轴承结构对振动与噪音的影响

合集下载

泵的轴承有什么作用和用途

泵的轴承有什么作用和用途

泵的轴承有什么作用和用途泵的轴承是泵内部的重要部件之一,它主要用于支撑泵的转子和轴承座,减少摩擦和磨损,保持泵的正常工作状态。

泵的轴承在泵的工作过程中起到了稳定泵转子的作用,如果轴承失效或工作不正常,将会导致泵的性能下降甚至停止工作。

因此,轴承的设计和选择对泵的正常运行和使用寿命有重要影响。

泵的轴承的主要作用和用途可以归纳如下:1. 承受轴的轴向和径向力:泵的转子通过轴与电机连接,在泵的工作过程中产生的轴向力和径向力都会作用于轴上,轴承可以承受这些力,并保持轴的稳定运转。

如果轴承失效或不完整,轴会发生偏转,从而影响泵的正常运行。

2. 减少摩擦和磨损:泵的转子在高速旋转时会产生较大的摩擦力,轴承可以减少转子与轴之间的摩擦,降低摩擦产生的热量,减少磨损,延长泵的使用寿命。

轴承的材料和润滑方式选择也对轴承的摩擦和磨损影响较大。

3. 支撑和定位转子:泵的转子通过轴与电机连接,轴承支撑和定位转子的位置,保证转子的准确旋转。

轴承的质量和安装方式会直接影响转子的位置和偏差,进而影响泵的性能和运行稳定性。

4. 减振和降噪:泵在工作过程中会产生一定的振动和噪音,轴承可以减少泵的振动和噪音,提高泵的运行平稳性和工作环境的舒适性。

5. 导热和散热:泵的转子会产生大量的热量,轴承可以通过导热和散热的方式将热量从转子传导出来,防止转子过热,保证泵的正常运行。

6. 保持润滑:轴承内部一般填充润滑脂或润滑油,轴承的结构和设计可以保持润滑物质的循环流动,使润滑脂或润滑油能够充分润滑轴承表面,减少磨损和摩擦。

7. 提供密封:轴承通常具有一定的密封性能,可以防止泵内部的液体或气体泄漏到外部,保持泵的工作环境清洁和安全。

总之,泵的轴承是保证泵正常运行和延长泵使用寿命的重要部件,它具有承受轴的力、减少摩擦和磨损、支撑和定位转子、减振和降噪、导热和散热、保持润滑以及提供密封的作用和用途。

正确选择和维护好轴承是确保泵的稳定运行和提高泵的效率的重要措施之一。

轴承结构对振动与噪音的影响

轴承结构对振动与噪音的影响

轴承结构对振动与噪音的影响1.滚道声滚道声是由于轴承旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。

其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25~27dB。

这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点:a.噪声、振动具有随机性;b.振动频率在1kHz以上;c.不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高;d.当径向游隙增大时,声压级急剧增加;e.轴承座刚性增大,总声压级越低,即使转速升高,其总声压级也增加不大;f.润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。

滚道声产生源在于受到载荷后的套圈固有振动所致。

由于套圈和滚动体的弹性接触构成非线性振动系统。

当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。

众所周知,即使是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与滚动体间产生微小波动激发振动系统固有振动。

尽管它是不可避免的,然而可采取高精度加工零件工作表面,正确选用轴承及精确使用轴承使之降噪减振。

2.落体滚动声该噪声一般情况下,大都出现在低转速下且承受径向载荷的大型轴承。

当轴承在径向载荷下运转,轴承内载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区的滚动体与内滚道不接触,但因离心力的作用则可能与外圈接触,为此,在低转速下,当离心力小于滚动体自重时,滚动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点:a.脂润滑时易产生,油润滑时不易产生。

