塔设备强度设计计算

合集下载

塔器设计与计算中几个常见问题的浅谈

塔器设计与计算中几个常见问题的浅谈

塔器设计与计算中几个常见问题的浅谈摘要:本文阐述了塔器设计中几个常见问题,通过对比SW6与标准算例的计算结果,分析了SW6塔器检修工况下塔顶振幅结果的来源;阐述了塔器计算中阻尼比的取值方法;讨论了裙座、地脚螺栓的选材,如何考虑环境温度,并对比了不同标准对环境温度的定义;最后通过某项目复合板技术规格书的技术要求,讨论了不锈钢复合板塔器基层名义厚度在强度计算时需要注意的问题。

关键词:裙座和地脚螺栓环境温度自振周期塔器塔顶振幅阻尼比复合板基层 SW6一、SW6计算书中的塔器“检修工况下塔顶振幅”是怎么来的?我们知道,在SW6塔器计算书中给出了两个振幅——操作工况下塔顶振幅、检修工况下塔顶振幅,乍看可能有会点困惑,“操作工况下塔顶振幅”对应的是哪个自振周期?“检修工况下塔顶振幅”又是如何计算出来的?我们以《NB/T47041-2014〈塔式容器〉释义及算例》中的“例题3”为例,用SW6软件对“例题3”进行校核,所得自振周期计算结果与算例对比见表(一)。

表(一)单位SW6算例立式容器自振周期s 3.88 3.8289(第一振型)第二振型自振周期s0.620.6109第三振型自振周期s0.220.2202临界风速(第一振m/s 3.41 3.453型)m/s21.2421.64临界风速(第二振型)设计风速m/s30.1530.12由表(一)可见两者自振周期结果十分接近,误差在可接受范围。

(因有些参数《释义及算例》未说明具体取多少,所以用SW6算的时候会存在误差)。

由于“设计风速”均大于一、二阶自振周期对应的临界风速,通过共振判别,可知应同时考虑第一振型和第二振型的振动要考虑共振。

塔顶振幅计算结果与算例对比见表(二)。

表(二)单位SW6算例操作工况下塔顶振幅mm31.3475检修工况下塔顶振幅mm53.6067检修工况下自振周期s 2.92863第一振型的横向风塔顶振幅(第一振型时取阻尼比0.01)m0.03178通过比较表(二)两者数据可以看出,SW6计算书中“操作工况下塔顶振幅”就是“第一振型振幅”,对应的是第一振型自振周期。

填料塔的简单介绍及其相应计算教材

填料塔的简单介绍及其相应计算教材

目录一、塔设备的概述 (2)1.1 填料塔 (3)1.2 板式塔 (4)1.3填料塔与板式塔的比较 (5)二、塔设备设计的基本步骤 (6)三、塔设备的强度和稳定性计算 (6)3.1塔设备的载荷分析和设计准则 (6)3.2 质量载荷 (8)3.3地震载荷 (8)3.4偏心弯矩 (8)3.5最大弯矩 (8)3.6 圆筒轴向应力核核 (9)3.6.1 圆筒轴向应力 (9)3.6.2 圆筒稳定校核 (9)3.6.3 圆筒拉应力校核 (10)3.7裙座轴向应力校核 (10)3.7.1 裙座底截面的组合应力 (10)4.7.2裙座检查孔和较大管线引出孔截面处组合应力 (11)4.8轴向应力校核条件 (12)五、心得体会 (13)一、塔设备的概述塔设备是石油化工、化学工业、石油工业等生产中最重要的设备之一。

它可使气(汽)液或液液相之间进行充分接触,达到相际传热及传质的目的。

在塔设备中能进行的单元操作有:精馏、吸收、解吸,气体的增湿及冷却等。

表1中所示为几个典型的实例。

表1 塔设备的投资及重量在过程设备中所占的比例实现气(汽)—液相或液—液相之间的充分接触,从而达到相际传质和传热的目的。

塔设备广泛用于蒸馏、吸收、介吸、萃取、气体的洗涤、增湿及冷却等单元操作中,它的操作性能好坏,对整个装置性能好坏、对整个装置的生产,产品产量、质量、成本以及环境保护、“三废”处理等都有较大的影响。

