动能定理典型例题
动能定理典型分类例题经典题型

动能定理典型分类例题经典题型动能定理典型分类例题模型一:水平面问题1.两个质量相同的物体在水平面上以相同的初动能滑动,最终都静止,它们滑行的距离相同。
2.两个质量相同的物体在水平面上以相同的初速度滑动,最终都静止,它们滑行的距离相同。
3.一个质量为1kg的物体在不光滑的水平面上静止,施加水平外力F=2N使其滑行5m,然后撤去外力F,求物体还能滑多远。
答案为1.95m。
4.一个质量为1kg的物体在不光滑的水平面上静止,施加斜向上与水平面成37度的外力F=2N使其滑行5m,然后撤去水平外力F,求物体还能滑多远。
答案为0.98m。
5.一辆汽车在滑动摩擦系数为0.7的路面上行驶,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m。
求刹车前汽车的行驶速度。
答案为10.95m/s。
6.一个质量为M的列车沿水平直线轨道以速度V匀速前进,末节车厢质量为m,在中途脱节,司机发觉时,机车已行驶L的距离,于是立即关闭油门,除去牵引力。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离为L×m/(M+m)。
模型二:斜面问题基础1.一个质量为2kg的物体在沿斜面方向拉力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。
答案为6.31m/s。
基础2.一个质量为2kg的物体在水平力F=40N的作用下从静止出发沿倾角为37度的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行5m时的速度。
答案为6.31m/s。
基础3.一个物体以某一速度从斜面底沿斜面上滑,当它滑行4m后速度变为零,然后再下滑到斜面底。
已知斜面长5m,高3m,物体和斜面间的摩擦系数μ=0.25.求物体开始上滑时的速度及物体返回到斜面底时的速度。
答案为3.46m/s和6.71m/s。
典型例题1.一个质量为m的木块以v=10m/s初速度沿倾角为30度的斜面上滑,物体与斜面的摩擦系数为0.2,求物体在斜面上滑行5m时的速度。
动能定理的典型例题

“动能定理”的典型例题【例1】质量为m=2kg的物体,在水平面上以v1= 6m/s的速度匀速向西运动,若有一个F=8N、方向向北的恒定力作用于物体,在t=2s内物体的动能增加了[ ]A.28J B.64J C.32J D.36J E.100J【分析】物体原来在平衡力作用下西行,受向北的恒力F作用后将做类似于平抛的曲线运动(见图).物体在向北方向上的加速度2s后在向北方向上的速度分量故2s后物体的合速度所以物体在2s内增加的动能为也可以根据力对物体做动能定理来计算.由于在这个过程中,可以看作物体只受外力F作用,在这个力方向上的位移外力F对物体做的功W =Fs= 8×8J=64J,故物体动能的增加【答】B.【说明】由上述计算可知,动能定理在曲线运动中同样适用,而且十分简捷.有的学生认为,物体在向西方向上不受外力,保持原动运能不变,向北方向上受到外力后,向北方向上的动能增加了即整个物体的动能增加了64J,故选B.必须注意,这种看法是错误的.动能是一个标量(不同于动量),不能分解.外力对物体做功引起物体动能的变化,是对整个物体而言的,它没有分量式(不同于物体在某方向上不受外力,该方向上动量守恒的分量式).上述计算结果的巧合是由于v2与v1互成90°角的缘故.【例2】一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为s(见图),不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求摩擦因数μ.【分析】以物体为研究对象,它从静止开始运动,最后又静止在平面上,整个过程中物体的动能没有变化,即E k2=E k1=0.可以根据全过程中功与物体动能的变化上找出联系.【解】物体沿斜面下滑时,重力和摩擦力对物体做功(支持力不做功),设斜面倾角为α,斜坡长L,则重力和摩擦力的功分别为W G= mgsinαL,W f1= -μmgcosαL.在平面上滑行时仅有摩擦力做功(重力和支持力不做功),设平面上滑行距离为s2,则W f2= -μmgs2.整个运动过程中所有外力的功为W=W G+W f1+W f2,=mgsinαL - μumgcosαL- μmgs2.