矩形的性质2ppt

合集下载

18.2.1矩形的性质(2)课件

18.2.1矩形的性质(2)课件
直角三角形斜边上的中线等于斜边的一半.
在Rt△ABD中,AO是斜边BD的中线 A D
则有:AO= 1 BD
2
O B
直角三角形斜边上的中线等于斜边一半
具体事例1.首先以直角三角形斜边为直径画圆, 然后发现直角顶点处于( B ) A.圆内 B.圆周上 C.圆外 D.无法确定 具体事例2.长4m的竹竿贴墙而立(AB),竹竿底部 往外滑动,倒在地上(BC),则竹竿中点O的 运动轨迹是什么?运动路线有多长? A 斜边上有中点的时候, 应立即连接直角顶点.
C
B
情景引入
一位很有名望的木工师傅,招收了两名徒弟, 一天,师傅有事外出,两徒弟就自已在家练习用 两块四边形的废料各做了一扇矩形式的门,做完 之后,两人都说对方的门不是矩形,而自已 的是 矩形。
你能想一个办法确定 谁做的门是矩形吗?
方法一.
A
定义:有一个角是直角的平行四边形是矩形.
D

ABCD中,∠B=90°
D P
C
A
Q
B
学习了本节课 你有何收获?
归纳小结
矩形判定方法1
有一个角是直角的平行四边形是矩形
矩形判定方法2
有三个角是直角的四边形是矩形。
矩形判定方法3
对角线相等的平行四边形是矩形。
作 业
1. P105 练习, 2. P112-114,
1、2、3、4、14
再 见
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
(8)一组对角互补的平行四边形是矩形;
(9)对角线相等且互相垂直的四边形是矩形;
(10)一组邻边垂直,一组对边平行且相等的 四边形是矩形;

人教版八年级数学下册18.2 特殊的 平行四边形第二课时 矩形的性质课件

人教版八年级数学下册18.2  特殊的   平行四边形第二课时  矩形的性质课件

(1)证明:∵AO=OC, BO=OD, ∴四边形ABCD是平行四边形. 又∵∠AOB=2∠OAD,∠AOB=∠OAD+∠ADO, ∴∠OAD=∠ADO,∴AO=OD. ∵AC=AO+OC=2AO,BD=BO+OD=2OD, ∴AC=BD,∴四边形ABCD是矩形.
(2)解:设∠AOB=4x,∠ODC=3x, 则∠OCD=∠ODC=3x. ∵∠DOC+∠OCD+∠CDO=180°, ∴4x+3x+3x=180°,解得x=18°, ∴∠ODC=3×18°=54°, ∴∠ADO=90°-∠ODC=90°-54°=36°.
(1)证明:方法一 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE,∴四边形ACED是平 行四边形. ∵AB=AE,∴DC=AE, ∴四边形ACED是矩形.
证明:方法二 ∵四边形ABCD是平行四边形, ∴AD∥BC,AD=BC,AB=DC. ∵CE=BC,∴AD=CE. 又∵AD∥CE, ∴四边形ACED是平行四边形. ∵AB=AE,BC=CE, ∴AC⊥BE,∴∠ACE=90°, ∴四边形ACED是矩形.
几何语言
∵四边形ABCD是平行四边形 且AC=BD ∴四边形ABCD是矩形
A
D
O
B
C
小试牛刀
1.如图,下列条件不能判定四边形ABCD是矩形的是( C )
A.∠DAB=∠ABC=∠BCD=90° B.AB∥CD,AB=CD,AB⊥AD C.AO=BO,CO=DO D.AO=BO=CO=DO
2.如图 ABCD 中, ∠1= ∠2中.此时四边形ABCD是矩
解:∵四边形ABCD是平行四边形,
∴OA=OC=
1 2
AC,OB=OD= 1