因此对设备的研究一直是工程界所关注的热点。

随着石油、化工的发展,塔设备的合理造型及设计将越来越受到关注和重视。

为了使塔设备能更有效、更经济的运行,除了要求它满足特定的工艺条件,还应满足以下基本要求。

①满足特定的工艺条件;②气—液两相能充分接触,相际传热面积大;③生产能力大,即气、液处理量大;④操作稳定,操作弹性大,对工作负荷的波动不敏感;⑤结构简单、制造、安装、维修方便,设备投资及操作成本低;⑥耐腐蚀,不易堵塞。

为了便于研究和比较,人们从不同的角度对塔设备进行分类。

塔设备机械设计说明

塔设备机械设计说明

第一章绪论1.1塔设备概述塔设备是石油、化工、轻工等各工业生产中仅次与换热设备的常见设备。

在上述各工业生产过程中,常常需要将原料中间产物或粗产品中的各个组成部分(称为组分)分离出来作为产品或作为进一步生产的精制原料,如石油的分离、粗酒精的提纯等。

这些生产过程称为物质分离过程或物质传递过程,有时还伴有传热和化学反应过程。

传质过程是化学工程中一个重要的基本过程,通常采用蒸馏、吸收、萃取。

以及吸附、离子交换、干燥等方法。

相对应的设备又可称为蒸馏塔、吸收塔、萃取塔等。

在塔设备中所进行的工艺过程虽然各不相同,但从传质的必要条件看,都要求在塔内有足够的时间和足够的空间进行接触,同时为提高传质效果,必须使物料的接触尽可能的密切,接触面积尽可能大。

为此常在塔内设置各种结构形式的内件,以把气体和液体物料分散成许多细小的气泡和液滴。

根据塔内的内件的不同,可将塔设备分为填料塔和板式塔。

在板式塔中,塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质。

两相的组分浓度沿塔高呈阶梯式变化。

不论是填料塔还是板式塔,从设备设计角度看,其基本结构可以概括为:(1)塔体,包括圆筒、端盖和联接法兰等;(2)内件,指塔盘或填料及其支承装置;(3)支座,一般为裙式支座;(4)附件,包括人孔、进出料接管、各类仪表接管、液体和气体的分配装置,以及塔外的扶梯、平台、保温层等。