根据动能定理,W=E k2-E k1,式中s1为斜面底端与物体初位置间水平距离,故【说明】本题也可运用牛顿第二定律结合运动学公式求解.物体沿斜面下滑时的加速度物体在平面上滑行时的加速度比较这两种解法,可以看到,应用动能定理求解时,只需考虑始末运动状态,无需关注运动过程中的细节变化(如从斜面到平面的运动情况的变化),显得更为简捷.本题也为我们提供了一种测定动摩擦因数的方法.厢所受阻力不变,对车厢的牵引力应增加[ ]A.1×103N B.2×103NC.4×103N D.条件不足,无法判断【分析】矿砂落入车厢后,受到车厢板摩擦力f的作用,使它做加速运动,经时间△t后矿砂的速度达到车厢的速度v=2m/s,这段时间内矿砂的位移因此选△t内落下的矿砂△m为研究对象,以将接角车箱板和达到速度v=2m/s两时刻为始末两状态时,动能增量由功与动能变化的关系得在这过程中,车厢板同时受到矿砂的反作用f′,其大小也为4×103N,方向与原运动方向相反,所以,为保持车厢的匀速运动需增加的牵引力为【答】C.【说明】常有人误认为矿砂落入车厢内,矿砂的位移就是车厢的位移s =v t,于是得车厢应增加的牵引力大小为这是不正确的,因为在矿砂将接触车厢板到两者以共同速度v=2m/s运动的过程中,车厢和矿砂做两种不同的运动,矿砂的速度小于车厢的速度,它们之间才存在着因相对滑动而出现的滑动摩擦力.也正是由于滑动摩擦力的存在,车厢所增加的牵引力做的功并没有完全转化为矿砂的动能,其中有一部分消耗在克服摩擦做功而转化为热能.!iedtxx(`stylebkzd', `1107P02.htm')【例4】一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m为物体,如图a所示.绳的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变、绳的质量、定滑轮的质量和尺寸,滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B 的距离也为H.车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.【分析】汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升高度,由动能定理即得.【解】以物体为研究对象,开始时其动能E k1=0.随着车的加速拖动,重物上升,同时速度也不断增加.当车子运动到B点时,重物获得一定的上升速度v Q,这个速度也就是收绳的速度,它等于车速沿绳子方向的一个分量(图b),即于是重物的动能增为在这个提升过程中,重物受到绳中拉力T、重力mg.物体上升的高度和重力的功分别为于是由动能定理得即所以绳子拉力对物体做的功【说明】必须注意,速度分解跟力的分解一样,两个分速度的方向应该根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的运动趋势外(每一瞬间绳处于张紧的状态),还参予了绕O点的转动运动(绳与竖直方向间夹角不断变化),因此还应该有一个绕O点转动的速度,这个速度垂直于绳长方向.所以车子运动到B点时的速度分解图应如图6所示,由此得拉绳的速度V b1(即提升重物的速度v Q)与车速v B的关系为【例5】在平直公路上,汽车由静止开始作匀速运动,当速度达到v m后立即关闭发动机直到停止,v-t图像如图所示.设汽车的牵引力为F,摩擦力为f,全过程中牵引力做功W1,克服摩擦力做功W2,则[ ]A.F:f = 1:3 B.F:f = 4:1C.W1:W2= 1:1 D.W1:W2 = 1:3【分析】在t = 0~1s内,汽车在牵引力F和摩擦力f共同作用下作匀加速运动,设加速度为a1.由牛顿第二定律F-f = ma1.在t=l~4s内,汽车仅受摩擦力作用作匀减速滑行,设加速度为a2,则-f = ma2.由于两过程中加速度大小之比为在前、后两过程中,根据合力的动能定理可知,∴ W F=W f1+W f2=W f。
动能定理的应用20个经典例题

A.动能 B.速度 C.速率 D.重力所做的功
例4、质量为m的物体放在动摩擦因数为 μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S后 撤去外力,物体还能运动多远?
F
例5、如图所示,半径为R的光滑半圆轨 道和光滑水平面相连,一物体以某一 初速度在水平面上向左滑行,那么物 体初速度多大时才能通过半圆轨道最 高点?