矩形的性质与判定ppt课件

矩形的性质与判定ppt课件

随堂练习
如图,在矩形ABCD中,两条对角线AC与BD相交于点O,
AB=6,AO=4,求BD与AD的长. (填空)
A
D
O
知识技能
B
C
1. 一个矩形的对角线长为6,对角线与一边的夹角是45°,求这个
矩形的各边长. (填空)
2. 一个矩形的两条对角线的一个夹角为60°,对角线长为15,求这个 矩形较短边的长. (填空)
O
B
C
(2)图中有哪些等腰三角形?这些等腰三角形中哪些是全等三角形?
解:(2)△AOB,△BOC ,△COD, △DOA
(3)△AOB 、△BOC 、△COD 、△DOA的面积相等么?为什么? 解:(3)S△AOB=S△BOC =S△COD=S△DOA
议一议:
如图,矩形ABCD的对角线AC与BD交于点E,那么BE是Rt△ABC
①对角相等,邻角互补 ②对边平行且相等 ③对角线互相平分 ④对角线相等
⑤每条对角线平分对角 ⑥四条边相等 ⑦四个内角都相等 ⑧对角线垂直
探究二:矩形的性质
想一想 如图,在矩形ABCD中,对角线AC、BD相交于点O.
(1)线段OA,OB,OC,OD有什么数量关系? A
D
解:(1) OA=OB=OC=OD
B
C
证明: (1)∵四边形ABCD是矩形
∴ ∠ABC=∠ADC,∠BCD=∠BAD,
AB∥DC.
∴∠ABC+∠BCD=180°
又∵∠ABC = 90°
∴∠BCD= 90°.
∴∠ABC=∠BCD=∠CDA=∠DAB=90°
探究二:矩形的性质 证明矩形的性质
已知: 如图,四边形ABCD是矩形,∠ABC=90°,对角线AC与DB

《矩形的性质与判定(2)》课件

《矩形的性质与判定(2)》课件

有一个角是直角 的平行四 边形是矩形.
对角线相等的平 行四边形 是矩形.
有三个角是直角 的四边形是矩形.
矩形的判定思路
四 边 形
有三个角是直角 平行四边形
矩形 对角线相等 一个角是直角
矩 形
检测反馈
1.下列说法正确的是 ( B ) (1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的 四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有三个 角是直角的四边形是矩形;(5)四个角都相等的四边形是矩

C
例 如图,在□ABCD中,对角线AC与BD相交于点O,
△ABO是等边三角形,AB = 4cm,求这个□ABCD
的面积.
证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,. 又∵△ABO是等边三角形, ∴OA=OB=AB=4,∠BAC=60°. ∴OA=OB=OC=OD=4,
∴AC=BD=2OA=2×4=8.
九年级数学上
新课标 [北师]
第一章 特殊平行四边形
学习新知
检测反馈
生活思考
一天,小丽和小娟到一个商店准备给今天要过生
日的小华买生日礼物,选了半天,她们最后决定买相框 送给她,在里面摆放她们三个人的合影,为了相框摆放 的美观性,她们选择了矩形的相框,那么用什么方法可 以确定她们拿的就是矩形的相框呢?
已知:在□ABCD中,AC,DB是它的两条对角线,AC=BD.
矩形的判定方法2
对角线相等的平行四边形是矩形.
几何语言:
∵在 ABCD中 AC=BD ∴ ABCD是矩形
A
0
D
B
C
探究
有一个角是直角
有两个角是直角 有三个角是直角

矩形及其性质PPT课件

 矩形及其性质PPT课件

C.AB=AF
D.BE=AD-DF
*5.(2020·连云港)如图,将矩形纸片ABCD沿BE折叠,使点A 落在对角线BD上的A′处.若∠DBC=24°,则∠A′EB 等于( ) A.66° B.60° C.57° D.48°
【点拨】∵四边形 ABCD 是矩形,∴∠A=∠ABC=90°. 由折叠的性质得∠BA′E=∠A=90°,∠A′BE=∠ABE. ∴∠A′BE=∠ABE=12(90°-∠DBC)=12×(90°-24°)=33°. ∴∠A′EB=90°-∠A′BE=57°.
在△AOM 和△CON 中,
∠OAM=∠OCN, ∠AMO=∠CNO, AO=CO,
∴△AOM≌△CON(AAS). ∴AM=CN. ∵AM∥CN,∴四边形ANCM为平行四边形.
(2)若AD=4,AB=2,且MN⊥AC,求DM的长. 解:∵AD=BC,AM=CN,∴DM=BN. ∵四边形ANCM为平行四边形,MN⊥AC, ∴平行四边形ANCM为菱形. ∴AM=AN=AD-DM. ∴在Rt△ABN中,根据勾股定理,得AN2=AB2+BN2, ∴(4-DM)2=22+DM2,解得 DM=32.
【点拨】∵四边形ABCD是矩形, ∴AB=CD,AB∥CD,∠DAE=∠BCF=90°, OD=OB=OA=OC,AD=BC,AD∥BC. ∴∠DAN=∠BCM. ∵BF⊥AC,DE∥BF,∴DE⊥AC. ∴∠DNA=∠BMC=90°. 由∠DAN=∠BCM,∠DNA=∠BMC,AD=BC, 可证△DNA≌△BMC(AAS).
又∵BEO=AD=OD. ∴△AOD是等边三角形.∴∠ADO=60°. ∴∠ABD=90°-∠ADO=30°. ∵DE⊥AC,∴∠ADN=∠ODN=30°. ∴∠ODN=∠ABD. ∴DE=BE. ∴四边形DEBF是菱形,故④正确. 【答案】D

