离心式风机性能规格表

离心式风机性能规格表
离心式风机性能规格表

离心风机试车方案

三门东南特钢集团 D700-2.3/0.98离心鼓风机试车方案 一: 单机试车 1.单机试车内容 1).10KV开关柜及运行柜调试 2)。控制柜及信号柜调试 3)。仪表柜及仪表信号柜调试 4)。启动电阻器调试 5)。配风阀、进风调节阀、放风阀、调试运行,单向阀、空气过滤器检查。 6)。油站及润滑系统的调试运行 7)。冷却水系统的通水检查。

8). 2000KW电机检查测试并做好主电机单独运行各项检查工作。 9).厂房照明线路通电检查。 2:单机试车要求 1)。各部位试车应按设计要求和操作规程进行,并认真做好试车记录,严格把关,直至单车试车合格为止。 2)。原则上谁施工谁负责单机试车,生产厂岗位操作人员随岗监护 和学习,单机试车应服从试车领导小组统一安排,防止相互干 扰和造成设备人身安全事故。 3)。单机试车从日到日止。 二:主YK2000-2/990电机试运行 1 。试车前的准备工作 1)。确认主电机“应检查项目”是否符合要求,例如:轴间间隙、定转子间气隙、绝缘电阻、吸收比等。 2)。检查地脚螺栓是否拧紧,各部接线端头有无松动现象,并盘动转子不得有咔兹声。 3)。检查电机润滑系统,水冷系统运行是否良好。

2. 主电机第一次启动应在空载下进行(不与增速器和空压机连接)空载运行时间为2小时。 3. 电机在试运行中应进行下列检查并做好记录。例如:空载电流、 旋转方向、电机温度、电机振动、电机轴承温度等。 4)。主电机空载运行由施工单位,生产厂,供货方共同监护。 5)。主电机空载运行时间暂定月日。 三:联动试车 1. 试车前的准备工作 1)。操作人员与高配室联系,确认供电、控制、保护系统及 测量仪表信号回路安全可靠,动作灵敏,并取得高配室值班人员的同意。 2)。确认主电机转向符合离心风机的旋转方向要求。 3)。对主电机整体进行检查,电机引出线连接应牢固,电机定、转子回路绝缘符合要求。 4)。检查所有螺栓是否拧紧,并确认一切。 5)。检查润滑系统、油脂性能,油量是否充足,油温应在25-35度,否则,应启动电加热器。

离心风机维护检修规程

离心风机维护检修规程-

————————————————————————————————作者: ————————————————————————————————日期: ?

离心风机维护检修规程 资料整理:王发财 1.总则 1.1适用范围 1.1.1本规程规定了离心式风机的设备完好标准、检修周期与内容、检修与质量标准、试车与验收、检修安全与环保注意事项、维护与故障处理。 1.1.2本规程适用于石油化工离心式通风机和离心式鼓风机。 1.2设备结构概述 离心式风机由机壳、转子组、轴承和轴承箱等部件构成,有透平驱动及电机驱动等型式。 1.3编制依据 GB 50275—1998 压缩机、风机、泵安装施工及验收规范 HGJ 1024—79 化工厂离心通(鼓)风机维护检修规程 设备生产厂家提供的技术资料和使用说明书 2.设备完好标准 2.1零部件 2.1.1主、辅机的零、部件完整齐全,质量符合技术要求。 2.1.2电流、温度、压力等仪表和控制、调节装置完整齐全、灵敏正确。 2.1.3风机基础、基座稳固可靠,紧固和连接螺栓齐全、牢固,无松动。 2.1.4管道、阀门、支架、管卡等安装合理、牢固完整、标志分明。 2.1.5转子轴向窜量及各部间隙符合技术要求和规范。 2.1.6防腐、保温完好,符合技术要求。 2.2运行性能 2.2.1设备运转平稳,无异常振动和噪音,电机温升和电流未超过允许值。2.2.2设备达到设计能力,能满足生产需要, 2.2.3润滑油及冷却系统正常,油温、油压、油质符合设计值和规范要求。 2.3技术资料 2.3.1设备的设计、制造、检验、安装、验收等技术文件和档案资料齐全。2.3.2设备操作规程、维护检修规程齐全。

风机测试方案

通风机安全检测检验方案 山西公信安全技术有限公司 二〇一八年六月二十一日

通风机安全检测检验方案 为搞好通风管理、确保通风机装置安全、经济运行提供科学的依据,依据《煤矿在用主通风机系统安全检测检验规范》AQ1011-2005的规定要求,山西公信安全技术有限公司受炭窑坪煤业有限公司委托对该矿主通风机不同角度(+2.5,-2.5,0,+5,-5)进行安全检测检验。经现场查看和矿方对检测检验的要求,制订本方案。 一、确定通风网络的组成 本次通风机安全检测检验是在由防爆门、回风井、风硐、通风机、扩散器等部分组成可供调节的通风网络。 二、检测项目及测点布置 1.风压 利用风机现有静压测孔,接上矿井通风参数测定仪,直接测定各调节点的相对静压值。 位置:风机集流器处 形状:圆形 2.风量测定 在扩散器风流出口处安装智能测试风杯,测量风速。 3.电气参数 在主通风机电控柜的二次测线路中接入电动机经济运行测试仪,测取电动机的输入功率、电压、电流、功率因数等电气参数。 4.空气密度 用矿井通风参数仪测定风机房阴凉处的大气压力,用温湿度计在