例7、质量m=2kg的物块位于高h=0.7m的水平桌 面上,物块与桌面之间的动摩擦因数μ=0.2,现用 F=20N的水平推力使物块从静止开始滑动L1=0.5m 后 撤去推力,物块又在桌面上滑动了L2=1.5m后离开桌 面做平抛运动。求: (1)物块离开桌面时的速度 (2)物块落地时的速度(g=10m/s)
例1、一质为2kg的物体做自由落体来自动,经过A 点时的速度为10m/s,到达B点时的速度是 20m/s,求: (1) 经过A、B两点时的动能分别是多少? (2) 从A到B动能变化了多少? (3) 从A到B的过程中重力做了多少功? (4) 从A到B的过程中重力做功与动能的变化 关系如何?
解(1)由
3、动能具有瞬时性,是状态量,v是瞬时速度(注意:v为合 速度或实际速度,一般都以地面为参考系)。
我们对动能定理的理解
1、动能定理的普适性:对任何过程的恒力、变力;匀变速、非匀变速; 直线运动、曲线运动;运动全程、运动过程某一阶段或瞬间过程都能运 用;(只要不涉及加速度和时间,就可考虑用动能定理解决动力学问题)
解法二:对物体运动的前后两段分别用动能定理W合 =△Ek,则有
1 2 Fs1 - fs1 = mv 1 -0 2
1 2 - fs2 = 0 - mv 1 2
①
②
将上两式相加,得
Fs1 - fs1 - fs2 = 0 ③
(完整版)高中物理动能定理典型练习题(含答案)

动能定理典型练习题典型例题讲解1.下列说法正确的是( )A 做直线运动的物体动能不变,做曲线运动的物体动能变化B 物体的速度变化越大,物体的动能变化也越大C 物体的速度变化越快,物体的动能变化也越快D 物体的速率变化越大,物体的动能变化也越大【解析】 对于给定的物体来说,只有在速度的大小(速率)发生变化时它的动能才改变,速度的变化是矢量,它完全可以只是由于速度方向的变化而引起.例如匀速圆周运动.速度变化的快慢是指加速度,加速度大小与速度大小之间无必然的联系. 【答案】D2.物体由高出地面H 高处由静止自由落下,不考虑空气阻力,落至沙坑表面进入沙坑h 停止(如图5-3-4所示).求物体在沙坑中受到的平均阻力是其重力的多少倍?【解析】 选物体为研究对象, 先研究自由落体过程,只有重力做功,设物体质量为m ,落到沙坑表面时速度为v ,根据动能定理有0212-=mv mgH ① 再研究物体在沙坑中的运动过程,重力做正功,阻做负功,根据动能定理有2210mv Fh mgh -=- ②由①②两式解得hh H mg F += 另解:研究物体运动的全过程,根据动能定理有000)(=-=-+Fh h H mg解得hh H mg F +=3.如图5-3-5所示,物体沿一曲面从A 点无初速度滑下,滑至曲面的最低点B 时,下滑高度为5m ,若物体的质量为lkg ,到B 点时的速度为6m/s ,则在下滑过程中,物体克服阻力所做的功为多少?(g 取10m/s 2)【解析】设物体克服摩擦力图5-3-5Hh图5-3-4图5-3-6图5-3-7所做的功为W ,对物体由A 运动到B 用动能定理得221mv W mgh =- Jmv mgh W 32612151012122=⨯⨯-⨯⨯=-=即物体克服阻力所做的功为32J.课后创新演练1.一质量为1.0kg 的滑块,以4m/s 的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s ,则在这段时间内水平力所做的功为( A )A .0B .8JC .16JD .32J2.两物体质量之比为1:3,它们距离地面高度之比也为1:3,让它们自由下落,它们落地时的动能之比为( C )A .1:3B .3:1C .1:9D .9:13.一个物体由静止沿长为L 的光滑斜面下滑当物体的速度达到末速度一半时,物体沿斜面下滑了( A )A .4LB .L )12(-C .2LD .2L4.如图5-3-6所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离L ,子弹进入木块的深度为s .若木块对子弹的阻力f 视为恒定,则下列关系式中正确的是( ACD )A .fL =21Mv 2B .f s =21mv 2C .f s =21mv 02-21(M +m )v 2D .f (L +s )=21mv 02-21mv 25.如图5-3-7所示,质量为m 的物体静放在水平光滑平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的 边缘开始向右行 至绳和水平方向 成30°角处,在此 过程中人所做的功 为( D ) A .mv 02/2B .mv 02C .2mv 02/3D .3mv 02/86.如图5-3-8所示,一小物块初速v 1,开始由A 点沿水平面滑至B 点时速度为v 2,若该物块仍以速度v 1从A 点沿两斜面滑动至B 点时速度为v 2’,已知斜面和水平面与物块的动摩擦因数相同,则( C ) A.v 2>v 2' B.v 2<v 2’ C.v 2=v 2’ D .