塔体是塔设备的外壳。

常见的塔体是由等直径、等壁厚的圆筒及上、下椭圆形封头所组成。

随着装置的大型化,为了节省材料,也有用不等直径、不等壁厚的塔体。

塔体除应满足工艺条件下的强度要求外,还应校核风力、地震、偏心等载荷作用下的强度和刚度,以及水压试验、吊装、运输、开停车情况下的强度和刚度。

另外对塔体安装的不垂直度和弯曲度也有一定的要求。

支座是塔体的支承并与基础连接的部分,一般采用裙座。

其高度视附属设备(如再沸器、泵等)及管道布置而定。

它承受各种情况下的全塔重量,以及风力、地震等载荷,因此,应有足够的强度和刚度。

第八章-塔设备的机械设计

第八章-塔设备的机械设计

Fi hi
i 1
对于等直径、等壁厚塔器的底截面 地震弯矩为:
M
00 E
16 35
1m0
gH
(N mm)
风载荷
风对塔体的作用之一是造成风弯矩,在迎风面的塔壁 和裙座体壁引起拉应力,背风面一侧引起压应力;作 用之二是气流在风的背向引起周期性旋涡,即卡曼涡 街,导致塔体在垂直于风的方向产生周期振动,这种 情况仅仅出现在H/D较大,风速较大时比较明显,一般 不予以考虑。
M
ii max
/
0.785Di2
S
e
2
式中M
ii max
maxM M
ii W
ii E
Me
25%M
ii W
M e
稳定条件:
组合轴向压应 力要满足:
ii m a x压
[ ]cr
KB
minK[ ]t
式中K——载荷组合系数,取K=1.2; B——见书p172。
4 塔体拉应力验算
依前述,假设一有效壁厚Se3。 计算σ1,σ2,σ3,并进行组合,满足如下强度条件:
m0 m01 m02 m03 m04 m05 ma me
(8-1)
塔设备在水压试验时的最大质量
mmax m01 m02 m03 m04 mw ma me (8-2)
塔设备在吊装时的最小质量
mmin m01 0.2m02 m03 m04 ma me (8-3)
地震载荷
(5)水压试验验算。
8.2 裙座设计
四个部分: 1.座体---承受并传
递塔体载荷。 2.基础环---将载荷
传递到基础上。 3.螺栓座---固定塔
于基础上。 4.管孔---人孔、排
气孔、引出管孔。

塔设备强度计算 裙座基础环和螺栓计算

塔设备强度计算 裙座基础环和螺栓计算

㈡基础环板设计1. 基础环板内、外径的确定裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用(4-68)式中:D ob-基础环的外径,mm;D ib-基础环的内径,mm;D is-裙座底截面的外径,mm。

2. 基础环板厚度计算在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为:(4-69)式中:A b-基础环面积,mm2;W b-基础环的截面系数,mm3;(1)基础环板上无筋板基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度:(4-70)式中:δb-基础环厚度,mm;[σ]b-基础环材料的许用应力,MPa。

对低碳钢取[σ]b=140MPa。

(2)基础环板上有筋板基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。

此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。

基础环厚度:(4-71)式中:δb-基础环厚度,mm;M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按计算,N·mm/mm。

无论无筋板或有筋板的基础环厚度均不得小于16mm。

㈢地脚螺栓地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。

在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。

塔设备在基础面上由螺栓承受的最大拉应力为:(4-72)式中:σB-地脚螺栓承受的最大拉应力,MPa。

当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。

当σB>0时,塔设备必须设置地脚螺栓。

地脚螺栓的螺纹小径可按式(4-73)计算:(4-73)式中:d1-地脚螺栓螺纹小径,mm;C2-地脚螺栓腐蚀裕量,取3mm;n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6;[σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。

塔设备强度计算-裙座基础环和螺栓计算

塔设备强度计算-裙座基础环和螺栓计算

塔设备强度计算-裙座基础环和螺栓计算㈡基础环板设计1. 基础环板内、外径的确定裙座通过基础环将塔体承受的外⼒传递到混凝⼟基础上,基础环的主要尺⼨为内、外直径(见下图),其⼤⼩⼀般可参考下式选⽤(4-68)式中:D ob-基础环的外径,mm;D ib-基础环的内径,mm;D is-裙座底截⾯的外径,mm。

2. 基础环板厚度计算在操作或试压时,基础环板由于设备⾃重及各种弯矩的作⽤,在背风侧外缘的压应⼒最⼤,其组合轴向压应⼒为:(4-69)式中:A b-基础环⾯积,mm2;W b-基础环的截⾯系数,mm3;(1)基础环板上⽆筋板基础环板上⽆筋板时,可将基础环板简化为⼀悬臂梁,在均布载荷σbmax的作⽤下,基础环厚度:(4-70)式中:δb-基础环厚度,mm;[σ]b-基础环材料的许⽤应⼒,MPa。

对低碳钢取[σ]b=140MPa。

(2)基础环板上有筋板基础环板上有筋板时,筋板可增加裙座底部刚性,从⽽减薄基础环厚度。

此时,可将基础环板简化为⼀受均布载荷σbmax作⽤的矩形板(b×l)。

基础环厚度:(4-71)式中:δb-基础环厚度,mm;M s-计算⼒矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较⼤者,M x、M y按表4-35计算,N·mm/mm。