北师大版数学九年级上册矩形的性质与判定(第2课时矩形的判定)课件(共26张)

北师大版数学九年级上册矩形的性质与判定(第2课时矩形的判定)课件(共26张)
{AP=DP ∵ AB=PC , BP=PC ∴△ABP≌△DCP(SSS), ∴∠D=∠A, ∵∠D+∠A=180°, ∴∠D=∠A=90°, ∵四边形ABCD是平行四边形, ∴平行四边形ABCD是矩形.
7.如图, ABCD的四个内角的平分线相交 于点E、F、G、H. 求证:EG = FH.
证明:∵四边形ABCD是平行四边形,∴AD∥BC, ∴∠BAD+∠ABC=180°. 又∵AH,BH分别平分∠BAD,∠ABC, ∴∠DAE=∠BAE= ∠DAB,∠CBG=∠ABG= ∠ABC, ∴∠BAE+∠ABG= (∠DAB +∠ABC )=90°, ∴∠AHB=90°, 同理可证∠EFG=90°,∠HEF=90°, ∴四边形EFGH为矩形,∴EG=FH.
∴∠ABC+∠DCB=180°.
∴∠ABC=∠DCB
=
1 2
×180°=90°.
∴□ABCD是矩形.(矩形的定义)
2.矩形的四个角都是直角,反过来,一个四边形 至少有几个角是直角时,这个四边形才是矩形呢? 请证明你的结论,并与同伴交流.
归纳结论:有三个角是直角的四边形是矩形.
已知:如图,在四边形ABCD中,
已知:如图,在□ABCD中,对角线AC=BD.
求证:平行四边形ABCD是矩形.
分析:要证明□ABCD是矩形,只要证明有一个角是直角即可.
证明: ∵四边形ABCD是平行四边形. A
D
∴AB=CD,AB∥CD.
又∵AC=DB,BC=CB.
∴ △ABC≌△DCB.
B
C
∴∠ABC=∠DCB.
又∵AB∥CD.
巩固练习
1.如图,四边形ABCD的对角线互相平分,要使它 变为矩形,需要添加的条件是( D )

矩形的性质与判定ppt课件


探究一:矩形的判定
思考: 矩形是特殊的平行四边形,请问当平行四边形满足什么 条件时,会变成矩形?
A
D
A
D
B
C
B
C
探究一:矩形的定义
1. 从“定义”的角度探究:
A
D
矩形的判定:
B
C
1. 有一个角是直角的平行四边形是矩形
几何语言: ∵▱ABCD,∠B=90° ∴ 四边形ABCD是矩形
探究一:矩形的判定 猜想:对角线相等的平行四边形是矩形
求证: ▱ABCD是矩形.
A
D
证明: ∵四边形ABCD是平行四边
形∴AB=DC,AB∥DC
∵AB∥D
B
C
∴C ∠ABC+∠DCB=18
0∴°∠ABC=∠DCB=9
0∴°▱ABCD是矩形(矩形的定义)
∴△ABC≌△DCB(SS S∴) ∠ABC=∠D
归纳小结
A
D
矩形的判定:
2. 对角线相等的平行四边形ABCD是矩形
归纳小结
矩形的判定:
A
D
3. 有三个角是直角的四边形是矩形
B
C
几何语言: ∵ ∠A=∠B=∠C=90° ∴ 四边形ABCD是矩形
归纳小结
矩形的判定: 1. 有一个角是直角的平行四边形是矩形 2. 对角线相等的平行四边形是矩形 3. 有三个角是直角的四边形是矩形
猜想: 有三个角是直角的四边形是矩形
定理证明:有三个角是直角的四边形是矩形
已知:如图,在四边形ABCD中,∠A=∠B=∠C=90°. A
D
求证:四边形ABCD是矩形
证明:
∵ ∠A=∠B=∠C=90°
∴∠A+∠B=180°,∠B+∠C=180°