沿水平面到B 点时间与沿斜面到达B 点时间相等. 7.如图5-3-9所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?【解析】滑块在滑动过程中,要克服摩擦力做功,其机械能不断减少;又因为滑块所受摩擦力小于滑块沿斜面方向的重力分力,所以最终会停在斜面底端.在整个过程中,受重力、摩擦力和斜面支持力作用,其中支持力不做功.设其经过和总路程为L ,对全过程,由动能定理得:200210cos sin mv L ng mgS -=-αμα得αμαcos 21sin mgS 20mg mv L +=8.如图5-3-10所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传知工件与传送带间的动摩擦因数23=μ,g 取送至h =2m 的高处.已10m/s 2.(1) 试通过计算分析工件在传送带上做怎样的运动?(2) 工件从传送带底端运动至h =2m 高处的过程中摩擦力对工件做了多少功?【解析】 (1) 工件刚放上皮带时受滑动摩擦力θμcos mg F =,工件开始做匀加速直线运动,由牛顿运动定律ma mg F =-θsin 得:图5-3-8图5-3-10V 0S 0αP 图5-3-9)30sin 30cos 23(10)sin cos (sin 00-⨯=-=-=θθμθg g mFa =2.5m/s 2设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得5.2222220⨯==a v x =0.8m <4m. 故工件先以2.5m/s 2的加速度做匀加速直线运动,运动0.8m 与传送带达到共同速度2m/s 后做匀速直线运动。
动能定理典型例题附答案

1、如图所示,质量m=0.5kg 的小球从距地面高H=5m 处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m /s ,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次? (g 取10m /s 2)2、如图所示,斜面倾角为θ,滑块质量为m ,滑块与斜面的动摩擦因数为μ,从距挡板为s 0的位置以v 0的速度沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦力,且每次与P 碰撞前后的速度大小保持不变,斜面足够长.求滑块从开始运动到最后停止滑行的总路程s.3、有一个竖直放置的圆形轨道,半径为R ,由左右两部分组成。
如图所示,右半部分AEB 是光滑的,左半部分BFA是粗糙的.现在最低点A 给一个质量为m 的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B ,小球在B 点又能沿BFA 轨道回到点A ,到达A 点时对轨道的压力为4mg1、求小球在A 点的速度v 02、求小球由BFA 回到A 点克服阻力做的功4、如图所示,质量为m 的小球用长为L 的轻质细线悬于O 点,与O 点处于同一水平线上的P 点处有一根光滑的细钉,已知OP = L /2,在A 点给小球一个水平向左的初速度v 0,发现小球恰能到达跟P 点在同一竖直线上的最高点B .则:(1)小球到达B 点时的速率?(2)若不计空气阻力,则初速度v 0为多少?(3)若初速度v 0=3gL ,则在小球从A 到B 的过程中克服空气阻力做了多少功?5、如图所示,倾角θ=37°的斜面底端B 平滑连接着半径r =0.40m的竖直光滑圆轨道。
质量m =0.50kg 的小物块,从距地面h =2.7m 处沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=0.25,求:(sin 37°=0.6,cos 37°=0.8,g =10m/s 2)(1)物块滑到斜面底端B 时的速度大小。
(完整版)动能定理习题(附答案)

m: C 点竖直上抛,根据动能定理:
12 mgh 0 mv2
2 ∴ h=2.5 R ∴ H=h +R=3.5 R
(2) 物块从 H 返回 A 点,根据动能定理:
mgH -μ mg=s0-0 ∴ s=14 R
小物块最终停在 B 右侧 14R 处
13 也可以整体求解,解法如下:
m: B→ C,根据动能定理: F 2R f 2R mgH 0 0
解: (1) m 由 A 到 B:根据动能定理: mgh 1 mv2 2
1 mv02 2
v 20m/s
m v0
(2) m 由 A 到 B,根据动能定理 3:
1 21 2
mgh W mvt mv0
2
2
W 1.95J
3a、运动员踢球的平均作用力为 200N,把一个静止的质量为
在水平面上运动 60m 后停下 . 求运动员对球做的功?
