩阵,则下列结论正确的是()A. A的伴随矩阵A也是可逆矩阵B. A的逆矩阵A-1也是可逆矩阵C. A的转置矩阵AT也是可逆矩阵D. A的n次幂An也是可逆矩阵答案:D5. 若行列式D = |A|的值为0,则下列结论正确的是()A. 方程组Ax = b有唯一解B. 方程组Ax = b无解C. 方程组Ax = 0有非零解D. 方程组Ax = b有无穷多解答案:C6. 若矩阵A是正交矩阵,则下列结论正确的是()A. A的行列式值为1B. A的行列式值为-1C. A的转置矩阵AT等于A的逆矩阵A-1D. A的平方等于单位矩阵E答案:CD二、填空题(每题5分,共30分)7. 若矩阵A的行列式值为3,则矩阵A的伴随矩阵A的行列式值为________。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案第一节:选择题1. 下列哪个向量不是矩阵A的特征向量?A. [2, 1, 0]B. [0, 1, 0]C. [1, 1, 1]D. [0, 0, 0]答案:D2. 线性变换T:R^n -> R^m 可逆的充分必要条件是?A. T是一个单射B. T是一个满射C. T是一个双射D. T是一个线性变换答案:C3. 设线性空间V的维数为n,下列哪个陈述是正确的?A. V中的任意n个线性无关的向量都可以作为V的基B. V中的任意n - 1个非零向量都可以扩充为V的基C. V中的任意n个非零向量都可以扩充为V的基D. V中的任意n - 1个非零向量都可以作为V的基答案:A4. 设A和B是n阶方阵,并且AB = 0,则下列哪个陈述是正确的?A. A = 0 或 B = 0B. A = 0 且 B = 0C. A ≠ 0 且 B = 0D. A = 0 且B ≠ 0答案:C第二节:计算题1. 计算矩阵乘法A = [1, 2; 3, 4]B = [5, 6; 7, 8]答案:AB = [19, 22; 43, 50]2. 计算矩阵的逆A = [1, 2; 3, 4]答案:A^(-1) = [-2, 1/2; 3/2, -1/2]3. 计算向量的内积u = [1, 2, 3]v = [4, 5, 6]答案:u ∙ v = 32第三节:证明题证明:对于任意向量x和y,成立下列关系式:(x + y) ∙ (x - y) = x ∙ x - y ∙ y证明:设x = [x1, x2, ..., xn],y = [y1, y2, ..., yn]。

左边:(x + y) ∙ (x - y) = [x1 + y1, x2 + y2, ..., xn + yn] ∙ [x1 - y1, x2 - y2, ..., xn - yn]= (x1 + y1)(x1 - y1) + (x2 + y2)(x2 - y2) + ... + (xn + yn)(xn - yn)= x1^2 - y1^2 + x2^2 - y2^2 + ... + xn^2 - yn^2= (x1^2 + x2^2 + ... + xn^2) - (y1^2 + y2^2 + ... + yn^2)= x ∙ x - y ∙ y右边,由向量的内积定义可得:x ∙ x - y ∙ y = x1^2 + x2^2 + ... + xn^2 - (y1^2 + y2^2 + ... + yn^2)综上,左边等于右边,证毕。

线性代数期末试题及答案

线性代数期末试题及答案

线性代数期末试题及答案一、选择题(每题5分,共20分)1. 设矩阵A为3阶方阵,且|A|=2,则|2A|等于:A. 4B. 8C. 16D. 32答案:C2. 若向量α=(1, 2, 3),β=(2, 1, 0),则α·β等于:A. 4B. 5C. 6D. 7答案:B3. 设A为n阶方阵,且A^2=I,则A的行列式|A|等于:A. 1B. -1C. 0D. 2答案:A4. 若矩阵A的秩为2,则矩阵A的行向量线性相关还是线性无关?A. 线性相关B. 线性无关C. 线性独立D. 不能确定答案:A二、填空题(每题5分,共20分)1. 设矩阵B为2阶方阵,且B^2=0,则称矩阵B为______。

答案:幂零矩阵2. 若矩阵A和B可交换,即AB=BA,则称矩阵A和B为______。

答案:可交换矩阵3. 设向量α=(1, 2),β=(3, 4),则向量α和β的夹角的余弦值为______。

答案:3/54. 设矩阵A为3阶方阵,且A的特征值为1, 2, 3,则矩阵A的迹为______。

答案:6三、简答题(每题10分,共30分)1. 简述矩阵的转置矩阵的定义。

答案:矩阵A的转置矩阵记为A^T,其元素满足A^T_{ij}=A_{ji},即A^T的第i行第j列的元素是A的第j行第i列的元素。

2. 什么是线性方程组的齐次解?答案:线性方程组的齐次解是指当方程组的常数项全为零时,方程组的解,通常表示为零向量。

3. 说明矩阵的相似对角化的条件。

答案:矩阵A相似对角化的条件是矩阵A有n个线性无关的特征向量,其中n是矩阵A的阶数。

四、计算题(每题15分,共30分)1. 已知矩阵A=\[\begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix}\],求矩阵A的行列式。