风流出口处测取风流的温湿度,计算各调节工况点空气密度。 5.噪声 在距离通风机扩散器45°方向的3.4m处、离地高度1m处用声级计测取扩散器的A声级噪声。距通风机电机外壳1m外测量机壳辐射噪声。 6.转速 参照额定转速。 7.振动 用便携式测振仪在通风机直接与坚硬基础紧固连接处测量风机的振动。 8.轴承温度 利用矿方现有传感器直接读取数值。 9. 叶片径向间隙 用塞尺在主通风机叶片与机壳(或保护圈)的间隙处测量该间隙值。 三、测定条件 1.装置完好条件: ①测定前应检查通风机、电动机各零部件是否齐全,装配是否紧固,运行是否正常,备用风机确保在10分钟内启动,以保障在测定过程中通风机能安全运行。 ②通风机进风口或出风口至风量、风压测定断面之间应无明显漏风,以确保测定工作的准确性。

2015离心式通风机设计和选型手册

离心式通风机设计 通风机的设计包括气动设计计算,结构设计和强度计算等内容。这一章主要讲第一方面,而且通风机的气动设计分相似设计和理论设计两种方法。相似设计方法简单,可靠,在工业上广泛使用。而理论设讲方法用于设计新系列的通风机。本章主要叙述离心通风机气动设计的一般方法。 离心通风机在设计中根据给定的条件:容积流量,通风机全压,工作介质及其密度 ,以用其他要求,确定通风机的主要尺寸,例如,直径及直径比,转速n,进出口 宽度和,进出口叶片角和,叶片数Z,以及叶片的绘型和扩压器设计,以保证通风机的性能。 对于通风机设计的要求是: (1)满足所需流量和压力的工况点应在最高效率点附近; (2)最高效率要高,效率曲线平坦; (3)压力曲线的稳定工作区间要宽; (4)结构简单,工艺性能好; (5)足够的强度,刚度,工作安全可靠; (6)噪音低; (7)调节性能好; (8)尺寸尽量小,重量经; (9)维护方便。 对于无因次数的选择应注意以下几点: (1)为保证最高的效率,应选择一个适当的值来设计。 (2)选择最大的值和低的圆周速度,以保证最低的噪音。 (3)选择最大的值,以保证最小的磨损。

(4)大时选择最大的值。 §1 叶轮尺寸的决定 图3-1叶轮的主要参数:图3-1为叶轮的主要参数: :叶轮外径 :叶轮进口直径; :叶片进口直径; :出口宽度; :进口宽度; :叶片出口安装角;

:叶片进口安装角; Z:叶片数; :叶片前盘倾斜角; 一.最佳进口宽度 在叶轮进口处如果有迴流就造成叶轮中的损失,为此应加速进口流速。一般采用,叶轮进口面积为,而进风口面积为,令为叶轮进口速度的变化系数,故有: 由此得出: (3-1a) 考虑到轮毂直径引起面积减少,则有: (3-1b) 其中 在加速20%时,即, (3-1c)

一般离心风机和轴流风机规范

离心式风机箱技术规范: 离心风机箱技术规范 风机类型 风机结构应采用离心式或者混流式,箱体类型,其叶轮为钢制或者铝制,并整体经过静态和动态平衡。叶轮平衡等级应达到AMCA 204标准的G2.5水平。叶轮采用可单进风或者双进风叶轮(根据风量大小不同,选择最优化的箱式产品)。 质量标准 风机性能应按照AMCA标准210和300进行检测,风机性能参数应是以风机整机进行实验检测所得数据。生产企业应拥有全国工业品生产许可证和ISO9001质量体系认证。 箱体 外壳采用镀锌钢[可选项:环氧树脂静电喷涂处理的]单层箱体,箱体板材厚度应足够厚以降低振动和噪音。 消音型风机箱体为双层,外层应为镀锌钢,内层可采用消音措施,消音层为玻璃纤维材料或者橡塑消音板材质(根据风量风压,选择噪音小的箱体结构)。 其内部风机两侧进风口宽度应根据AMCA推荐的宽度进行设计,以减少紊流,提高效率,降低噪音。 轴 风机轴应经过精车细磨和高温调制处理,达到HB370硬度。驱动机构应按风机额定转速下最大功率的120%选型。 轴承 轴承应采用优质可润滑滚珠轴承带有铸铁枕座,寿命L10:80,000小时。 电机 电机应与风机负载紧密配合,防护等级IP54,绝缘等级F级。当风机做消防用途时,电机置于气流之外,以避免高温烟气对驱动机构的影响,置于外部的电机、皮带、皮带轮应配有保护。 防爆结构[仅适用于防爆型] 风机应符合AMCA 99规定的Spark C防爆结构,蜗壳进风口镶铜环,电机应采用隔爆电机,整机应通过国家防爆认证,生产企业应拥有防爆电气生产许可证。 消防风机及认证[仅适用于消防排烟] 该风机作为消防风机应当通过JB/T 10563-2006《一般用途离心通风机技术条件》检验,应保证常规性能符合标准要求,并提供拥有检测资质的机构出具的检测报告。同时还需要经国家指定的消防安全检测机构按照GA 211-2009《消防排烟风机耐高温试验方法》检测,在主风道介质温度为280℃时必须能够连续运行30分钟以上,保证耐高温性能符合标准要求,并提供拥有检测资质的机构出具的检测报告。 标牌 永久固定的铝制标牌上应有清晰可辨的风机编号,型号和产品序列号(即每台机器的唯一身份证明),从而保证客户方便地查询配件的历史记录。 可接受供货商 可接受供货商的资信等级为AAA级,类似产品。 轴流风机技术规范 风机类型

