质谱基本原理
质谱的原理和图谱的分析

(4)快原子轰击(fast atom bombardment, FAB) 用高能量的快速Ar原子束轰击样品分子(用液体基质负载样品并涂敷在靶上,常用基质有甘油、间硝基苄醇、二乙醇胺等),使之离子化。 FAB灵敏度高,适用于对热不稳定、极性强的分子,如肽、蛋白质、金属有机物等。 样品分子常以质子化的[M+H]+离子出现 基质分子会产生干扰峰。
◎分子中含1Cl 和1Br (a1+b1) (a2+b2), M : M+2 : M+4≈3 : 4 : 1 (3a+b)(a+b)=3a2+4ab+b2
查Beynon表法
C H N O m/z M+1 M+2
从离子源出口到达检测器之前裂解并被记录的离子称亚稳离子,其动能小于离子源生成的离子,以低强度于表观质量m*(跨2~3质量单位)处记录下来,其m/z一般不为整数。 m*=m22/m1
01
在质谱中,m*可提供前体离子和子离子之间的关系。
02
离子在离子源的运动时间约106s数量级, 寿命小于 106s的离子在离子源内进一步裂解。离子从离子源到达检测器的时间约为105s数量级,离子寿命大于105s,足以到达检测器。寿命在106s到 105s的离子可产生亚稳离子。
(2)同位素离子
含有同位素的离子称为同位素离子。 与同位素离子相对应的峰称为同位素离子峰。
分子离子在电离室中进一步发生键断裂生成的离子。
经重排裂解产生的离子称为重排离子。 其结构并非原来分子的结构单元。
02
(5)母离子与子离子
任何一个离子(分子离子或碎片离子)进一步裂解生成质荷比较小的离子。 前者称为母离子,后者称为子离子。
质谱仪的基本原理和操作步骤

质谱仪的基本原理和操作步骤引言:质谱仪是一种广泛应用于化学、生物、环境等领域的分析仪器。
它通过分析样品中分子或原子的质量和结构,提供了重要的数据。
本文将介绍质谱仪的基本原理和操作步骤。
一、质谱仪的原理:1. 电离:质谱仪中,样品首先被电离成带电粒子。
最常用的电离技术是电子轰击电离,即用高能电子轰击样品分子,使其失去电子而带电。
其他常用的电离技术还包括化学电离、光解电离等。
2. 分离:电离后,带电粒子会被引入质谱仪的分离部分。
分离的原理是基于粒子在电场或磁场中的分辨率。
常见的分离技术有时间飞行法和磁扇形法。
时间飞行法基于不同离子飞行时间的差异,将粒子分离。
磁扇形法则是通过施加磁场,使得离子在磁场中的轨迹受到影响,从而实现分离。
3. 检测:分离好的粒子通过检测器进行检测和信号采集。
检测器的种类有很多,最常用的是离子倍增器和光电离器。
它们能够接受质谱仪中离子的信号,并将其转化为电信号。
4. 数据处理:检测到的离子信号经过放大和处理,最终转化为质谱图。
质谱图显示了样品中各种离子的相对丰度和质量。
通过分析质谱图,可以确定样品组分并检测有害物质。
二、质谱仪的操作步骤:1. 准备样品:在进行质谱分析之前,需要准备样品。
样品通常是溶液或气体,要求无害、纯净且浓度适中。
2. 样品引入:样品可以通过气体色谱或液相色谱等分离技术引入质谱仪。
其中,气体色谱质谱联用技术最常用。
样品分子先通过气相色谱分离,再进入质谱仪进行质谱分析。
3. 设置参数:根据所检测的样品类型和目的,需要设置质谱仪的相关参数。
这些参数包括电子能量、离子进入质谱仪的速度、电场强度等。
合理设置这些参数可以提高分析结果的准确性和灵敏度。
4. 开始质谱分析:设置好参数后,开始质谱分析。
样品中的分子将被电离,然后进入质谱仪进行分离和检测。
此时,质谱仪会产生质谱图,并通过电脑进行数据处理和分析。
5. 结果解读:得到质谱图后,需要对其进行解读。
通过比对数据库中已有的质谱图,可以确定样品中的化合物组成;通过对谱峰的相对丰度进行分析,可以定量检测样品中各组分的含量。
质谱工作原理

质谱工作原理