矩形的性质与判定复习课ppt课件


角: 直角三角形两锐角互余。
C
B
线段: 1、勾股定理:两直角边的平方和等于斜边
的平方。
2、斜边中线的性质:直角三角形斜边中线
等于斜边的一半。
边角关系:1、直角三角形中,30°角所对的直角边 等于斜边的一半。
2、直角三角形中,若直角边等于斜边的一半, 那么这条直角边所对的角等于30°。
例1 一张四边形纸板ABCD形状如图,
C
E
你能求出线段BE及折痕EF的
长吗?
再见
(1)若要从这张纸板中剪出一个平行四边形,并
且使它的四个顶点分别落在四边形ABCD的四条边
上,可怎样剪? 解CD:、分D别A的取中AB点、EB、CF、、G、D

C
H,则剪的中点四边形
EFGH为平行四边形. H

⑵四边形ABCD满足什么情况
下,中点四边形EFGH为矩形?
并说明理由.
A

B
两条对角线互相垂直,AC⊥BD
1、已知矩形的周长是24,相邻两边之比是1:2, 那么这个矩形的面积是____3_2_______
2、矩形的两条对角线的夹角为60°,
一边长为10,则另一边长为____________
3、请在横线上写出结论,在括号里填理由
∵四边形ABCD是矩形
A
D
∴__________ (
) O
B
C
ቤተ መጻሕፍቲ ባይዱ
4、如图,矩形ABCD沿AE折叠,使D点落在 BC边上的F点处,如果∠BAF=60°,那么∠DAE 等于( ) A
7、在矩形ABCD中,P是AD上的一个动 点,PE⊥ AC于E,PF⊥ BD于F,AG⊥ BD 于G。试问,PE+PF与AG有什么关系?证明 你的结论。

1.2 第3课时 矩形的性质与判定的综合应用 课件(共22张PPT) 北师版九年级上册

习题解析
(2)若∠ADF∶∠FDC=3∶2,DF⊥AC,求∠BDF的度数.
解:∵∠ADC=90°,∠ADF∶∠FDC=3∶2,∴∠FDC=36°.∵DF⊥AC,∴∠DCO=90°-36°=54°.∵四边形ABCD是矩形,∴OC=OD.∴∠ODC=∠DCO=54°.∴∠BDF=∠ODC-∠FDC=54°-36°=18°.
习题解析
习题解析
习题2
如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°. (1)求证:四边形ABCD是矩形;
证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.∴∠ABC=∠ADC.∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°.∴四边形ABCD是矩形.
如图,在矩形ABCD中,AD=6,对角线AC与BD相交于点O,AE⊥BD,垂足为E,ED=3BE,求AE的长.
思考:线段AE和哪条线段有关系?这里用到了直角三角形的哪个性质?
例1
课程讲授
新课推进
分析:在矩形ABCD中,ED=3BE,∴BE:ED=_______,易证得△OAB是_____________,继而求得________的度数,由△OAB是____________,求出________的度数,又由AD=6,即可求得AE的长.
课程讲授
新课推进
习题解析
习题1
如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.
习题解析
证明:(1)由题意可得AM=AB,CN=CD,∠FNC=∠D=90°,∠AME=∠B=90°,∴∠ANF=90°,∠CME=90°.∴∠ANF=∠CME.∵四边形ABCD为矩形,∴AB=CD,AD∥BC.∴AM=CN,∠FAN=∠ECM. ∴AM-MN=CN-MN,即AN=CM.