离心风机性能试验

离心风机性能试验 一.试验目的 风机性能试验的目的在于掌握离心式风机性能测试的方法,求得离心式风机在给定转速下标准进气状态时的空气动力性能,并给出其特性曲线,从而提供风机合理的工作范围。 二.实验内容 采用计算机自动测试的方法获取离心式风机性能曲线。 三.试验装置和仪器 图1 进出气联合试验装置简图 系统由风机试验台、传感器、数据采集器、PC机和打印机组成。 风机进出口静压测量采用FG300 A 06 BIN M5智能压力变送器,动压测量采用FG700 DP 3 S J1 B M3智能差压变送器,输出为4~20mA电流信号。电机功率测量采用三相交流有功功率变送器,输出为0~+5V电压信号。风机转速测量采用红外光电转速传感器,输出为脉冲信号。数据采集器的任务是将传感器输出的电流、电压以及脉冲信号进行整形、滤波、放大,然后在8051单片机控制下进行A/D变换,所得的结果经RS232标准通讯接口传送给PC机,进行数据的分析、计算及显示,并可将计算结果存于硬盘或打印输出。 四.操作方法及实验步骤 1.按规定要求连接传感器、数据采集器的电源线及信号线,然后开启电源。 2.在PC机上运行测试软件,从下拉式菜单上选择“数据采集”选项,此时屏幕显示风机的全压、静压、轴功率及效率坐标图,各坐标图上均有一红点,分别表示当前风机的全压、静压、轴功率及效率随流量的变化关系,当风机的工况改变时,红点亦会随之移动。 3.关闭风机出口节流锥,开启电机电源,缓慢开启节流锥,逐渐增大风机流量,同时

观察计算机屏幕上四个坐标图中红点的位置,在需要采集数据的工况点,按“回车”键,此时屏幕上的红点变成白点,表示计算机已采集了该工况点处的数据。按此方法,在0~最大流量范围内采集7~10个工况点的数据,数据采集工作即告结束。 4. 从计算机下拉式菜单上选择“特性曲线”选项,计算机立即将屏幕上全部的工况点 拟合成特性曲线。 5. 通过打印机可打印出测试系统图,风机的全压、静压、轴功率及效率曲线,也可打 印出原始的测试数据。若系统未连接打印机,则需手工记录原始数据。 五.实验数据处理 根据泵与风机性能曲线的定义,所有作图数据必须是同一转速下的数据,而测试所得的数据是在不同转速下测得的,所以首先必须应用比例定律将全部数据修正到同一转速下。本实验要求将全部数据都修正到2950r/min 下。最后作出风机的全压曲线、静压曲线、功率曲线和效率曲线。 全压曲线 v q p 0 静压曲线 v q st p 0功率曲线 v q P 0 效率曲线 v q η

风机性能试验

风机性能试验 一、测量参数及测点布置 1、风机静压测量:(测点位置参考西安院在成都轴流风机所做试验报告) 引、送风机的进口静压测点均布置于各风机进风箱进口法兰略上的矩形直管段上,每个侧壁面中心线处各设一个静压测点,每台风机共设置4个进口静压测点。 引、送风机的出口静压测点布置于各风机扩压筒出口法兰略前的圆形管段上,每台风机沿圆周方向均匀布置3个静压测点。 一次风机进口静压测点布置于进口风门下部, 每个侧壁面中心线处各设一个静压测点,共设置4个进口静压测点。出口静压测点可利用现有标定孔测量。 附图1 1、1压力测孔内径d=2~3mm,最大不超过5mm,外部短导管内径为2~2.5d。见附图1。 1、2介质温度测点采用流量测量截面的测点。 2、流量测量 2、1测量截面布置:(测点位置参考西安院在成都轴流风机所做试验报告) 引风机的流量测量截面布置于引风机进气箱略前的收敛管段上,每台风机设置10个流量测孔。 送风机的流量测量截面布置于送风机进气箱略前的收敛管段上,每台风机设置8个流量测孔。我厂靠背管加长杆接头外径为32 φmm,引风机处测孔孔径应取不小于50 φmm。管座加工见附图。

一次风机流量测量可利用现有标定孔测量 附图2:点1和点2处分别为风机入口平面与出口平面。 2、2流量测量项目及公式 2、2、1风机流量ρ νd A p 2q ? = q V =为测量截面处流量,m 3/s ,A=截面面积m 2,ρ=流量测量截面处介质密度kg/m 3, P d =流量测量截面处平均动压,Pa 。 或风机流量q V =A ×ν q V =测量截面处流量m 3/s ,ν=测量截面处气流平均速度,m 3/s ,A=测量截面面积m 2 式中101325 273273 293.1s a p p t +?+? =ρ Pa=当地大气压Pa ,Ps=测量截面处静压Pa ,t 为流量测量截面处介质温度℃。 2、2、2风机全压()??? ? ? ?-+-=222 1122212νρνρs s p p P 式中P =风机全压Pa ,1s p =点1处静压Pa ,2s p =点2处静压Pa ,1ν=点1处气流速度,点2处气流速度2ν= 2 2ρA q m m/s 。m q =1A 1d 2ρP kg/s 2、2、3风机功率K/1000P ×q ?=νt P KW K=气体可压缩系数约为0.96,P =风机全压Pa,νq =风机容积流量m 3/s 2、2、4风机轴功率tr P P η0a = a P =风机轴功率,mot UI P ?ηcos 30=,tr η=传输效率%,直连时tr η=1。 0P =电动机输出功率,?cos =电动机功率因数,mot η=电动机效率。