质谱(MS)是通过检测化合物中某种特定的元素而将化合物
中所有可能存在的原子(分子)以一定的顺序排列起来,从而对
化合物进行定性和定量分析。
质谱工作原理如下:
电离源是质谱的核心部件,它将离子从样品溶液中分离出来,再经加速和电离而得到高质量的离子束(离子源)。
常用的有分
子离子化源和化学离子化源。
分子离子化源有电喷雾质谱仪和喷雾质谱仪两种。
电喷雾质
谱的工作原理是用高压气体使样品溶液雾化,形成无数细小的液滴,在飞行时间质谱仪中被加速到一定速度后,使液滴撞击基质
中的离子发生碰撞而使样品离子与离子相碰撞而产生碎片离子。
这些碎片离子在进入质谱检测器前,会被扫描器滤除。
因此,分
子离子化源又称为滤去离子化源或滤除(filter)离子源。
这类
质谱仪以液体为工作介质。
化学离子化源是利用有机化合物分子在离子化过程中所发生
的化学反应而产生电离产物(主要是氢化物)。
这种质谱仪称为
化学电离质谱仪(CID)。
—— 1 —1 —。
简述质谱法的基本原理

简述质谱法的基本原理
质谱法是一种用于分析物质组成和结构的分析方法,其基本原理可以概括如下:
1. 样品离子化:将待分析的物质样品转化为离子态。
常见的离子化方法包括电离、化学离子化和表面离子化等。
2. 离子加速和分离:离子被加速至高能量状态,并通过一系列电场或磁场进行分离,根据离子质荷比的差异将离子分离开来。
其中,质量分析器的作用就是按照离子的质量-荷比与电磁场
相互作用来实现离子的分离。
3. 质量分析:质量分析器是质谱法中最核心的部分,负责对分离后的离子进行质量和丰度分析。
常见的质量分析器包括质谱仪中的磁谱仪和时间飞行质谱仪等。
4. 检测和数据处理:分析仪器会对通过质谱仪的离子进行检测和信号放大,然后将其转化为电信号。
接下来,对这些信号进行数据采集和处理,最终得到质谱图。
通过质谱图,可以识别分子的质量和结构信息,进而推断样品的组成和化学性质。
质谱法在化学、生物化学、环境科学等领域广泛应用,成为现代科学研究和分析的重要工具。
质谱法简介—质谱法基本原理(分析化学课件)

m/z 123 -CH3
-CO 108
80
m/z 80 离子是由分子离子经过两步裂解产生的,而不是一步形成的
质谱法基本原理
4.同位素离子
大多数元素都是由具有一定自然丰度的同位素组成。化合物 的质谱中就会有不同同位素形成的离子峰,由于同位素的存在, 可以看到比分子离子峰大一个质量单位的峰M+1;有时还可以 观察到M+2,M+3。通常把由同位素形成的离子峰叫同位素峰。
离子子还可能进一步裂解成更小的碎片离子,在裂解的同时也可能
发生重排。
质谱法基本原理
3.亚 稳 离 子(m*)
在离子源中形成的碎片离子没有进一步裂解,而是在 飞行进入检测器的过程中发生自行的裂解,这样所形成的低 质量的离子叫亚稳离子。 形成过程 m1 (母离子) m2 (子离子) 中性碎片
表观质量 m m22
37
(a+b)n=(3+1)2=9+6+1
即三种同位素离子强度之比为9:6:1。 这样,如果知道了同位素的元素个数,可以推测各同
位素离子峰强度之比。 同样,如果知道了各同位素离子强度之比,可以估计
出分子中是否含有S、Cl、Br原子以及含有的个数。
质谱法基本原理 四、质谱法的特点与主要用途
❖ 特点: ❖ 1.样品用量少。灵敏度高,精密度好。 ❖ 2.分析速度快。 ❖ 3.分析范围广,适合联机。 ❖ 4.能够同时给出样品的精确分子质量和结构信息
色谱-质谱联用分析法 气质联用(GC-MS)的应用领域:
气质联用已经成为有机化合物常规检测中的
必备工具。环保领域的有机污染物检测,特别是
低浓度的有机污染物;药物研究生产质控的进出
口环节;法庭科学中对燃烧爆炸现场调查,残留
质谱的原理及应用