2_矩形的性质与判定_第2课时_课件2(15p)


有三个角是直角的四边形是矩形吗?
已知:如图,在四边形ABCD,∠A=∠B=∠C=90°.
求证:四边形ABCD是矩形.
A
D
证明: ∵∠A=∠B=∠C=90°, B
C
∴∠A+∠B=180°,∠B+∠C=180°.
∴AD∥BC,AB∥CD.
∴四边形ABCD是平行四边形.
∴四边形ABCD是矩形.
矩形判定方法二
D
O
M
B
C
课堂小结
矩形的判定方法: 有一个角是直角的平行四边形是矩形.
对角线相等的平行四边形是矩形.
有三个角是直角的四边形是矩形.
布置作业
课本P16 1,2,3.
于点O,△ABO是等边三角形,AB=4.
求□ABCD的面积.
A
D
O
B
C
练一练1
已知:如图,M为平行四边形ABCD边AD的中点,
且MB=MC.
求证:四边形ABCD是矩形.
A
M
D
B
C
练一练2
已知:如图,菱形ABCD中,对角线AC和BD相较
于点O,CM∥BD,DM∥AC.
求证:四边形OCMD是矩形.
A
证明:
B

C
矩形判定方法一
对角线相等的平行四边形是矩形.
A
D
B
ABCD AC = BD
C
四边形ABCD是矩形
情境二
李芳同学用四步画出了一个 四边形,她的画法是“边— —直角、边——直角、边— —直角、边” ,她说这就是 一个矩形,她的判断对吗? 为什么?
猜想:有三个角是直角的四边形是矩形.
你能证明上述结论吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[ D]
2. 过四边形的各个顶点分别作对角线的平行线,若这四 条平行线围成一个矩形,则原四边形一定是 [ D ]
A.对角线相等的四边形 B.对角线互相平分且相等的四边形 C.对角线互垂直平分的四边形 D.对角线垂直的四边形
3. 已知矩形的一条对角线与一边的夹角是40°,则两
条对角线所夹锐角的度数为
[D ]
A.50° B.60° C.70° D.80°
4. 矩形ABCD中,AB=2BC,E在CD上,AE=AB,
则∠BAE等于
[ A]
A.30° B.45° C.60° D.120°
说一说
根据题目要求算出结果并讲解理由。如图 矩形ABCD中,1、AC=8cm,则BD=_8c_m__ _AO=_4c_m_CO=4_cm__BO=_4_cm__ 2、AB=6 BC=8,则 AC= _1_0 _ AO=_5 _ _BO=5__ 3、∠AOB=60° AB=4cm,则AC长_8c_m_ ___
A
D
O
B
C
做一做
如图(1) 在矩形ABCD中,AE⊥BD,垂足为E,∠DAE=2∠BAE, 求∠BAE与∠DAE的度数。
如图4在矩形ABCD中,F是BC边上一点,AF的延长线交DC的 延长线于G,DE⊥AG于E,且DE=DC,根据上述条件,请在图 中找出一对全等三角形,并说明理由.
(1)
(2)
3.矩形ABCD中,∠ABD:∠DBC=2:1,
A
P
D
E
F
O
B
C
如图,矩形ABCD中,E为AD上一点,CE=EF,求AE的长.
A
ED
F
B
C
积为
12cm2 或4.cm2
A 3 E1 D A 1 E 3 D
B
CB
C
矩形ABCD中,DF平分∠ADC,交AC 于E,交BC于F, ∠BDF=15°,求 ∠DOC和∠COF的度数.
A
D
O
E
B
F
C
如图,在矩形ABCD中,AB=3,AD=4, P是AD上不与A、D重合的一动点, PE⊥AC,PF⊥BD,E、F为垂足, 求PE+PF的值.
则∠ADB=
度。若AB=4,则AC= 。
A
D
B
C
4.如果矩形的一边与对角线的夹角为50o, 则两对角线相交所成的锐角的度数为 。
A
D
O
500
B
C
2.已知:在矩形ABCD中,E为BC上 一点,∠EAD=∠EDA 求证:E为BC中点.
矩形的一个角的平分线分矩形的一边
为1cm和3cm两部分,则这个矩形的面
矩形的性质二
复习准备
A
D O
图形 性质 类别
B
C
平行四边形
矩形
边 对边平行且相等
对边平行且相等
角 对角相等、邻角互补 四个角都是直角
对角线 两条对角线互相平分 对角线相等且互相平分
对称性 是中心对称图形
中心对称、轴对称图形
1. 下面性质中,矩形不一定具有的是
A.对角线相等 B.四个角都相等 C.是轴对称图形 D.对角线垂直
相关文档
最新文档