答案:|A| = 1*4 - 2*3 = -22. 设线性方程组为:\[\begin{matrix} x + 2y - z = 1 \\ 3x - y + 2z = 2 \\ x + y + z = 3 \end{matrix}\]求方程组的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数期末综合测试题班级: 学号: 姓名 成绩一、填空题(每小题3分,共30分)1.==3323133222121312113323133222121312112 2 22 2 22 2 2 2 a a a a a a a a a a a a a a a a a a 则,设2. 正交与时,向量当βαβα ),,1,5(),3,2,1(==--=k k3.当方程个数与未知量个数相同时,非齐次线性方程组b Ax =有唯一解的充分必要条件是⎪⎪⎭⎫⎝⎛=1 21 3 .4A 已知: , 则*A = 5.设α=(2,-1,5),β=(-1,1,1),则α+β= ,3α-2β=6.已知⎪⎪⎪⎪⎭⎫ ⎝⎛=3 0 00 4 10 0 3A ,则=--1)2(I A ( 其中I 为单位矩阵 ) 7.设三元非齐次线性方程组b Ax =中,矩阵A 的秩为2,且T T )1,2,3(,)2,2,1(21==ξξ 为b Ax =的两个解,则此非齐次方程组的全部解可表示为: 8.设A 为三阶方阵,且2=A ,则=-1)2(T A9.设)1,2,1(),3,2,0(),1,1,(321===αααk ,则当k= 时,321,,ααα线性相关10.设n m A ⨯,在齐次线性方程组0=Ax 中,若秩(A )=k , 且r ηηη,,,21Λ是它的一个基础解系,则r = ,当k = 时,此方程组只有零解二、计算、证明题(共70分)1.设⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=132231,113122214B A ,求X 使B AX = (8分)2.用基础解系表示齐次线性方程组(12分)⎪⎪⎩⎪⎪⎨⎧=+-=+-=-++002 0 24214324321x x x x x x x x x x 的全部解。

3、求向量组(12分)T T T T ]7,6,5,4[,]6,5,4,3[,]5,4,3,2[,]4,3,2,1[4321====αααα的一个极大线性无关组,并将其余向量用极大线性无关组线性表示4.设方阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与对角矩阵⎪⎪⎪⎭⎫⎝⎛-=Λ40000005y 相似,求y x 与的值(6分)5.已知向量组321,,ααα线性无关,试证向量组3132215,4,32αααααα+++亦线性无关 (6分)6. 已知⎪⎪⎪⎪⎭⎫ ⎝⎛----=3 2 4 1 2 2 3 k k A ,A 的特征值分别为1 ,1 3 21=-==λλλ。

(1)当k 为何值时,存在可逆矩阵P , 使AP P 1-为对角阵(4分) (2)求出可逆矩阵及相应的对角矩阵 (12分)7. 设321ξξξ,,为齐次线性方程组0A =x 的一个基础解系,试证133221 , ,ξ+ξξ+ξξ+ξ也是该方程组的一个基础解系。

(10分)线性代数期末综合测试题答案一、填空题(每小题3分,共30分)1.==3323133222121312113323133222121312112 2 22 2 22 2 2 2 a a a a a a a a a a a a a a a a a a 则,设 16 。

2. 正交与时,向量当βαβα 1 ),,1,5(),3,2,1(==--=k k3.当方程个数与未知量个数相同时,非齐次线性方程组b Ax =有唯一解的充分必要条件是n A r b A r n A r A ===≠)(),()(0 或或。

⎪⎪⎭⎫ ⎝⎛=1 21 3 .4A 已知: , 则*A =⎪⎪⎭⎫ ⎝⎛--3 21 1 5.设α=(2,-1,5),β=(-1,1,1),则α+β=6) 0 (1,,,3α-2β=13) 5- 8 (,,。

6.已知⎪⎪⎪⎪⎭⎫ ⎝⎛=3 0 00 4 10 0 3A ,则=--1)2(I A ⎪⎪⎪⎪⎭⎫ ⎝⎛-1 0 0 0 2/1 2/10 01 ( 其中I 为单位矩阵 )。

7.设三元非齐次线性方程组b Ax =中,矩阵A 的秩为2,且T T )1,2,3(,)2,2,1(21==ξξ为b Ax =的两个解,则此非齐次方程组的全部解可表示为:)()1,2,3()-1,0,2(为任意常数其中k k T T +。

8.设A 为三阶方阵,且2=A 则=-1)2(T A 1/169.设)1,2,1(),3,2,0(),1,1,(321===αααk ,则当k= 1/4 时,321,,ααα线性相关。