⽆论⽆筋板或有筋板的基础环厚度均不得⼩于16mm。

㈢地脚螺栓地脚螺栓的作⽤是使设备能够牢固地固定在基础底座上,以免其受外⼒作⽤时发⽣倾倒。

在风载荷、⾃重、地震载荷等作⽤下,塔设备的迎风侧可能出现零值甚⾄拉⼒作⽤,因⽽必须安装⾜够数量和⼀定直径的地脚螺栓。

塔设备在基础⾯上由螺栓承受的最⼤拉应⼒为:(4-72)式中:σB-地脚螺栓承受的最⼤拉应⼒,MPa。

当σB≤0时,塔设备可⾃⾝稳定,但为固定塔设备位置,应设置⼀定数量的地脚螺栓。

当σB>0时,塔设备必须设置地脚螺栓。

地脚螺栓的螺纹⼩径可按式(4-73)计算:(4-73)式中:d1-地脚螺栓螺纹⼩径,mm;C2-地脚螺栓腐蚀裕量,取3mm;n-地脚螺栓个数,⼀般取4的倍数;对⼩直径塔设备可取n=6;[σ]bt-地脚螺栓材料的许⽤应⼒,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。

塔设备计算机辅助强度计算及校核

塔设备计算机辅助强度计算及校核
厚度 。
图 2 材 料 许 用 应 力 的 选 取
图 1 简体、 封头壁厚计 算
需要指 出的是 , 进行壁 厚计算时需要 用到设计压力 , 而界 面 中用 户输入 的是工作压力 , 设计 压力 的确定是根据工作压力
收 稿 日期 :0 7 0 — 3 2 0 — 8 2
图 3焊 缝系数 的选取
起的圆筒轴 向应力校核 , 裙座壳轴 向应力校核及塔器压力试验 时的应力校核 。为了便于操作 , 本软件将 塔体各危险截面的校
测比例后单击“ 确定 ” 后显示结果 , 并在图 1 所示界 面 自动显示 查 询结果 。采用这种查询方式 , 避免 了用户另外查 阅资料 的麻 烦, 给用户 的操作带来了极大 的方便。 封头包括标准椭 圆封头 、 锥形封头 、 碟形封头等型式 。 封头 参数的确定由两种方式 , 一种方式是根据用户输入 的参数直接 由公式计算 , 并将结果显示在相应的文本框 中。另一种是采用 与确定材料许用应力相 同的方 式将 国家标准规定 的封 头的相
1 塔设 备计 算机 辅助 强度 计算
11 简体 、 . 封头的壁厚计算 进行简 体厚度计算需要先 在如图 1 所示对 话框 中输 入相 关参数 , 如工作压力 、 简体直径等 , 然后单 击“ 确定” 钮 , 按 程序 开始简体壁厚计算 , 并将计算结果显示 出来 。同样 , 单击“ 上封 头 ” 下封头 ” 或“ 也可 以在此界 面中很方便 的得 到上 、 下封 头的
作者简介 : 吴俊飞( 9 8 ) , 16 一 男 青岛科 技大学研 究生处副处 长 , 学博 士, 工 副教授 , 硕士生导师, 主要研究方向 : 化工设备安全技术 , 高压技术 ; 超
付 平( 9 1 )女 , 17 一 , 青岛科 技大学 机电学院 , 硕士 , 授, 副教 主要研究方 向: 计算机辅助参数化设计 。