离心通风机选型及设计

离心通风机选型及设计 1.引言…………………………………………………………………… .(1) 2.离心式通风机的结构及原理 (3) 2.1离心式风机的基本组成 (3) 2.2离心式风机的原理 (3) 2.3离心式风机的主要结构参数 (4) 2.4离心式风机的传动方式 (5) 3离心风机的选型的一般步骤 (5) 4.离心式通风机的设计 (5) 4.1通风机设计的要求 (5) 4.2设计步骤 (6) 4.2.1叶轮尺寸的决定 (6) 4.2.2离心通风机的进气装置 (13) 4.2.3蜗壳设计 (14) 4.2.4参数计算 (20) 4.3离心风机设计时几个重要方案的选择 (24) 5.结论 (25) 附录 (25)

引言 通风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。通风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。 通风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 通风机已有悠久的历史。中国在公元前许多年就已制造出简单的木制砻谷风车,它的作用原理与现代离心通风机基本相同。1862年,英国的圭贝尔发明离心通风机,其叶轮、机壳为同心圆型,机壳用砖制,木制叶轮采用后向直叶片,效率仅为40%左右,主要用于矿山通风。1880年,人们设计出用于矿井排送风的蜗形机壳,和后向弯曲叶片的离心通风机,结构已比较完善了。 1892年法国研制成横流通风机;1898年,爱尔兰人设计出前向叶片的西罗柯式离心通风机,并为各国所广泛采用;19世纪,轴流通风机已应用于矿井通风和冶金工业的鼓风,但其压力仅为100~300帕,效率仅为15~25%,直到二十世纪40年代以后才得到较快的发展。 1935年,德国首先采用轴流等压通风机为锅炉通风和引风;1948年,丹麦制成运行中动叶可调的轴流通风机;旋轴流通风机、子午加速轴流通风机、斜流通风机和横流通风机也都获得了发展。 按气体流动的方向,通风机可分为离心式、轴流式、斜流式和横流式等类型。 离心通风机工作时,动力机(主要是电动机)驱动叶轮在蜗形机壳内旋转,空气经吸气口从叶轮中心处吸入。由于叶片对气体的动力作用,气体压力和速度得以提高,并在离心力作用下沿着叶道甩向机壳,从排气口排出。因气体在叶轮内的流动主要是在径向平面内,故又称径流通风机。 离心通风机主要由叶轮和机壳组成,小型通风机的叶轮直接装在电动机上中、大型通风机通过联轴器或皮带轮与电动机联接。离心通风机一般为单侧进气,用单级叶轮;流量大的可双侧进气,用两个背靠背的叶轮,又称为双吸式离心通风机。 叶轮是通风机的主要部件,它的几何形状、尺寸、叶片数目和制造精度对性能有很大影响。叶轮经静平衡或动平衡校正才能保证通风机平稳地转动。按叶片出口方向的不同,叶轮分为前向、径向和后向三种型式。前向叶轮的叶片顶部向叶轮旋转方向倾斜;径向叶轮的叶片顶部是向径向的,又分直叶片式和曲线型叶片;后向叶轮的叶片顶部向叶轮旋转的反向倾斜。 前向叶轮产生的压力最大,在流量和转数一定时,所需叶轮直径最小,但效率一般较低;后向叶轮相反,所产生的压力最小,所需叶轮直径最大,而效率一般较高;径向叶轮介于两者之间。叶片的型线以直叶片最简单,机翼型叶片最复杂。 为了使叶片表面有合适的速度分布,一般采用曲线型叶片,如等厚度圆弧叶片。叶轮通常都有盖盘,以增加叶轮的强度和减少叶片与机壳间的气体泄漏。叶片与盖盘的联接采用焊接或铆接。焊接叶轮的重量较轻,流道光滑。低、中压小型离心通风机的叶轮也有采用铝合金铸造的。 轴流式通风机工作时,动力机驱动叶轮在圆筒形机壳内旋转,气体从集流器进入,通过叶轮获得能量,提高压力和速度,然后沿轴向排出。轴流通风机的布置形式有立式、卧式和倾斜式三种,小型的叶轮直径只有100毫米左右,大型的可达20米以上。

无蜗壳离心风机性能及测试方法的探讨_王顶东

第12卷 第3 期2 0 1  2年6月REFRIGERATION AND AIR CONDITIONING 77- 78收稿日期:2011-12- 13作者简介:王顶东,本科,工程师,主要研究方向为暖通空调。 无蜗壳离心风机性能及测试方法的探讨 王顶东 张卫军 丁勇 (合肥通用机电产品检测院) 摘 要 试验分析普通离心风机、无蜗壳离心风机和箱式无蜗壳离心风机的性能差异,总结不同测试方法对无蜗壳离心风机性能测试结果的影响。关键词 离心风机;无蜗壳;箱式无蜗壳 Study on the performance and its testing  methods of voluteless centrifugal fanWang Dingdong Zhang Weijun Ding  Yong(Hefei General Machinery  &Electrical Products Inspection Institute)ABSTRACT The performance differences among  three centrifugal fans(volute,volutelessand chamber voluteless)are experimentally analyzed.The influences of different testingmethods on p erformance test results are concluded.KEY WORDS centrifug al fan;voluteless;chamber voluteless 无蜗壳离心风机一般多以设备冷却风扇的形 式使用,具有风量大、压力高、噪声低、结构紧凑等 优点, 是普通轴流风机[1]和普通离心风机[2 ]无法替代的产品。鉴于无蜗壳离心风机良好的低噪声性能,目前也有厂家推出箱式无蜗壳风机用于建筑物通风换气。笔者通过对比试验数据,分析普通离心风机、无蜗壳离心风机和箱式无蜗壳离心风 机的性能差异, 同时总结不同测试方法[3 ]对无蜗壳离心风机性能测试结果的影响。 1 三种离心风机的性能对比 试验采用标准出气侧试验风室,风室横截面积为3 000 mm×3 000 mm,风室中采用孔板测定流量,其结构如图1所示 。 图1 标准出气侧试验风室 在上述风室装置中对 700  mm后向离心叶轮的3种机型风机进行试验,3种机型的试验安装示意图如图2所示。考虑到3种机型的不同结构有不同的出口面积,采用静压数据作为测试结果进行对比。 由测试结果(见图3)可以看出,普通离心风机的压力要比另外2种机型高,而且随着风量的减小, 其压力的增幅加大。产生这种性能差异的原因:空气从集流器到叶轮出口这一流动过程中3种机型没有区别,但空气离开叶轮出口后就有明显的不同,普通离心风机中,空气在蜗壳引导下沿切向流出蜗壳,这一过程中将无用的旋转动能转化为有用的静压和动压,普通离心风机肯定要比没有蜗壳的机型压力高。当风量减小时, 离心叶轮出口处会产生更高的切向速度,具