当用劣质润滑脂时更易产生。

b.冬季常常发生。

c.对于只作用径向载荷且径向游隙较大时也易产生。

d.在某特定范围内也会产生且不同尺寸的轴承其速度范围也不同。

e.可能是连续声亦可能是断续声。

f.该强迫振动常激发外圈的二阶、三阶弯曲固有振动,从而发出该噪声。

轴承装配作业标准

轴承装配作业标准

轴承装配作业标准目的(一)为提高轴承在装配中的品质, 使轴承在机床使用中运动灵活可靠, 顾制定本标准。

在轴承装配中因为轴承本身精度的高低, 并不能直接说明它在机械上旋转精度的高低。

当精密机械的旋转精度要求很高时, 除应选用高精度的轴承外, 轴承的装配精度将起到决定性的作用。

(二)滚动轴承的装配要求1、轴承的固定装置必须完好可靠, 紧定层度适中, 防松止退装置可靠。

2、油封等密封装置必须严密, 对采用油脂润滑的轴承, 装配后一般加入1/2空腔容积的符合规定的润滑脂。

3、在轴承装配过程中, 应严格保持清洁, 防止杂物进入轴承内,4、装配后, 轴承应运转灵活, 无噪音, 工作温升一般不超过50º5、轴承内圈端面一般应靠紧轴肩, 其最大间隙对圆锥滚子轴承和向心推力轴承应不大于0.05mm其他轴承应不大于0.1mm6、当采用冷冻或加热装配时冷却温度不低于-80℃;加热温度不超过100℃.7、装配可拆卸的(内外圈可分离的轴承)轴承时, 必须按内外圈对位标记安装, 不得装反或与其它轴承内外圈混装。

8、可调头安装的轴承, 在装配时应将有编号的一端向外, 以便识别。

9、轴承外圈装配后其定位端的轴承盖与外圈火丁维权的接触应均匀。

在轴的两端装配径向间隙不可调的向心轴承, 并且轴向定位是两端端盖限定时, 只能一端轴承靠近端盖, 另一端必须留有轴向间隙C, C值的确定可按公式计算/(式中C轴承外圈端面与端盖的轴向间隙mm;I为两轴承中心距mm;a为轴的材料线性膨胀系数℃;/为最高温度与环境温度之差;0.15为轴热涨后应乘余的间隙mm)具体数值参见下(表)表1- 1表1-3二、滚动轴承的配合和游隙1 .轴承的配合滚动轴承是专一厂家大量生产的标准部件, 其内圈与轴的配合, 取基孔制, 外圈与轴承孔的配合, 取基轴制。

轴承装入轴颈、壳孔时的过盈量将使轴承的径向间隙减小, 其减小量可按下列式计算:当内圈压入轴上时△=(0.55—0.6)H当外圈压入孔中时△= (0.65—0.7)H(上式中△为安装后的径向间隙减小量;H为轴承安装时的过盈量)。

碳化硅轴承的作用

碳化硅轴承的作用

碳化硅轴承的作用1.引言1.1 概述碳化硅轴承是一种常见的轴承类型,具有重要的作用和广泛的应用。

它的作用是通过支撑和减少运动摩擦来支持轴的旋转或线性运动。

碳化硅轴承通常由硅碳化陶瓷制成,这种陶瓷材料具有高硬度、优异的耐磨性和耐高温性能。

在机械工业中,碳化硅轴承被广泛应用于各种轴承应用中。

它们常用于高速、高温或高负荷条件下的机械设备,如涡流泵、压缩机、气轴承和汽车发动机等。

碳化硅轴承经过精密设计和制造,可以承受较大的轴向和径向力,并具有较低的摩擦系数和较高的转速能力。

碳化硅轴承的优点不仅在于其材料的特性,还包括其独特的设计和结构。

相比传统的钢制轴承,碳化硅轴承具有更长的使用寿命和更好的耐磨性能。

由于其优异的高温稳定性,碳化硅轴承能够在高温环境下保持良好的性能,并且不易变形或失效。

此外,碳化硅轴承的高硬度和低热膨胀系数使其具有较小的磨损和摩擦,从而减少能耗和故障率。

总结而言,碳化硅轴承在机械工业中起着重要的作用。

其高硬度、耐磨性和耐高温性能使其成为适用于高速、高温和高负荷条件下的理想选择。

随着技术的不断发展和创新,碳化硅轴承的应用前景将会更加广阔,其在各种领域的应用将继续扩大。

1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构是指文章的整体组织框架,它决定了整篇文章的逻辑性和条理性。

本文的结构主要分为引言、正文和结论三个部分。

引言部分将首先对碳化硅轴承的作用进行概述,简要介绍碳化硅轴承在工业生产和设备运行中的重要性和应用范围。

其次,对整篇文章的结构进行说明,介绍各个章节的目的和内容,为读者提供了解文章结构的参考。

正文部分将详细介绍碳化硅轴承的基本原理和优点。

在2.1节中,将详细解释碳化硅轴承的基本工作原理,包括其材料特性和内部结构,以及轴承在不同工业领域中的应用示例。

在2.2节中,将分析碳化硅轴承相比传统金属轴承的优点,如高温耐性、耐磨性和耐腐蚀性等,并通过实际案例和数据加以证明。

结论部分将对整篇文章的内容进行总结。

轴承结构对振动与噪声的影响

轴承结构对振动与噪声的影响

轴承结构对振动与噪声的影响1.滚道声滚道声是由于轴承旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。