4、在距离地面高为 H 处,将质量为 m 的小钢球以初速度 v0竖直下抛,落地后,小钢球陷入泥 土中的深度为 h 求:
(1) 求钢球落地时的速度大小 v.
(2) 泥土对小钢球的阻力是恒力还是变力 ?
(3) 求泥土阻力对小钢球所做的功 . (4) 求泥土对小钢球的平均阻力大小 .
解: (1) m 由 A 到 B:根据动能定理:
WF f l cos180o 1 mvm2 0 2
l 800m
11. AB 是竖直平面内的四分之一圆弧轨道,在下端 B与水平直轨道相切,如图所示。一小球自
A 点起由静止开始沿轨道下滑。已知圆轨道半径为
R,小球的质量为 m ,不计各处摩擦。求
(1) 小球运动到 B点时的动能;
(2) 小球经过圆弧轨道的 B 点和水平轨道的 C点时,所受轨道支持力 N B、 N C各是多大 ?
动能定理经典例题含答案

h H 2-7-2 动能和动能定理经典例题例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。
例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为多少?例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220-例5某同学从高为h 处水平地投出一个质量为m 的铅球,测得成绩为s ,求该同学投球时所做的功.例6 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。
小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例7 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.2-7-3 θ F O PQ l例8如图4所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。
动能定理典型基础例题

动能定理典型基础例题例1.质量M=6.0×103kg 的客机,从静止开始沿平直的跑道滑行,当滑行距离S=7.2×lO 2m 时,达到起飞速度ν=60m /s 。
求:(1)起飞时飞机的动能多大?(2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大?(3)若滑行过程中受到的平均阻力大小为F=3.0×103N ,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大?例2.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m/s 。
人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。
例3.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:( )例4.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。
设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:( ) A .4mgR B .3mgR C .2mgRD .mgR例5.质量m=1.5kg 的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=2.0s 停在B 点,已知A 、B 两点间的距离s=5.0m ,物块与水平面间的动摩擦因数μ=0.20,求恒力F 多大。
(g=10m/s 2)例6.如图所示,质量为m 的木块从高为h 、倾角为α的斜面顶端由静止滑下。
到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到高2h处速度变为零。
求: (1)木块与斜面间的动摩擦因数? (2)木块第二次与挡板相撞时的速度?(3)木块从开始运动到最后静止,在斜面上运动的总路程?1、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能定理典型例题
【例题】
1、一架喷气式飞机,质量m=5.0×103kg,起飞过程中从静止开始滑跑的路程为s=5.3×102m,达到起飞速度v=60m/s,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k=0.02)。
求飞机受到的牵引力。
2、在动摩擦因数为μ的粗糙水平面上,有一个物体的质量为m,初速度为V1,
在与运动方向相同的恒力F的作用下发生一段位移S,如图所示,试求物体的末速度V2。
拓展:若施加的力F变成斜向右下方且与水平方向成θ角,求物体的末速度V2
3、一个质量为m的物体以初速度
V滑上动摩擦因数为μ的粗糙水平面上,最后
静止在水平面上,求物体在水平面上滑动的位移。
4、一质量为m的物体从距地面高h的光滑斜面上滑下,试求物体滑到斜面底端的速度。
拓展1:若斜面变为光滑曲面,其它条件不变,则物体滑到斜面底端的速度是多少?
拓展2:若曲面是粗糙的,物体到达底端时的速度恰好为零,求这一过程中摩擦力做的功。
类型题
题型一:应用动能定理求解变力做功
1、一质量为m的小球,用长为L的轻绳悬挂于O点,小球在水平力F作用下,从平衡位置缓慢地移Q点如图所示,则此过程中力F所做的功为()
A.mgLcos0 B.FLsinθ
C.FLθ∙D.(1cos).
-
mgLθ
2、如图所示,质量为m的物体静放在光滑的平台上,系在物体上的绳子跨过光滑的定滑轮由地面上以速度
V向右匀速运动的人拉着,设人从地面上由平台的
边缘向右行至绳与水平方向成30 角处,在此过程中人所做的功为多少?