离心风机检测标准

离心风机检测标准 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

离心式通用风机 1.通则 1.1本章概要 本章节说明离心式风机的制造、工厂测试、交货及安装时之要求。 1.2 工作范围 1.2.1 离心式风机。 1.2.2 设备的安装、操作及维修之设备。 1.3相关章节 1.3.1第15950章--测试、调节及平衡。 1.3.2第15820章--风管附属设备。 1.4国家标准或国际标准 1.4.1 风机测试标准:风机的空气性能或噪音参数,须依以下之一种标准测试(1)中国国家标准(CNS) -CNS7778B4046送风机 -CNS7779B7165送风机检验法 (2)空气运动及控制协会(AMCA) -AMCA210 -AMCA300 - AMCA301 (3)英国国家标准(BS) -BS848PART1 -BS848PART2 (4)国际标准组织(ISO) - ISO5801 1.4.2承包商可建议采用其他国际法规或标准,但须经工程司(技师)核可同意 后使用。 1.5制造商及产品质量的要求 1.5.1提供风机之制造商,应为台湾区冷冻空调工程工业同业公会之会员,至 少须有5年的制造经验。 1.5.2性能认证︰安装功率在1.5kW(含)以上的离心风机,须依照AMCA211取 得空气性能的认证,产品须贴附AMCA性能认证标签。若未 取得AMCA空气性能认证之产品,则须经工研院能资所热流 与送风实验室,或经TAF认证之第3独立公正实验室并经 第3公证人认证下,依AMCA210进行测试,并检附空气性 能正本测试报告(每个风机机型,一份测试报告)。若风量 或静压大于工研院之实验室设备之规格而无法进行时,则 可由制造厂商于工厂进行测试,但制造厂商应于送审时提 送出厂的性能测试程序,以供审查。

离心通风机的设计

离心通风机的设计 已知条件:风机全压P tf =2554 Pa,风机流量q v =5700 m 3/h, 风机进口压力P in =101324.72Pa 风机进口温度t m =25°C 空气气体常数R=287J/ ㎏×k 风机转速n=2900r/min 1.空气密度ρ ()()33in 1847.16.3027328732.133*760273m kg m kg t R P in =??????+=+=ρ 2.风机的比转速 432.154.5???? ??=iF in v s q n n ρρ 4325541847.12.13600 5700290054.5??? ?????=s n =55.73 3.选择叶片出口角A 2β A 2β=?35 由于比转速较小,选择后弯圆弧叶片。 4.估算全压系数t ψ []210439.1107966.23835.02523??-?+=--s A t n βψ []273.5510439.135107966.23835.0253???-??+=-- =0.873

5.估算叶轮外缘圆周速度2u s m s m p u t tF 772.70873.0187.1212554212=??==ρψ 6. 估算叶轮外缘出口直径2D m m n u D 462.029001416.3772.70606022=?? ? ????==π 选择2D =0.46m ,相应地s m 85.692=u 7. 计算风机的t ψ、?、s D 、σ 884.085.691847.1212554u 21p 2 22tF t =??==ρψ 136.085.6946.045700/3600u D 4q 22 22v =??==ππ ? 611.20.136884.0993.0993 .0412141t s =?==?ψD 405.0884.0136.04321 43t 21===ψ?σ 8.确定叶轮进口直径0D ????? ? ??+=2 004d c q D v π 选择悬臂式叶轮,d=0,参考表3-11a 选0c =30s m ;

4-72离心风机性能与选用件表(中文)