其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25~27dB。

这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点:a.噪声、振动具有随机性;b.振动频率在1kHz以上;c.不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高;d.当径向游隙增大时,声压级急剧增加;e.轴承座刚性增大,总声压级越低,即使转速升高,其总声压级也增加不大;f.润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。

滚道声产生源在于受到载荷后的套圈固有振动所致。

由于套圈和滚动体的弹性接触构成非线性振动系统。

当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。

众所周知,即使是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与滚动体间产生微小波动激发振动系统固有振动。

尽管它是不可避免的,然而可采取高精度加工零件工作表面,正确选用轴承及精确使用轴承使之降噪减振。

2.落体滚动声该噪声一般情况下,大都出现在低转速下且承受径向载荷的大型轴承。

当轴承在径向载荷下运转,轴承内载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区的滚动体与内滚道不接触,但因离心力的作用则可能与外圈接触,为此,在低转速下,当离心力小于滚动体自重时,滚动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点:a.脂润滑时易产生,油润滑时不易产生。

当用劣质润滑脂时更易产生。

b.冬季常常发生。

c.对于只作用径向载荷且径向游隙较大时也易产生。

d.在某特定范围内也会产生且不同尺寸的轴承其速度范围也不同。

e.可能是连续声亦可能是断续声。

f.该强迫振动常激发外圈的二阶、三阶弯曲固有振动,从而发出该噪声。

电机的振动、噪音和发热

电机的振动、噪音和发热

电机的振动、噪音和轴承高温S 一般评估电动机的品质除了运转时之各特性外,以人之五感判断振动及噪音的情形较多。

而电动机产生的振动噪音,主要有:1、机械振动噪音,为转子的不平衡重量,产生相当转数的振动。

2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。

但轴承自然的振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向振动,润滑不良产生摩擦音等问题产生。

3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的噪音。

4、流体噪音,风扇或转子引起通风噪音对电动机很难避免,很多情形左右电动机整体的噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。

5、电磁的噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之噪音,又磁通密度饱和或气隙偏心引起磁的噪音。

一、机械性振动的产生原因与对策1、转子的不平衡振动A、原因:·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。