精馏塔强度计算实例

精馏塔强度计算实例

第六部分 塔内件机械强度设计及校核6.1精馏塔筒体和裙座壁厚计算选用16MnR 钢板,查《化工设备机械基础》表9-4得:,MPa 170][t =δ焊接采用双面焊100%无损探伤检查,焊接接头系数00.1=ϕ,则由筒体的计算厚度为:[]0.111823000.76()2217010.1118c i p D c mm t p δσϕ⨯===-⨯⨯-查《化工设备机械基础》表9-10得mm C 8.01=,加上壁厚附加量C=2mm ,并圆整,还考虑刚度、稳定性及多种载荷等因素,取筒体、封头和裙座的名义厚度Sn 为8mm ,则有效厚度 826mm e n C δδ=-=-=()应力校核:采用水压试验,试验压力为[][]1701.25 1.250.11180.14170T tp pMPa σσ==⨯⨯=() 压力试验时的薄膜应力()eT δδσ2D p e i T +=故()0.142300626.9()26T MPa σ⨯+==⨯查表9-4,16MnR 的MPa s 345=σ故0.90.91345310.5()26.9MP s T MPa a ϕσσ=⨯⨯==> 所以满足水压试验要求。

封头采用标准椭圆封头 6.2精馏塔塔的质量载荷计算 6.2.1塔壳和裙座的质量圆筒质量塔体圆筒总高度Z 8m =()1422iD -D Z m πρ=()2232.316 2.300137.85105916.554kg π=-⨯⨯⨯=6.2.2封头质量查的DN2300,壁厚8mm 的椭圆形封头的质量为251kg ,则kg 5022251m 2=⨯=6.2.3 裙座质量 圆筒裙座尺寸:23002316is os D mm D mm ==,。

()钢πρs 2is 2os 3H D -D 4m =2232.312 2.327.85106824kg π=-⨯⨯⨯=() 011233640.955026824825m m m m kg =++=++=6.2.4塔内构件质量塔盘单位质量为175.59kg02175.59152633.9m kg =⨯=6.2.5人孔、法兰、接管与附属物质量010.250.2548251206.3a m m kg ==⨯=6.2.6保温材料质量03m '为封头保温层质量,查《化工工艺设计手册》选用硅酸钙制品,厚度为150mm()2203000203224s m D D H m δρ⎡⎤'=+-+⎣⎦π ()()222.31620.15 2.3161330020.5870.3983004643.204π⎡⎤=⨯+⨯-⨯⨯+⨯-⨯=⎣⎦kg6.2.7平台、扶梯质量()()[]F F P 2s 02s 004H q nq 212D -B 22D 4m +⨯+++=δδπ()()2212.31620.120.9 2.31620.1221504012423376.1π⎡⎤=⨯+⨯+⨯-+⨯⨯⨯⨯⨯+⨯⎣⎦=kg式中:P q ------平台单位质量,为;2m /kg 150 F H -----扶梯高度,为12m ;F q ------笼式扶梯的单位质量,为;m /0kg 4 n------平台数量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


•K2i-塔设备各计算段的风振系数, •当塔高H≤20m时,取K2i=1.7; •当H>20m时,
•z-脉动增大系数,按表4-28查取;
•Vi-第i段脉动影响系数,按表4-29查 •fzi- 第i段振型系数,根据Hi/H与m查
表4-30;

(2)风弯矩
•一般习惯自地面起 每隔10m一段,风压
定值。求出风载荷Pi
风向的诱发振动弯矩。只在塔H/D较
大、风速较大时较明显,一般可忽略 。考虑两弯矩矢量叠加。

(1)水平风力的计算
迎风面产生风压。与风速、 空气密度、地区和季节有关。 各地离地面10m处30年一遇 10分钟内平均风速最大值作为计算风压,
得到该地区的基本风压q0,见表4-26。
•风速随地面高度而变化。塔高于10m,应 分段计算风载荷,视离地面高度的不同乘

1. 操作压力
内压塔,周向及轴向拉应力 ;
外压塔,周向及轴向压应力 。
操作压力对裙座不起作用。

2. 质量载荷
塔设备质量包括:
m1:塔体和裙座质量; m2:内件;m3:保温材料; m4:平台、扶梯质量; m5:操作时塔内物料质量; ma:人孔、接管、法兰等附件质量; me:偏心;mw:液压试验时,塔内充液质量
塔设备强度设计计算