用途 4-72型离心通风机主要用途是为一般工厂及大型建筑物的室内通风换气或输送空气及其它不自燃、不易爆、不挥发、对人体无害、对钢材无腐蚀性之气体。但输送的气体不得含粘性物质,所含尘土及硬质颗粒物不大于150mg/m3,气体温度不得超过80℃。 4-72型离心通风机在我国是使用最早的风机,然而也是使用最普通的风机,从高层建筑到地下铁道,从锅炉鼓风到厂房换气,从北部边疆到南海之滨,从西部高原到东部边垂,随处可见。 型式 从电机一端正视,凡叶轮按顺时针方向旋转者均称“右旋风机”,以“右”表示,反之则均称之为“左旋风机”,以左表示。 风机的出风口位置以机壳的出风口角度表示,4-72型风机No2.8~6在出厂时均做成一种型式,使用单位根据要求再安装成所需要的位置,订货时无须注明。其中:No2.8出风口位置调整范围是0°~225°,间隔是45°;No3.2~6出风口调整范围是0°~225°,间隔是22.5°;No8~12出风口调整范围是0°~225°,间隔是45°;No16、20出风口角度制成固定的0°、90°、180°三种,不能调整,订货时需注明。 风机的传动方式有A、B、C、D四种:No2.8~5采用A式传动,No6既有A式传动又有C式传动,No8~12采用C、D式两种传动方式,No16~20采用B式传动。 如上述机号、传动方式、出口角度不能适应您的生产需要,我厂有能力为您改造或设计,直至您满意为止。 结构 本风机No2.8A~6A主要由叶轮、机壳、进风口、电机等部分组成,No6C和No8~20除具有上述结构外,还有传动部分。 叶轮-由10个后倾机翼型叶片、曲线型轮盖和平板后盘组成,经动静平衡校正和超速运转实验,效率高,运转平稳可靠,空气性能良好。 机壳-用普通钢板焊接成蜗壳形整体。 进风口-制成整体结构,装于风机一侧,与轴向平行的截面为曲线形状,作用是能使气流顺畅进入叶轮,且损失较小。 传动-由主轴、轴承箱、滚动轴承、皮带轮或联轴器组成。 安装与使用 在安装前首先应准备好安装所需材料和工具,对风机各部机件进行全面检查,对叶轮、机壳、主轴和轴承等机件更应特别细致检查,如发现损伤、应予修复,然后用煤油清洗轴承箱内部。 在进行安装操作过程中必须注意下列三点: 1、在一些接合面上,为了防止生锈,减少拆卸困难,应涂上一层润滑油或机械

风机离心风机的常识与选型(各种压效率概念计算等)

风机离心风机的常识与选型(各种压效率概念计算等) 风机类型 离心风机分类与结构离心风机(后简称风机)是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。离心风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;风洞风源和气垫船的充气和推进等。 离心风机分类 主要结构部件 一些常识1、压力:离心通风机的压力指升压(相对于大气的压力),即气体在风机内压力的升高值或者该风机进出口处气体压力之差。它有全压、动压、静压之分。性能参数指全压(等于风机出口与进口总压之差),其单位常用Pa、kPa、mH2O、mmH2O等。2、流量:单位时间内流过风机的气体容积的量,又称风量。常用Q来表示,常用单位是;m3/s、m3/min、m3/h。3、转速:风机转子旋转速度。常以n来表示,其单位用r/min。4、功率:驱动风机所需要的功率。常以N来表示,其单位用KW。关于全压、动压、静压1、气流在某一点或某一截面上的总压等于该点截面上的静压与动压之和。而风机的全压,则定义为风机出口截面上的全压

与进口截面上的全压之差,即: Pt =(Pst2 +ρ2 V2 2/ 2)-( Pst1 +ρ1 V12/2) Pst2 为风机出口静压,ρ2为风机出口密度,V2为风机出口速度 Pst1 为风机进口静压,ρ1为风机进口密度,V1为风机进口速度2、气体的动能所表征的压力称为动压,即:Pd=ρV2/23、气体的压力能所表征的压力称为静压,静压定义为全压与动压之差,即:Pst = Pt–Pd注:我们常说的机外余压指的是机组出风口处的静压和动压之和。如下图所表示管道内全压、静压和动压: 静压(Pj)由于流体分子不规则运动而撞击于器壁,垂直作用在器壁上的压力叫静压,用Pj表示,单位用毫米水柱。计算时,以绝对真空为计算零点的静压称为绝对静压。以大气压力为零点的静压称为相对静压。空调中的空气静压均指相对静压。大于周围大气压的静压为正值,小于周围大气压时静压为负值。例如:风道上的静压力测点是从烟风道壁面上引出的,因此,仪表盘上的风压压力计指示的仅是静压。动压(Pd)流体在管道内或风道内流动时,由于速度所产生的压力称为动压或速度压头。动压值总是正的,用Pd表示,单位用毫米水柱。全压(Pq)是指某点上静压力和动压力的代数和,即:Pq=Pd+Pj;单位也是毫米水柱。全压=静压+动压

风机性能试验台

风机性能试验台 一、产品说明 本试验台能对各种不同类型的风机性能进行测定,能进行定风量和定风压试验,并能对试验参数进行曲线拟合,得出风机的性能曲线。试验台符合标准ASHRAE 51-75的要求。 二、测试项目 1. 定风量定电压试验 2. 定风压定电压试验 3. 定风量定转速试验 4. 定风压定转速试验 三、技术指标 1. 风量范围:110~7000m3/h 2. 重复性精度:±1% 3. 试验台规格:吸风式风机性能台,吹风式风机性能台(可按用户需要进行特殊设计)。 根据GB1236-2000的要求 -技术指标 1. 被测风机风量范围: ·吹风式:1000-20.000m3/h,转速0-6000RPM; 2. 测定精度:重复性精度:±2% 3. 环境:温度:20±15℃;湿度:65±20%(用户保证) 4. 风机尺寸:1000mm以内,宽350 mm(根据客户要求) 一.控制方案 本试验台采用吹风式风洞测试风机性能,具体方案如下:

图1 风室出气试验示意图(用多喷嘴流量计测流量) 图2 风室进气试验示意图(用多喷嘴流量计测流量) 三、风机性能测试台,风机风量台,性能测试台控制参数(在全自动控制方案中为控制参数,在其他方案中为测量参数) 1.风管静压(定静压) u 差压变送器:微压变送器,-500Pa~500Pa/1~5V (精度0.075%) u 控制:PID u 数据记录:通过数据采集器采集到计算机

