MSA测量系统分析
MSA测量系统分析

MSA测量系统分析MSA(测量系统分析)是一种用于评估和改进测量系统稳定性、偏倚和线性性能的方法。
通过进行MSA,可以确定测量系统是否足够稳定和准确,以便在不同的情况下对产品进行正确的测量。
稳定性是指测量系统在相同的测量条件下的一系列测量结果是否一致。
稳定性是MSA中最基本的指标之一,因为如果测量系统不稳定,那么无论多么准确的测量工具都无法提供可靠的测量结果。
偏差是指测量结果与真实值之间的差异。
在MSA中,需要比较测量系统的平均偏差与零偏差之间的差异。
如果两者之间存在较大的差异,则说明测量系统存在系统性的偏离问题,需要进行校准或修正。
线性是指测量系统的输出是否与输入之间存在良好的线性关系。
在MSA中,需要绘制出测量系统的线性回归图,通过斜率和截距来评估测量系统的线性性能。
如果回归线接近理想的45度直线,则说明测量系统的线性性能较好。
在进行MSA时,一般采用以下步骤来评估测量系统的稳定性、偏差和线性性能:1.收集测量数据:使用相同的测量系统对一批样本进行测量,并记录测量结果。
2.统计分析:对于每个样本,计算测量结果的平均值和标准偏差。
然后,计算每个样本平均值之间的差异,并计算整体平均偏差和标准偏差。
3. 制作控制图:使用收集的测量结果,绘制测量系统稳定性的控制图。
通常使用X-bar图来监控平均值的稳定性,使用R或S图来监控标准偏差的稳定性。
4.比较平均偏差和零偏差:计算测量系统的平均偏差和零偏差之间的差异,并进行比较。
如果差异较大,则说明测量系统存在系统性的偏离问题。
5.绘制线性回归图:使用测量数据,绘制测量系统的线性回归图。
计算斜率和截距,并与理想的45度直线进行比较。
如果回归线接近理想线,则说明测量系统具有良好的线性性能。
通过以上步骤,可以对测量系统进行全面的评估,并确定是否需要采取措施来改善测量系统的稳定性、偏差和线性性能。
常用的改善方法包括校准测量工具、调整测量程序和培训操作人员等。
总之,MSA是一种重要的质量管理工具,能够帮助企业评估和改进测量系统的稳定性、偏差和线性性能。
测量系统分析报告MSA

测量系统分析报告MSA1. 引言测量系统分析(Measurement System Analysis,简称MSA)是指通过分析和评估测量系统的性能、稳定性和可靠性,来判断测量结果的准确性和可靠性的过程。
本报告旨在对某测量系统进行全面的分析和评估,以帮助提升测量系统的质量和可靠性。
2. 测量系统分析方法在进行测量系统分析时,常采用以下方法:2.1 重复性与再现性分析重复性和再现性是评估测量系统可靠性的重要指标。
通过对同一对象进行多次测量,可以评估测量结果的一致性和稳定性。
2.2 偏倚分析偏倚分析用于评估测量系统是否存在系统性的误差。
通过对测量系统进行校准,并比较校准前后的测量结果,可以判断测量系统的偏倚情况。
2.3 线性分析线性分析用于评估测量系统是否存在线性关系。
通过测量系统对一系列已知标准进行测量,并绘制测量结果与标准值之间的图表,可以判断测量系统的线性关系。
3. 案例分析本次测量系统分析以某电子元件测量系统为例进行分析。
3.1 重复性与再现性分析通过对同一电子元件进行连续十次测量,并记录测量结果,得到以下数据:测量次数测量结果1 12.32 12.43 12.14 12.35 12.26 12.47 12.58 12.29 12.610 12.3通过计算这十次测量结果的平均值和标准偏差,得到重复性和再现性的评估数据。
3.2 偏倚分析为了评估测量系统的偏倚情况,我们对测量系统进行了校准,并测量了一系列标准样本。
校准前后的测量结果如下:标准样本校准前测量结果校准后测量结果1 2.3 2.12 3.4 3.23 4.5 4.44 5.6 5.75 6.7 6.56 7.8 7.9通过比较校准前后的测量结果,可以评估测量系统的偏倚情况。
3.3 线性分析为了评估测量系统的线性关系,我们选择了一系列已知标准进行测量,并绘制了测量结果与标准值之间的图表。
图表显示测量系统的测量结果与标准值之间存在一定的线性关系。
测量系统分析报告MSA