质谱的原理及应用1. 质谱的基本原理质谱是一种重要的分析技术,它利用离子化技术将待测物质转化为离子,并通过对离子进行分析,得到物质的分子结构、组成和质量信息。
质谱的基本原理包括样品离子化、离子分离、离子检测和质量分析。
1.1 样品离子化样品离子化是质谱的第一步,常见的离子化方法包括电离和化学离子化。
电离通常采用电子轰击、电子喷雾和激光离化等方法。
1.2 离子分离离子分离是质谱的关键步骤,通过施加电场或磁场,可以将离子按照质荷比进行分离。
常见的离子分离方法包括质量过滤、离子阱和飞行时间法等。
1.3 离子检测离子检测是质谱的关键环节,常见的离子检测方法包括电子增强器、多极杆和检测器等。
离子检测器会将离子转化为电信号,并进行放大和信号处理。
1.4 质量分析质量分析是质谱的核心内容,通过质谱仪器对离子进行质量分析,可以得到物质的质量谱图。
常见的质谱分析方法包括质谱仪、质谱图和质谱库的利用。
2. 质谱的应用领域质谱作为一种高灵敏度和高分辨率的分析方法,已广泛应用于多个领域。
2.1 生物医药领域质谱在生物医药领域中主要应用于药物代谢动力学研究、蛋白质组学和分子诊断等。
通过质谱技术可以分析药物在体内的代谢途径、代谢产物和代谢酶等,对药物的疗效和安全性进行评估。
此外,质谱还可以用于分析蛋白质组的组成和结构,帮助研究蛋白质功能及其与疾病之间的关系。
2.2 环境监测领域质谱在环境监测领域中主要用于有机污染物和无机污染物的检测与分析。
通过质谱技术可以对空气、水体、土壤等中的污染物进行快速、准确的分析,有助于环境质量评估和环境治理。
2.3 食品安全领域质谱在食品安全领域中起着重要的作用,可以用于检测食品中的农药残留、重金属污染和毒素等。
通过质谱技术可以对食品样品进行快速筛查和定量分析,保障食品质量和食品安全。
2.4 新能源领域质谱在新能源领域中用于催化剂研究、电池材料分析和新能源开发等。
通过质谱技术可以研究催化剂的表面结构和反应机理,评估催化剂的催化活性和稳定性。
质谱的名词解释

质谱的名词解释质谱(Mass Spectrometry,简称MS)是一种分析化学技术,它通过将样品中的化合物分子或原子离子化,然后在电磁场中进行偏转、分离和检测,最终得到离子的质量和相对丰度信息。
质谱在生物学、化学、环境科学等领域广泛应用,被视为一项强大而多功能的实验技术。
1. 质谱的基本原理质谱的基本原理是离子分析。
它将待分析物分子通过电离源转化为离子,并利用不同质量、不同电荷的离子在电磁场中的偏转情况进行分离。
电荷离子在磁场中受到洛伦兹力的作用,偏转半径与质量和电荷量有关。
通过探测器对分离后的离子进行检测,可以得到不同离子的质量谱图。
2. 质谱的主要组成部分质谱仪主要由电离源、质量分析器和探测器组成。
电离源负责将待分析物转化为离子,常用的电离源包括电子轰击电离源、化学电离源和光电离源等。
质量分析器用于分离不同质量的离子,常见的质量分析器包括飞行时间质谱仪(Time-of-Flight Mass Spectrometer,简称TOF-MS)、电子能量分析器和磁扇形质谱仪等。
探测器则负责测量离子的相对丰度,常见的探测器有离子多道器、电子倍增管和微小通道板等。
3. 质谱的应用领域3.1 蛋白质组学质谱在蛋白质组学研究中扮演着重要的角色。
蛋白质质谱分析可以用于蛋白质结构的鉴定、定量分析以及功能研究。
利用质谱技术,可以对复杂的蛋白质样品进行分离、定性和定量分析,从而揭示蛋白质的组成、修饰和相互作用等信息。
3.2 代谢组学代谢组学研究生物体内代谢物的变化及相关的生理、病理过程。
质谱在代谢组学研究中被广泛应用,可以对细胞、组织和体液中的代谢产物进行定性和定量分析。
通过质谱技术,可以发现代谢物的新的生物标志物,并揭示代谢通路的变化,从而为疾病的诊断和治疗提供理论基础。
3.3 农残分析农残分析是农产品中残留农药的分析鉴定。