·运转时热应力引起轴弯曲。

·转子配件的热位移引起不平衡载重。

·转子配件的离心力引起变形或偏心。

·外力(皮带、齿轮、直结不良等)引起轴弯曲。

·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。

B、对策:·抑制转子不平衡量。

·维护到容许不平衡量以内。

·轴与铁心过度紧配的改善。

·对热膨胀的异方性,设计改善。

·强度设计或装配的改善。

·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。

·轴承端面与轴附段部或锁紧螺帽的防止偏靠。

2、轴承之异常振动与噪音A、原因:·轴承内部的伤。

·轴承的轴方向异常振动,轴方向弹簧常数与转子质量组成振动系统的激振。

·摩擦音:圆柱滚动轴承或大径高速滚珠轴承产生润滑不良与轴承间隙起因。

偏心轴与轴承系统的振动特性分析

偏心轴与轴承系统的振动特性分析

偏心轴与轴承系统的振动特性分析引言振动是机械系统中常见的现象,对于轴承系统来说,振动问题会直接影响其运行稳定性和寿命。

本文的主题是分析偏心轴与轴承系统的振动特性,探讨其原因和相关影响因素。

一、偏心轴产生的振动偏心轴是指轴承轴线与旋转中心轴线不重合的情况。

当偏心轴旋转时,在轴承内部会产生径向力的不平衡,从而引起振动。

偏心轴产生的振动主要包括径向振动和轴向振动两种。

1. 径向振动径向振动是指轴承系统在旋转时产生的以轴心为中心的圆周振动。

偏心轴会引起轴承系统的不平衡,使得轴承产生径向力,进而导致径向振动。

径向振动的幅值与偏心距离和转速有关,偏心距离越大、转速越高,其振动幅值越大。

2. 轴向振动轴向振动是指轴承系统在旋转时产生的以轴线为方向的线性振动。

偏心轴会导致轴承产生轴向力,进而引起轴向振动。

轴向振动与偏心距离、转速以及轴承系统的结构有关,当偏心距离较大时,轴向振动的幅值也会增加。

二、轴承系统的振动特性轴承系统的振动特性是指在特定条件下,轴承系统的振动表现以及与其相关的影响因素。

1. 振动频率振动频率是指轴承系统振动的频率,其与轴承系统的固有特性和旋转速度有关。

常见的振动频率包括轴承固有频率、共振频率等。

不同振动频率对轴承系统的运行稳定性和寿命有着不同的影响。

2. 振动幅值振动幅值是指轴承系统振动的振幅,通常使用轴向振动或径向振动的最大值来表示。

振动幅值的大小与偏心距离、转速和轴承系统的结构有关,过大的振动幅值会导致轴承系统的故障和损坏。

3. 振动形态振动形态是指轴承系统振动的波形和频谱。

通过分析振动形态,可以判断轴承系统中是否存在缺陷和故障,进而采取相应的措施进行修复和改进。

三、影响偏心轴与轴承系统振动的因素1. 偏心距离偏心距离是指轴承轴线与旋转中心轴线之间的距离。

偏心距离越大,引起的不平衡力也越大,从而产生的振动幅值也会增加。

2. 转速转速是指轴承系统的旋转速度。

转速越高,偏心轴产生的不平衡力也越大,振动幅值会随之增加。

机械工程中的滚动轴承设计与优化

机械工程中的滚动轴承设计与优化

机械工程中的滚动轴承设计与优化引言机械工程中的滚动轴承设计与优化是一个重要的课题,它直接影响机械设备的使用寿命和性能。

滚动轴承作为一种常见的机械零件,广泛应用于工业生产和日常生活中的许多设备。

本文将探讨滚动轴承的设计原理、参数选择以及优化方法,旨在为机械工程师提供有用的参考。

一、滚动轴承的基本原理滚动轴承是一种能够承受轴向和径向载荷的机械零件。

它由内圈、外圈、滚动体和保持架组成。

滚动轴承的基本原理是通过滚动体在内外圈之间滚动来减小摩擦力和耐受载荷。

这种减小摩擦力的设计使得轴承能够在高速和高负荷下工作,并提高机械设备的效率和寿命。

二、参数选择在滚动轴承的设计过程中,参数选择是非常关键的。

以下是一些常见的参数:1. 轴承类型:滚动轴承有多种类型,包括球轴承、圆锥滚子轴承和圆柱滚子轴承等。

根据具体应用场景和要求,选择合适的轴承类型非常重要。

2. 内外圈直径:内外圈直径的选择直接影响到滚动轴承的承载能力和使用寿命。

一般来说,大直径的轴承能够承受更大的负荷,但也会增加轴承的摩擦力。

3. 滚动体数量和尺寸:滚动体的数量和尺寸对轴承的承载能力和刚度有重要影响。

合理选择滚动体的数量和尺寸可以提高轴承的寿命和性能。

4. 保持架材料:保持架是用于固定滚动体的组件。

选择合适的保持架材料可以提高轴承的寿命和耐磨性能。

三、滚动轴承设计的优化方法滚动轴承的设计优化是为了提高其性能和寿命。

以下是一些常见的优化方法:1. 材料选择:滚动轴承的材料选择对其性能有重要影响。

一般来说,高强度、高硬度和耐磨性好的材料是滚动轴承的理想选择。

2. 表面润滑:良好的表面润滑可以减小滚动轴承的摩擦力和磨损。

使用高质量的润滑油或润滑脂,并定期更换和维护,可以延长轴承的使用寿命。

3. 载荷分布:合理分布和控制载荷对轴承的寿命和性能有重要影响。

通过设计和优化机械结构,合理分配载荷,可以减小轴承的疲劳和磨损。

4. 减小振动和噪音:振动和噪音是滚动轴承设计中需要考虑的关键问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴承结构对振动与噪音的影响
1.滚道声
滚道声是由于轴承旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。

其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25~27dB。

这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点:a.噪声、振动具有随机性;b.振动频率在1kHz以上;c.不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高;d.当径向游隙增大时,声压级急剧增加;e.轴承座刚性增大,总声压级越低,即使转速升高,其总声压级也增加不大;f.润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。

滚道声产生源在于受到载荷后的套圈固有振动所致。

由于套圈和滚动体的弹性接触构成非线性振动系统。

当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。

众所周知,即使是采用了当代最高超的制造技术加工轴承零件,其工作表面总会存在程度不一的微小几何误差,从而使滚道与滚动体间产生微小波动激发振动系统固有振动。

尽管它是不可避免的,然而可采取高精度加工零件工作表面,正确选用轴承及精确使用轴承使之降噪减振。

2.落体滚动声
该噪声一般情况下,大都出现在低转速下且承受径向载荷的大型轴承。

当轴承在径向载荷下运转,轴承内载荷区与非载荷区,若轴承具有一定径向游隙时,非载荷区的滚动体与内滚道不接触,但因离心力的作用则可能与外圈接触,为此,在低转速下,当离心力小于滚动体自重时,滚动体会落下并与内滚道或保持架碰撞且激发轴承的固有振动和噪声,并且有以下特点:a.脂润滑时易产生,油润滑时不易产生。