2.两内空板的压差(定风量) u 差压变送器:微压变送器,,量程0~1000Pa /1~5V(精度0.075%)u 控制:PID:输出控制电动风阀的开启度! u 数据记录:通过数据采集器采集到计算机(国产) 3.被测风机电压 u 电压范围:0~380V DC 二.测量参数 1.被测风机电流 u 测量范围:0 ~50A(测量精度0.01V) u 电流变换器:带分流器, 0~50A / 1~5V DC 。精度0.1% u 数据记录:通过数据采集器采集到计算机 2.风洞温度 u 测量范围:相对温度0~100℃ u 测量精度:±0.2℃ u 信号变换器:0~100℃/ 1~5V DC u 数据记录:通过数据采集器采集到计算机 3.风洞湿度 u 测量范围:相对湿度0~100%RH u 测量精度:相对湿度±3% RH

通风机性能测定

一、系统简介矿井通风机装置性能测定系统(主扇性能测定仪)是中矿能源与安全工程学院开发的科研产品,用于煤矿开展通风机装置性能测定工作,是局(矿)通风和机电管理部门必备的基础仪器。也可用于高校有关专业的实验教学以及科研测试服务。 矿井主要通风机是保证矿井安全生产的重要装备。因此《煤矿安全规程》规定:新安装矿井 主要通风机投产前,必须进行通风机性能的测定和试运转工作,以后每五年至少进行一次性 能测定。该测定系统正是因此需求而研发,其1型产品于1992年就通过原煤炭工业部组织 的技术鉴定。使用这套系统,测定工作除工况调节外只需简单操作计算机即可。且测定速度 快,采集数据量大,自动化程度高,需测参数全部由系统自动采集。测定完毕即可打印数据 报表和性能曲线。是一套先进高效的测定系统,可减小煤矿现场开展此项工作的难度。二、主要功能 该系统是在多年现场实测经验的基础上开发研制的,是将计算机数据采集和传感器技术用于 矿井通风管理工作的一项典型应用。所测参数指标符合国家标准“《工业通风机用标准化风 道进行性能试验》GB/T1236-2000”和煤炭行业标准“《煤矿用主要通风机现场性能参数测 定方法》MT 421-2004”的要求。通过多次改型和软硬件升级已基本适应我国各种类型风机 性能测定的需要。系统采用视窗环境(适用WINDOWS 98、2000、XP等)开发,用计算机控 制系统主机工作,与单片机等开发的测定装置相比,具有数据处理功能更强,人机界面更直 观,交互性更好,信息量更大等特点,更易于使用。该系统适用各种电网电压,并可选配正 压通风方式、双电机测量以及局扇性能测定等功能。 三、系统配置 测定系统的硬件部分由系统主机、测风(三杯式气象专用、差压)传感器、负压传感器、大 气参数(气压、温、湿度)传感器、电机功耗(电压、电流、功率、COSΦ)传感器、转速 传感器、笔记本计算机和打印机等组成。软件主要有数据采集与处理及打印绘图等用户程序。

离心式风机性能测定

1 离心式风机性能测定 一、实验目的 1、熟悉风机性能测定装置的结构与基本原理。 2、掌握利用实验装置测定风机特性的实验方法。 3、通过实验得出被测风机的性能(P-Q ,η-Q , N-Q 曲线) 二、实验装置及测试原理 1、进口集流器 2、节流网 3、整流栅 4、风管 5、被测风机 6、电动机 7、测力矩力臂8、测压管9、测压管 实验台的结构如上图所示.主要由二部分组成: 1、实验风管 在距风机进口处的风管断面上设有四个测压孔,同样用橡胶管接到另一个U 形管测压板上,用以测量进口通风机静压Pst 。测压介质为水. 风管进风口装有毕托管,用橡胶管接到U 形管测压板上,用以测出进入风机的动压P d1。风管内装有节流网和整流栅.集流器可以用来调节空气流量,而整流栅可以起到使流入风机所流均匀的作用. 2、被测风机 包括进风口、叶轮和蜗壳.风机的进风口用法兰与试验风管的接头相联接. 气动性能计算 实验台采用进气实验方法。实验台在一定工况下(利用在集流器来调节流量)运行时,空气流P d1 P d2 P st

2 经风管进入风机,被叶轮抽出风机出口。在集流器上测出进口动压P d1,在风机进口测孔处测定风机静压力Pst ,同时,读取控制箱上功率的数值,测得了上述Pst 、P d1、N 等实验数据以后,再利用已知的实验台原始参数,通过它们之间的关系式,就可以计算出该工况下的其它所需要的风机参量。 1、流量的计算: 我们可以通过测量管路中气体的动风压来确定风量的大小。假设皮托管测得的动风压为P d1, 测量中,动风压常用水柱高度h d1表示: 1d 1d gh P 水ρ= 则有: 21d 1d v 2 1gh P 空水ρρ== [Pa] 若假设测量位置的管径为D 则有: 空水ππρρ1 d 2112112P 4gh 4V A Q D D === [m 3/s] 式中: Q — 通风机体积流量(m 3/s) A 1 — 毕托管测压点所在断面面积(m 2) D1 — 风管直径 P d1为进口动风压,可根据测压介质换算. 2、通风机出口动压:P d2=0.5ρ空 (Q / A 2)2(N/m 2) A 2—通风机出口断面面积(m 2) D2 — 出口直径 3、通风机全压: P=Pst+P d2-0.82P d1 4、电机输出功率 N 在控制盒中直接读取 5、风机的有效功率:Ne=PQ 6、通风机全压总效率: η=Ne/N=PQ/N ×100% 三、实验步骤 1、进行第一工况下的测试.记下两个测压管上的计数Pst 、P d1、同时测定电机功率.并记下测试环境的大气压力Pa 和温度t. 2、转动集流器手轮来调节风量,以改变风机工况.每调节一次风量,即改变一次工况(一般取6个工况,包括全闭和全开)每一工况下,全面进行一次测试,即测量Pst 、P d1。第一个工况(即全闭工况)测试时,用集流器将进风口全部堵死,使P d1=0。 3、测定了不同工况下的上述实验数据以后,利用已知实验台原始参数和试验环境参数,通