质谱在农残分析中被广泛采用,可以对食品样品中的农药残留进行快速、准确的检测和定量。
利用质谱技术,可以实现对多种农药的同时检测,提高快速筛查的效率和准确性。
质谱分析技术的原理和应用

质谱分析技术的原理和应用质谱分析技术作为当代分析化学的重要手段,具有高灵敏度、高选择性和高分辨率等特点,被广泛应用于医药、环境、食品安全等领域。
下面我们将从质谱分析的基本原理、仪器构成以及应用案例等方面进行论述。
一、质谱分析的基本原理1. 质谱分析的基本步骤质谱分析主要包括样品的制备、离子化、加速、分离以及离子检测和信号处理等步骤。
首先,样品被制备成气体、液体或固体状态,然后通过离子源将样品中的分子或原子离子化。
离子化后的离子被加速,并根据质荷比(m/z)经过磁场或者电场的作用分离。
最后,离子被转化为电流信号,通过信号处理器获得质谱图。
2. 质谱分析的原理质谱分析的原理基于质荷比的选择性分离和检测。
在磁场或电场作用下,带有不同质荷比的离子会分别偏转。
利用质谱仪中的质荷比分离器,可以将离子按照它们质荷比的大小进行分离和检测。
通过测量质荷比和强度,可以确定样品中不同的成分和它们的相对含量。
二、质谱仪器的构成质谱仪由离子源、分离器、检测器和数据系统等部分构成。
1. 离子源离子源是将样品中的分子或原子离子化的部分,常用的离子源有电喷雾源(ESI)、大气压化学电离源(APCI)和电子轰击源(EI)等。
不同的离子源选择取决于样品的性质和目的。
2. 分离器分离器根据质荷比的差异将离子分离。
常见的分离器有磁扇形质量分析器(Sector Mass Analyzer)、四极杆质量分析器(Quadrupole Mass Analyzer)和飞行时间质量分析器(Time-of-Flight Mass Analyzer)等。
每种分离器都有其特定的分离原理和适用范围。
3. 检测器检测器用于将离子转化为检测信号。
常见的检测器有离子多极管检测器(Ion Multiplier Detector)和光电倍增管检测器(Photomultiplier Tube Detector)等。
检测器的选择也与样品的性质有关。
4. 数据系统数据系统负责信号的采集、处理和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.发展史:
1911年: 世界第一台质谱装置(J.J. Thomson) 40年代: 用于同位素测定和无机元素分析 50年代: 开始有机物分析(分析石油) 60年代: 研究GC-MS联用技术 70年代: 计算机引入 80年代: 新的质谱技术出现:快原子轰击电离子源, 基质辅助激光解吸电离源,电喷雾电离源,大气压化学电 离源;LC-MS联用仪,感应耦合等离子体质谱仪,傅立 叶变换质谱仪等 目前质谱分析法已广泛地应用于化学、化工、材料、 环境、地质、能源、药物、刑侦、生命科学、运动医学等 各个领域。
气体分子 试样分子
准分子离子 电子 + (M+1)+;(M+17) +;(M+29) +;
(3)快原子轰击离子源(FAB):可直接进行分析,毋需做 成衍生物;适用于较大分子的MS分析,而EI、CI、FI、FD 等方法只能用于中、小分子有机化合物的测定 . (4)场致电离源(FI):适用于易变分子的离子化 ,如碳水
2.灵敏度(sensitivity; S):是指仪器记录所产生的信号 强度与所用样品量之间关系的度量。
3.质量范围(mass range):是指仪器能够测量的离子质 量范围。
目前,四极质谱仪的质量范围一般为10~1000aum, 磁质谱仪一般为几十至几千aum。 4.质量准确度(mass accuracy):又质量精度,即离子质 量实测值M与理论值M0的相对误差。
Waters Quattro Premier串联四极杆质谱仪
色谱-质谱联用图
(五)离子检测器