一、塔体 强度计算
室外H/D较
大的塔, 操作压力、 质量载荷、 风载荷、 地震载荷 偏心载荷等

㈠ 按设计压力计算筒体及封 头壁厚
按第十五章"容器设计基础" 中内压、外压容器的设计方法 ,计算塔体和封头的有效厚度 。

㈡ 塔设备所承受的各种载荷 计算
以下要讨论的载荷主要有: 操作压力; 质量载荷; 风载荷; 地震载荷; 偏心载荷。

•水压试验时间人为选定且时间 较短,在实验情况下最大弯矩取 值
• 最大弯矩在筒体中引起轴向应力

㈣ 筒体壁厚效核
1.最大轴向组合应力的计算
•内压塔设备
•外压塔设备
•正常操作
•迎 •背 风风
•s1
•+
•停修
•正常操作
•迎 风
•背风 •迎风 •背风
•0
•-
•停修
•迎风
•背 风
•0
•应力 •s2 状态

•表4-34 轴向最大应力的校核条件
•名 称
•周向最大拉应 力smax
•强度校 核
•稳定性校核
•≤K[s]t
f
•轴向最大压应 力smax
•≤K[s]t •≤K0.06Etei/Ri
•K为载荷组合系数,取K=1.2。

3. 水压试验时应力校核
(1) 关于拉应力
•① 环向拉应力的验算在第十五章 •② 最大组合轴向拉应力
① 最大组合轴向压应力,出现 在正常操作时的背风侧,即:
•② 最大组合轴向拉应力,出现 在停修时的迎风侧,即:

2. 强度与稳定性校核
根据正常操作或停车检修时的各种危 险情况,求出最大组合轴向应力, 必须满足强度条件与稳定性条件, 表4-34。
周向拉应力只进行强度校核,因为不 存在稳定性问题。
轴向压应力既要满足强度要求,又必 须满足稳定性要求,进行双重校核 。
一种是圆筒形 ,
一种是圆锥形

圆筒形裙座制造方便和节省材 料,被广泛采用。
圆锥形裙座:地角螺栓较多和 基础环承受面积较大,承受 较大风载荷和地震载荷。

群座体 (Q235-A或
16Mn)、 基础环板、 螺栓座、 基础螺栓,



(一)圆筒形群座体壁厚的验算
先参照筒体厚度试取一群座体壁厚δs 验算危险截面的应力,群座体底截面

(2) 设备充水(未加压)后最大质量和最 大弯矩在壳体中引起的组合轴向压应力
•K为载荷组合系数,取K=1.2。
塔体,最大风弯矩引起的弯曲应 力s3i-i发生在截面2-2上。 •裙座,s3i-i的最大应力发生在裙 座底截面0-0或人孔截面1-1上。

二、 裙座
按所支承设备 的高度与直 径比,裙座 分成两种:

操作停修或水压试验等不同工况物料或充

m1:塔体和裙座质量; •设备操作时质量:
m2:内件质量; m3:保温材料质量; m4:平台、扶梯质量; m5:操作时塔内物料; ma:人孔、接管等附件; me:偏心质量; mw:液压试验塔内充液
•M0=m1+m2+m3 +m4+m5+ma+me
•设备最大质量 •(水压试验时):
•Mmax=m1+m2+m3 +m4+mw+ma+me
•0.2m2:部分内件焊在塔体 •设备最小质量:
•空塔吊装,如未装保温层
、扣平除台m3和、m扶4。梯等,则mmin应
•mmin =m1+0.2m2 +m3+m4 +ma+me

3. 风载荷
室外自支承塔为悬臂梁 。
产生风弯矩,
迎风面拉应力,
背风面压应力。 •塔背后气流引起周期性旋涡,垂直于
任意截面的风弯矩 :

等直径、等壁厚塔体 和裙座,风弯矩最 大值为最危险截面 。
变截面塔体及开有人 孔的裙座体,各个 可疑的截面各自进 行应力校核。
图中0-0、1-1、2-2各 截面都是薄弱部位