测量系统分析报告MSA在现代制造业中,为了确保产品质量的稳定性和一致性,对测量系统进行准确的分析和评估是至关重要的。
测量系统分析(Measurement System Analysis,简称 MSA)就是一种用于评估测量过程的工具和方法,它可以帮助我们确定测量数据的可靠性、准确性以及可重复性。
测量系统通常由测量人员、测量设备、测量方法、测量环境和被测量对象等要素组成。
而 MSA 的目的就是要评估这些要素对测量结果的影响,并确定测量系统是否能够满足预期的测量要求。
MSA 主要包括以下几个方面的内容:一、测量系统的准确性准确性是指测量结果与真实值之间的接近程度。
在 MSA 中,通常通过与标准值进行比较来评估测量系统的准确性。
例如,如果我们要测量一个零件的长度,已知其标准长度为 100mm,而测量结果为98mm,那么就存在 2mm 的偏差。
为了提高准确性,我们需要对测量设备进行校准,并确保测量方法的正确性。
二、测量系统的重复性重复性是指在相同的测量条件下,对同一被测量对象进行多次测量时,测量结果的一致性。
如果一个测量系统具有良好的重复性,那么多次测量的结果应该非常接近。
例如,对同一个零件的同一尺寸进行10 次测量,如果测量结果的差异很小,说明测量系统的重复性较好。
三、测量系统的再现性再现性是指在不同的测量条件下,由不同的测量人员使用相同的测量设备和测量方法对同一被测量对象进行测量时,测量结果的一致性。
例如,不同的操作人员在不同的时间对同一个零件的同一尺寸进行测量,如果测量结果的差异较小,说明测量系统的再现性较好。
四、稳定性稳定性是指测量系统在一段时间内保持其性能的能力。
通过定期对测量系统进行监控和测量,可以评估其稳定性。
如果测量系统的稳定性较差,可能需要对其进行维护或更换。
为了进行有效的 MSA,我们通常采用以下几种方法:1、均值极差法(Average and Range Method)这是一种常用的评估测量系统重复性和再现性的方法。
测量系统分析(MSA)-实例

03 实例测量系统分析
偏倚分析
确定测量系统的准确性
通过比较测量系统所得结果与已知标准值或参考值之间的差异, 评估测量系统的偏倚程度。
计算偏倚值
将测量系统的结果与标准值或参考值进行对比,计算出偏倚值。
判断偏倚是否可接受
根据所允许的偏倚范围,判断测量系统的偏倚是否在可接受的范围 内。
线性分析
1 2
测量系统分析(MSA)-实例
目录
• 测量系统分析概述 • 实例选择与数据收集 • 实例测量系统分析 • 实例测量系统评价 • 实例总结与改进建议
01 测量系统分析概述
定义与目的
定义
测量系统分析(MSA)是对测量系 统的误差来源、大小及分布进行评 估的过程。
目的
识别测量系统的变异性来源,确 保测量系统能够满足产品质量和 过程控制的要求。
测量系统分析的重要性
提高产品质量的可预测性和可靠性
01
通过对测量系统进行全面分析,可以了解测量误差的大小和分
布,从而更准确地预测产品质量。
优化生产过程控制
02
准确的测量数据是生产过程控制的基础,对测量系统进行有效
的分析有助于提高过程控制的稳定性和有效性。
降低成本
03
通过减少测量误差,可以减少重复测量、检验和返工等不必要
的操作,从而降低生产成本。
测量系统分析的步骤
确定分析范围和对象
明确需要分析的测量设备、工 具或方法,以及相关的操作人
员和环境条件。
数据收集
收集一定数量、具有代表性的 测量数据,包括重复测量、再 现性数据等。
数据分析
对收集到的数据进行统计分析 ,识别测量系统的变异性来源 。
结果评估与改进
测量系统分析报告MSA