(1)电子倍增管:可测出10-17A微弱电流; (2)微通道板检测器。
(六)质谱仪的主要性能指标 1.分辨率(resolution; R):是指仪器能分离相邻两质谱峰 的能力。
如两种相邻离子正好被分离 : R=M/△M
1、高真空的作用: (1)避免离子散射以及离子与残余气体分子碰撞引起能 量变化; (2) 降低本底和记忆效应。 2、高真空系统的组成:一般由旋转泵和扩散泵串联而 成,亦可采用分子泵以获得更高的真空度。
(二)样品导入系统
1.直接进样:适合于单组分、挥发性较低的固体或液体 样品。
2.色谱联用导入试样:利用与质谱仪联机的气相色 谱仪或高效液相色谱仪将混合物分离后,通过特殊 的联机“接口”进入离子源,依次进行各组分的质 谱分析。
第十五章 质谱法 (mass spectrometry MS)
要求:
1 掌握质谱法的基本原理及特点; 2 掌握质谱中不同离子的类型及在结构解 析中的作用; 3 熟悉质谱仪各主要部件的工作原理。
概述 generalization
1.质谱分析法(mass spectrometry或mass spectroscopy MS):是利 用离子化技术,将物质 分子转化为离子,按其 质核比(m/z)的差异进行 分离测定。
(三)离子源
1.离子源的作用:将被分析样品离子化,并使其具有一 定的能量。 2. 离子源的分类及适用条件: (1)电子轰击源(electron impact source; EI) :常用 于有机物电离; 灯丝 (阴极)
阳极
M+ e (高速)
பைடு நூலகம்
M.+ + 2e (低速)
+ + +
(M-R2)+ (M-R1)+ M+ (M-R3)+
纵坐标:离子的相对强度 横坐标:质荷比 m/z
一、质谱法的基本原理
1、基本原理:质谱法是应用多种离子化技术(如高能离 子流轰击、化学电离、强电场作用等),使物质分子失去 外层价电子形成分子离子(molecular ion; ),分子离 子中化学键发生某些有规律的断裂而形成不同质量的碎片 离子(fragment ion)。 M
以磁分析器为例: 加速后离子的动能 :
1 m 2 eV 2
电离室原理与结构
2V
m e
质量分析器原理与结构
在磁场存在下,带电离子按曲线轨迹飞行,存在如下关系式:
离心力 =向心力
离子运动半径:
m 2 H 0 eV R m R eH 0
m H 02 R 2 质谱方程式: e 2V
是由四根平行、对称放置的圆柱形电极组成,对角电 极构成两组。两组电极间加一定的直流电压U和高频电 压Vcosωt。利用电压扫描或频率扫描,使不同质荷比的 离子依次通过四极杆质量分析器到达收集器。
为了满足色谱-质谱联用仪器的发展及仪器小型 化(台式)需要,现在最常用的质量分析器有:
四极杆质量分析器
飞行时间质量分析器
43 57 29 15 71 85
99 113
142 m/z
纵坐标:离子的相对强度
横坐标:质荷比 m/z
2.质谱分析的特点: (1). 应用范围广:可用于无机成分、有机成分分以及 同位素分析; (2).不受试样物态限制:可对气体、液体、固体等进 行分析; (3).分析速度快:完成一次扫描仅需1~几秒; (4).灵敏度高:检测限可达10-11g;分析速度快,样品 用量少。
相对强度:以质谱中最强峰的高度为100%,并将此峰称为 基峰,其余峰按与基峰的比例加以表示,又称相对强度。 注:根据质谱图的峰位可进行定性鉴别,根据相对 强度可进行定量测定。
二、质谱仪(Mass Spectrometers)
双聚焦质谱仪
Elan9000电感耦合等离子体质谱仪
质谱仪的构成:高真空系统、样品导入系统、离子源、 质量分析器、离子检测器及记录装置等。