3、一个质量为m的小球拴在钢绳的一端,另一端用大小为F1的拉力作用,在水平面上做半径为R1的匀速圆周运动(如图所示),今将力的大小改为F2,使小球仍在水平面上做匀速圆周运动,但半径变为R2,小球运动的半径由R1变为R
过程中拉力对小球做的功多大?
4、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C 点刚好停止。
求物体在轨道AB段所受的阻力对物体做的功。
5、一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳
的P端拴在车后的挂钩上,Q端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车过B点时的速度为v B.求在车由A移到B的过程中,绳Q端的拉力对物体做的功.
题型二:应用动能定理求解多过程问题
1、物体从高出地面H(m)处自由落下(不计空气阻力),落至地面陷入沙坑h(m)后停止。
求物体在沙坑中受到的平均阻力是重力的多少倍?
2、如图所示,一个质量为m的小球自高h处由静止落下,与水平面发生多次碰
撞后,最后静止在水平面上,若小球在空中运动时,受到的阻力恒为小球重
力的1
50
,小球与水平面碰撞时不损失能量,则小球在停止运动之前的运动过
程中所通过的总路程为?
3、如图所示,斜面足够长,其倾角为 ,质量为m的滑块,距挡板P为s0,以初速度v0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?
4、如图所示,小滑块从斜面顶点A由静止滑至水平部分C点而停止。
已知斜面高为h,滑块运动的整个水平距离为s,设转角B处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数。
题型三:应用动能定理巧求机车问题
1、质量为500t的机车以恒定的功率从静止出发,经5分钟行驶了2.25km,,速
度达到最大值54km/h。
求:(1)机车功率
(2)机车所受的阻力是重力的多少倍?
2、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离是多少?
题型四:应用动能定理求解连接体问题
1、如图所示,A 、B 两物体的质量2,A B B m m m m ==,用长为L 的不可伸长的线
连接后放在水平桌面上,在水平恒力F 的作用下以速度V 做匀速直线运动,某一瞬间线突然断裂,保持F 不变继续拉A 一段距离0s 后撤去,当A 、B 都
停止时相距多远?
2、如图所示,在水平桌面的边角处有一轻质光滑的定滑轮K ,一条不可伸长的轻绳绕过K 分别与物块A 、B 相连,A 、B 的质量分别为m A 和m B ,开始系统处于静止状态,现用一水平恒力F 拉物块A ,使物块B 上升。
已知B 上升距离为h 时,B 的速度为V ,求此过程中物块A 克服摩擦力所做的功。
(重力加速度为g )
题型五:动能定理与其它规律的综合问题
1、如图,质量m=60 kg的高山滑雪运动员,从A点由静止开始沿雪道滑下,从B 点水平飞出后又落在与水平面成倾角θ=37°的斜坡上C点.已知AB两点间的=25 m,B、C两点间的距离为s=75 m(g取10 m/s2,sin37°=0.6).高度差为h
AB
求:
(1)运动员从B点飞出时的速度
V的大小;
B
(2)动员从A到B过程中克服摩擦力所做的功.
2、滑雪者从A点由静止沿斜面滑下,经一平台后水平飞离B点,地面上紧靠平台有一个水平台阶,空间几何尺度如图所示.斜面、平台与滑雪板之间的动摩擦因数为μ.假设滑雪者由斜面底端进入平台后立即沿水平方向运动,且速度大小不变.求:
(1)滑雪者离开B点时的速度大小;
(2)滑雪者从B点开始做平抛运动的水平距离s.
题型六:应用动能定理处理板块模型
1、质量为M的长木板放在光滑的水平面上,一个质量为m的滑块以初速度
V滑
上木板表面,滑块和木板间的动摩擦因数为 ,最终A、B以共同的速度V 在光滑水平面上运动。
试求滑块和木板间的相对位移。
2、如图所示,在光滑的水平面上有一平板小车M正以速度v向右运动,现将一个质量为m的木块无初速放到小车上,由于木块和小车之间的摩擦力作用,小车的速度将发生变化.为使小车保持原来的运动速度不变,必须及时地施加一向右的水平恒力F,当F作用一段时间后撤去时,木块恰能随小车一起以速度v共同向右运动,设木块和小车间的动摩擦因数为μ.求在上述过程中,水平恒力对小车做的功.。