10.设n m A ⨯,在齐次线性方程组0=Ax 中,若秩(A )=k ,且r ηηη,,,21Λ是它的一个基础解系,则r = n-k ,当k = n 时,此方程组只有零解。

二、计算、证明题(共60分)1.设⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=132231,113122214B A ,求X 使B AX =(8分)解:()⎪⎪⎪⎭⎫ ⎝⎛----=132231113122214B A 初等行变换~⎪⎪⎪⎭⎫ ⎝⎛--412315210100010001⎪⎪⎪⎭⎫ ⎝⎛--==∴-4123152101B A X2.用基础解系表示齐次线性方程组(12分)⎪⎩⎪⎨⎧=+-=+-=-++0 02 024214324321x x x x x x x x x x 的全部解。

⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=2 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 2 1 0 0 1 0 0 1 0 0 4 0 2 1 1 0 1 1 2 1 2 1 3 0 2 1 1 0 1 1 2 1 1 0 1 1 2 1 1 0 1 1 2 1 A 解:全部解为:) ( 1 20 14321为任意常数其中k k x x x x ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛ 3、求向量组(12分)T T T T ]7,6,5,4[,]6,5,4,3[,]5,4,3,2[,]4,3,2,1[4321====αααα的一个极大线性无关组,并将其余向量用该极大线性无关组线性表示.解:2142132132200000000321021017654654354324321αααααααα+-=+-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⇒⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡,,且,极大无关组 4.设方阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=Λ40000005y 相似,求y x 与的值.(6分)解: 方阵A 与Λ相似,则A 与Λ的特征多项式相同,从而具有相同的特征值,所以:⎩⎨⎧-=--=⇒⎩⎨⎧-=---=⇒⎩⎨⎧-⋅⋅=-+=++84312040151)4(54511y x y x y x y x y A y x 解得:⎩⎨⎧==⇒54y x .5.已知向量组321,,ααα线性无关,试证向量组3132215,4,32αααααα+++亦线性无关(6分) 证明:设有321,,k k k 使0)4()3()2(0)5()4)32(33222113131332(2211=+++++⇒=+++++αααααααααk k k k k k k k k (此步:2分)因为321,,ααα线性无关,所以有:081 2 00 1 31 0 200012 00 1 310 2040302321322131≠=⇒⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎩⎪⎪⎨⎧=+=+=+Θk k k k k k k k k (此步:3分) ∴方程组只有零解,即0321===k k k ,从而向量组3132215,4,32αααααα+++线性无关,证毕。

(此步:1分)6. 已知⎪⎪⎪⎪⎭⎫ ⎝⎛----=3 2 4 1 2 2 3 k k A ,A 的特征值分别为1,1321=-==λλλ。

当k 为何值时,存在可逆矩阵P , 使AP P 1-为对角阵,并求出可逆矩阵及相应的对角矩阵 (16分) 解:因为121-==λλ为二重特征根,由此可知k 的取值应满足:秩123)(=-=+I A r ,此时对应方程0)(=+x I A 才能求出两个线性无关的特征向量。

(此步:2分)=+)(I A ⎪⎪⎪⎭⎫ ⎝⎛---2 2 4 02 24 k k 可见只有1)(0=+=I A r k 时,。

(此步:3分)时由:==当1,021-=λλkT T P P x x x )2,0,1(,)0,2,1(00 0 0 0 0 0 2 24 21321=-==⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-,解得: T T P P )1,0,21(,)0,1,21(21=-= 或 TP x x x )1,0,1(04 2 4 0 2 0 2 22 133213==⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=,解得: 时由:当λ所求可逆矩阵为:⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎭⎫ ⎝⎛-==-11 1 12 0 0 0 2 1 1 1),,(1321AP P P P P P ,(此步:4分) 7. 设321ξξξ,,为齐次线性方程组0A =x 的一个基础解系,试证133221 , ,ξ+ξξ+ξξ+ξ也是该方程组的一个基础解系。

(10分) 证明:因为321ξξξ,,为齐次线性方程组0A =x 的一个基础解系,所以:321ξξξ,,线性无关。

(此步2分)设有实数321,,k k k ,使0)()()(133322211=ξ+ξ+ξ+ξ+ξ+ξk k k ①(此步2分) 整理得:0)()()(332221131=ξ++ξ++ξ+k k k k k k ②因为321ξξξ,,线性无关,所以该方程组②只有零解,即:(此步2分)0110011101000322131≠⎪⎪⎪⎭⎫ ⎝⎛⇒⎪⎩⎪⎨⎧=+=+=+ k k k k k k ,所以0321===k k k ,即方程组①只有零解,133221 , ,ξ+ξξ+ξξ+ξ线性无关。

(此步4分)又Θ133221,,ξξξξξξ+++也是0=Ax 的解,∴133221 , ,ξ+ξξ+ξξ+ξ也是该方程组0A =x 的一个基础解系,证毕。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档