按分别率高低,可将质谱仪分为低分辨率质谱仪和高 分辨率质谱仪:分辨率低于1000的仪器称为低分辨质谱仪, 高于10000的称为高分辨质谱仪 。 所谓两种离子正好被分离,国际上有两种定义:10% 谷和50%谷。即该两峰重叠后形成的谷高为峰高的平均高 度的10%或50%,则认为该两离子已被分离。目前,磁质 谱仪用10%谷底的定义,四极质谱仪采用 50%谷高定义。
第一节 基本原理和质谱仪
质谱的形成:气态样品通过导入系统进入离子源,被电离 成分子离子和碎片离子,由质量分析器将其分离并按质核 比大小依次进入检测器,信号经放大、记录得到质谱图 (mass spectrun; MS)。
质量扫描 产生离子流
样品导 入系统
离子源
m/z
质量 分析器
检测器
H0
放大器 记录器
+ +
: R1 : R2 : R3 : R4 :e
Mass Spectrum
EI的特点 :是最常用的一种离子化方式,能量较高 (~70eV),所得碎片离子峰比较丰富,常用于标准MS图 的制备,便于进行鉴定和结构解析 ,但所得分子离子峰往 往并不很强甚至不能识别 ,不利于确定分子量。
(2)化学电离源(chemical ionization source,CI):属于 软电离,是极为有用的一种,谱形简单,能提供较强的准 分子离子峰和很少的碎片峰。 高能电子流 (100~240eV)先轰击反应气( 如甲烷,气压10~100Pa,是 样品的103~105倍),反应气 首先被电离,再与试样分子 碰撞,产生准分子离子。 + +
CH2 CH2 CH2 CH2
(三) 同位素离子(isotopic ion ) 大多数元素都是由具有一定自然丰度的同位素组成 的。在质谱中,会出现含有这些同位素的离子峰。含有 同位素的离子称同位素离子(isotopic ion)。 组成有机物的常见元素如C、H、O、N、S及卤素等, 在自然界多具有天然同位素。 它们的同位素丰度比是以丰度最大的轻质同位素为 100%计算而得。
离子阱质量分析器
优点: ①可在较低的真空度下工作; ②扫描速度快,有利于色谱仪联用; ③结构简单,体积小,自动化程度高。
缺点:
①分辨率低于双聚焦质量分析器; ②质量范围较窄,一般为10~1000amu(原子质量单位);
③不能提供亚稳离子信息。
串联四极杆飞行时间质谱
气相色谱-质谱仪
液相色谱-质谱仪
化合物、氨基酸、多肽、抗生素和苯丙胺类药物均宜采用;能
产生较强的分子离子峰和准分子离子峰。
(5)场解吸离子化 (FD ),负离子化学离子化 (NICI ), 激光解吸 (LD):
(四)质量分析器(mass analyser):是将离子源中形成的离 子按质荷比的差异进行分离的装置。主要有磁分析器和四极 杆分析器。
(二)碎片离子(Fragment Ion) 碎片离子是分子离子中某些化学键发生断裂而形成 的离子。由于键断裂位置的不同,同一个分子离子能产 生不同质量大小的碎片离子,而其相对强度与键断裂的 难易有关,即与分子结构有关,因此,碎片离子的峰位 及相对强度可提供化合物的结构信息。
一般有机化合物的电离能为7~13eV,质谱中 常用的电离电压为70eV,使结构裂解,产生各种 “碎片”离子。
-e
+ 碎片离子 + 中性分子
选择其中带正电荷的离子使其在电场或磁 场的作用下,根据其质荷比(m/z,离子质量与 电荷之比)的差异进行分离,按各离子m/z的顺 序及相对强度大小记录的图谱即为质谱。
2.质谱图的表示:常见的质谱图是经过计算机处理过的 棒图(Bar graphs) 。
相 对 强 度
(%)
(1)单聚焦质量分析器(single focusing mass analyser):
m R eH 0
当H0固定时,不同mv/e的离子具有不同的 运动半径,此为磁场的能量色散作用。
能量色散使m/e相同 但运动速度稍有差 别的离子在通过磁 场后发散,导致仪 器的分辨率降低。 对离子束仅实现质量 色散,方向聚焦,而 不能实现能量聚焦。
真空泵
质谱图