离心通风机设计

离心通风机选型及设计 1.引言?????????????????????.(1?) ???? 2.离心式通风机的结构及原理????????????...?..(?3)?离心式风机的基本组成??????????????????(3) 离心式风机的原理 ????????????????????(3) 离心式风机的主要结构参数 ????????????????(4) 3 离心风机的选型的一般步骤?????????????????(5) 4.离心式通风机的设计????????????????????(5) 通风机设计的要求????????????????????(5) 设计步骤 ????????????????????????(6) 4.2.1叶轮尺寸的决定????????????????????(6) 4.2.2离心通风机的进气装置?????????????????(13) 4.2.3蜗壳设计???????????????????????(14) 4.2.4参数计算???????????????????????(20) 离心风机设计时几个重要方案的选择?????????(24) 5.结论???????????????????????????(25) 附录????????????????????????????(25)

引言 通风机是依靠输入的机械能,提高气体压力并排送气体的机械,它是一种从动的流体机械。通风机广泛用于工厂、矿井、隧道、冷却塔、车辆、船舶和建筑物的通风、排尘和冷却;锅炉和工业炉窑的通风和引风;空气调节设备和家用电器设备中的冷却和通风;谷物的烘干和选送;风洞风源和气垫船的充气和推进等。 通风机的工作原理与透平压缩机基本相同,只是由于气体流速较低,压力变化不大,一般不需要考虑气体比容的变化,即把气体作为不可压缩流体处理。 能有很大影响。叶轮经静平衡或动平衡校正才能保证通风机平稳地转动。按叶片出口方 向的不同,叶轮分为前向、径向和后向三种型式。前向叶轮的叶片顶部向叶轮旋转方向倾斜;径向叶轮的叶片顶部是向径向的,又分直叶片式和曲线型叶片;后向叶轮的叶片顶部向叶轮旋转的反向倾斜。 前向叶轮产生的压力最大,在流量和转数一定时,所需叶轮直径最小,但效率一般较低;后向叶轮相反,所产生的压力最小,所需叶轮直径最大,而效率一般较高;径向叶轮介于两者之间。叶片的型线以直叶片最简单,机翼型叶片最复杂。 为了使叶片表面有合适的速度分布,一般采用曲线型叶片,如等厚度圆弧叶片。叶轮通常都有盖盘,以增加叶轮的强度和减少叶片与机壳间的气体泄漏。叶片与盖盘的联接采用焊接或铆接。焊接叶轮的重量较轻,流道光滑。低、中压小型离心通风机的叶轮也有采用铝合金铸造的。 轴流式通风机工作时,动力机驱动叶轮在圆筒形机壳内旋转,气体从集流器进入,通过叶轮获得能量,提高压力和速度,然后沿轴向排出。轴流通风机的布置形式有立式、卧式和倾斜式三种,小型的叶轮直径只有100 毫米左右,大型的可达20 米以上。 小型低压轴流通风机由叶轮、机壳和集流器等部件组成,通常安装在建筑物的墙壁 或天花板上;大型高压轴流通风机由集流器、叶轮、流线体、机壳、扩散筒和传动部件组成。叶片均匀布置在轮毂上,数目一般为2~24。叶片越多,风压越高;叶片安装角一般为10°~45°,安装角越大,风量和风压越大。轴流式通风机的主要零件大都用钢板焊接或铆接而成。 斜流通风机又称混流通风机,在这类通风机中,气体以与轴线成某一角度的方向进 入叶轮,在叶道中获得能量,并沿倾斜方向流出。通风机的叶轮和机壳的形状为圆锥形。这种通风机兼有离心式和轴流式的特点,流量范围和效率均介于两者之间。 横流通风机是具有前向多翼叶轮的小型高压离心通风机。气体从转子外缘的一侧进入叶轮,然后穿过叶轮内部从另一侧排出,气体在叶轮内两次受到叶片的力的作用。在相同性能的条件下,它的尺寸小、转速低。 与其他类型低速通风机相比,横流通风机具有较高的效率。它的轴向宽度可任意选择,而不影响气体的流动状态,气体在整个转子宽度上仍保持流动均匀。它的出口截面窄而长,适宜于安装在各种扁平形的设备中用来冷却或通风。 通风机的性能参数主要有流量、压力、功率,效率和转速。另外,噪声和振动的大小也是通风机的主要技术指标。流量也称风量,以单位时间内流经通风机的气体体积表示;压力也称风压,是指气体在通风机内压力升高值,有静压、动压和全压之分;功率是指通风机的输入功率,即轴功率。通风机有效功率与轴功率之比称为效率。通风机全压效率可达90%。 通风机未来的发展将进一步提高通风机的气动效率、装置效率和使用效率,以降低 电能消耗;用动叶可调的轴流通风机代替大型离心通风机;降低通风机噪声;提高排烟、排

相关文档
最新文档