当用劣质润滑脂时更易产生。

b.冬季常常发生。

c.对于只作用径向载荷且径向游隙较大时也易产生。

d.在某特定范围内也会产生且不同尺寸的轴承其速度范围也不同。

e.可能是连续声亦可能是断续声。

f.该强迫振动常激发外圈的二阶、三阶弯曲固有振动,
从而发出该噪声。

通过采用预载荷方法可有效降低该噪声,减少装机后轴承工作径向游隙,选用良好润滑剂亦能有所改善,有些国外企业采用轻型滚动体,如陶瓷滚子或空心滚子等技术措施来防止这种噪声的产生。

3.尖鸣声
它是金属间滑动摩擦产生相当剧烈的尖叫声,尽管此时轴承温升不高,对轴承寿命和润滑脂寿命也无多大影响,也不影响旋转,但刺耳声令人不安,尤其是承受径向载荷的大型短圆柱滚子轴承常有此噪声,其特点为:a.轴承径向游隙大时易产生。

b.通常出现在脂润滑中,油润滑则较罕见。

c.随着轴承尺寸增大而减小,且常在某转速范围内出现。

d.冬季时常出现。

e.它的出现是无规则的,和不可预知的,并且与填脂量及性能、安装运转条件有关。

这种噪声可采用减少轴承径向游隙和采用浅度外圈滚道结构来防止。

4.保持架声
在轴承旋转过程中保持架的自由振动以及它与滚动体或套圈相撞击就会发出此噪声。

它在各类轴承中都可能出现,但其声压级不太高而且是低频率的。

其特点是:a.冲压保持架及塑料保持架均可产生。

b.不论是稀油还是脂润滑均会出现。

c.当外圈承受弯矩时最易发生。

d.径向游隙大时容易出现。

由于保持架兜孔间隙及保持架与套圈间隙在轴承成品中不可避免的要存在,因此彻底消除保持架声十分困难,但可通过减少装配误差,优选合理的间隙和保持架窜动量来改善。

另一种保持架特殊声是由于保持架与其他轴承零件引导面间的摩擦引发保持架的自激振动而发生的喧嚣声。

深沟球轴承的冲压保持架较薄,在径向和轴向平面内的弯曲刚度较低,整体稳定性差,轴承高速旋转时就会因弯曲变形而产生自激振动,引起“蜂鸣声”。

当轴承在径向载荷作用下且油脂性能差的情况下,运转初期会听到“咔嚓、咔嚓”的噪声,这主要是由于滚动体在离开载荷区后,滚动体突然加速而与保持架相撞而
发出的噪声,这种撞击声不可避免但随着运转一段时间后会消失。

防止保持架噪声措施如下:
a.为使保持架公转运动稳定,应尽量采用套圈引导方式并注意给予引导面的充分润滑,对高速工况下的圆锥滚子轴承结构给予改进,将滚子引导的L型保持架改为套圈挡边引导的Z型保持架。

b.轴承高速旋转时,兜孔间隙大的轴承其保持架振动振幅远大于兜孔间隙小的保持架振动振幅,所以兜孔间隙取值尤为重要。

c.要注意尽量减小径向游隙。

d.尽量提高保持价制造精度,改善保持架表面质量,有利于减小滚动体与保持架发生碰撞或摩擦产生的噪声。

e.积极采用先进的清洗技术,对零配件和合套后的产品进行有效彻底的清洗,提高轴承的洁净度。

5.滚动体通过振动
当轴承在径向载荷作用下运转,其内部只有若干个滚动体承受载荷,由于与套圈的弹性接触构成的“弹簧”支承使滚动体在通过径向载荷作用线产生了周期性振动,而转轴中心因此会上下垂直移动或做水平方向移动,同时引发噪声。

这类振动称之为滚动体通过振动,尤其是在低速运转时表现更为明显。

而其振幅则与轴承类型、径向载荷、径向游隙及滚动体数目有关。

通常该振幅较小,若振幅大时才形成危害,为此常采用减小径向游隙或施加适当的预载荷来降低。

相关文档
最新文档