4. 地震载荷
地震烈度七度及以上地区,设计 时必须考虑地震载荷。
地震波作用下: 水平方向振动、 垂直方向振动、 扭转
以高度变化系数fi,见表4-27。

•风压还与塔高度、直径、形状以及自振
周期有关。两相邻计算截面间的水平风力
为:

•Pi-水平风力; •q0-基本风压值,见表4-26,但 均不应小于250N/m2; •fi-风压高度变化系数,表4-27 •Li-第计算段长度; •Dei-塔各计算段有效直径; •K1-体型系数,圆柱直立设备 0.7 •K2i-各计算段风振系数,

其中以水平方向振 动危害较大。
计算地震力时,仅 考虑水平地震力,并 把塔设备看成是分段均布。
计算地震载荷与计 算风载荷一样, 将全塔沿高度分 成若干段,每一 段质量视为集中 于该段1/2处

有多种振型,任意高度hK处 集中质量mK引起基本振型的水
般用于大型塔,搭接焊缝受剪应力, 一般用于小型塔

•1、群座体与塔体对接焊缝
•J-J截面的拉应力校核

•2、群座体与塔体搭接焊缝
•J-J截面的剪应力校核

•精品课件


•精品课件

和人孔截面
•组合应力满足条件后,壁厚附加、圆整

(二)基础环板设计
1、基础环板内、外径
• 2、基础环板厚度, • 背风侧外缘压应力大,组合轴向压应


•(1)基础环板上无筋板
•基础环板厚度 不小于16mm

•(2)基础环板上有筋板
•基础环板厚度 不小于16mm

•Ms—计算力矩,按表4-35计 算Mx和My,取绝对值较大
应力和轴向弯矩Me


㈢ 圆筒的应力
1.塔设备由内压或外压引起的轴向 应力
•2.操作或非操作时,重量及垂直地 震力引起的轴向应力(压应力)

3.最大弯矩在筒体内引起的轴向 应力
风弯矩MW、地震弯矩ME、偏心弯矩 Me。
最大平均风速和可能出现的最大地震 烈度,同时达到最大值的几率极小。
通常操作下最大弯矩按下式取值:

•(三)地脚螺栓
•迎风侧可能出现零值甚至是拉应力 •基础面上由螺栓承受的最大拉应力 为

•σB≤0塔自身稳定,固定位置加螺 栓 •σB>0,必须设地脚螺栓,螺纹小径
•地脚螺栓个数取4的倍数,小直径塔 取6个,圆整后地脚螺栓的公称直径不 得小于M24

•(四)群座与塔底封头焊接结 构•对接焊缝压应力,轴向载荷较高,一
•s3
••+ •-
•sm •s1-s2+s3 ax
•-
•+ ••-(s2+s3

•-
•+ ••-(s1+s2+s3

••+ ••-s2+s3

(1) 内压操作的塔设备
① 最大组合轴向拉应力,出现在 正常操作时的迎风侧,即:
•② 最大组合轴向压应力,出现 在停修时的背风侧,即:

(2) 外压操作的塔设备

avmax= 0.65amax
•meq-塔设备的当量质量, meq=0.75m0
•任意质量i处垂直地震力:

(3)地震弯矩
任意截面i-i基本振型地震弯矩:
•等直径、等厚度塔的任意截面i-i和
底截面0-0的基本振型地震弯矩:
•H/D>15,或高度大于等
于20m时,考虑高振型

5. 偏心载荷
塔外附属设 塔顶冷凝器偏心安装 塔底外侧悬挂再沸器 偏心载荷引起轴向压
平地震力
•FK1-mK引起的基本振型水平地震力 •Cz-综合影响系数,直立圆筒Cz=0.5; •mK-距离地面hK处的集中质量;
•hK1-基本振型参与系数,
•a1-对应与塔基本自振周期T1的地震影响系数a值


(2)垂直地震力
防烈度8度或9度的塔应考虑垂直地震力 塔底截面处垂直地震力:
•avmax-垂直地震影响系数最大值,
相关文档
最新文档