测量系统分析报告MSA概述测量系统分析(MSA)是一种用于评估和提高测量系统的准确性和稳定性的方法。
在制造和生产过程中,准确的测量是至关重要的,因为它对产品质量的监控和改进起着关键作用。
本文档将对测量系统进行分析,包括可重复性、再现性和稳定性等关键指标的评估,以及对所得数据的解释和建议。
测量系统简介测量系统是用来进行尺寸、重量、温度等物理量测量的设备和过程的总称。
测量系统可以包括测量仪器、传感器、仪表和操作方法等。
而测量系统分析是对这些测量系统进行评估和优化的过程。
测量系统的重要性测量系统是确保产品尺寸和规格准确的关键因素。
一个好的测量系统可以提供可靠的数据,帮助生产商识别潜在的质量问题,并做出正确的调整,以确保产品的一致性和合格性。
然而,一个不准确或不稳定的测量系统可能会导致误判,从而对产品的质量和性能产生负面影响。
MSA的关键指标可重复性(Repeatability)可重复性是指在相同测量条件下,测量系统对同一对象进行重复测量的结果间的一致性。
当一个测量系统具有良好的可重复性时,重复测量的结果应该接近。
在测量系统分析中,使用计算变异系数(CV)来评估测量数据的可重复性。
再现性(Reproducibility)再现性是指在不同测量条件下,不同测量系统或不同测量人员对同一对象进行测量所得结果的一致性。
一个良好的测量系统应该具有较高的再现性,即不同的测量设备和人员能够得到相似的测量结果。
在测量系统分析中,可以使用方差分析(ANOVA)来评估测量数据的再现性。
线性度(Linearity)线性度是指测量系统的输出值是否与被测量对象的实际值呈线性关系。
一个好的测量系统应该具有较好的线性度,即在不同测量范围内,测量结果与实际值之间应该存在一个良好的线性关系。
可以使用回归分析来评估测量数据的线性度。
稳定性(Stability)稳定性是指测量系统在一段时间内保持准确性和一致性的能力。
测量系统的稳定性对于长期生产过程的监控和控制非常重要。
测量系统分析(MSA)通用课件

稳定性
稳定性是衡量测量系统在长时间内保持一致性的参数。
稳定性分析通常涉及在一段时间内多次测量同一标准值,以检查测量系统的变化。 这种方法有助于确定测量系统是否随时间推移而发生变化,并评估其可靠性。
重复性和再现性
重复性和再现性是衡量测量系统在不 同操作者或不同条件下的一致性的参 数。
VS
重复性是指在相同条件下,同一操作 者多次测量的一致性。再现性则涉及 不同操作者或不同条件下测量的结果 是否一致。这些分析有助于评估测量 系统的可重复性和可再现性,并确定 其可靠性。
偏倚通常由校准曲线、线性回归分析或其它统计方法确定。 校准曲线是通过比较已知标准值和测量系统所得值来建立的。 线性回归分析则用于评估测量系统的准确性,并确定是否存 在系统误差。
线性
线性是衡量测量系统在预期范围内的 一致性和准确性的参数。
线性分析通过比较不同水平的已知标 准值与测量 系统所得值来进行。这种 方法有助于识别测量系统在高、中、 低值的一致性,并确定是否存在非线 性误差。
范围
确定分析所涉及的测量设备和操作人 员范围,以及需要分析的测量过程和 产品特性。
确定测量系统类型
测量设备
根据分析目的和范围,选择适当的测量设备,并了解其技术规格和性能参数。
操作人员
确定负责测量的人员,了解其资质、经验和培训情况。
制定分析计划
方法
选择适当的测量系统分析方满足要求。
案例二:重复性和再现性分析案例
总结词
本案例介绍了如何进行重复性和再现性分析,以评估 测量系统的精密度和可靠性。
详细描述
本案例通过实际数据展示了如何进行重复性和再现性 分析。首先,对同一实际样品进行多次测量,计算测 量结果的重复性。接着,对不同时间、不同操作者、 不同仪器条件下进行测量,计算再现性。最后,根据 分析结果判断测量系统是否满足要求。
测量系统MSA分析
测量系统MSA分析1. 简介测量系统分析(Measurement System Analysis,简称MSA)是针对测量系统进行的一项评估,用于确定测量系统的准确性和稳定性。
MSA分析是质量管理中非常重要的一部分,可以帮助我们评估测量系统的可靠性,从而确保产品质量的准确性和可靠性。
2. MSA分析的目的MSA分析的主要目的是确保测量系统的有效性和稳定性。
它通过评估测量系统的各种组件,如测量设备、操作员和测量过程,来确定测量系统的可靠性和精确度。
具体来说,MSA分析有以下几个目标:•评估测量设备的准确性和稳定性•评估操作员的测量技能和一致性•评估测量过程的可重复性和再现性•识别并减少测量系统中的变异源3. MSA分析的方法在进行MSA分析时,通常可以采用以下几种方法:3.1 精度和偏差分析精度和偏差分析是一种常用的MSA分析方法,它通过比较测量系统的测量结果与参考值之间的差异来评估测量设备的准确性和稳定性。
通常可以采用直方图、散点图等方式来可视化表示测量结果与参考值之间的差异,进而确定测量设备的偏差情况。
3.2 重复性和再现性分析重复性和再现性分析是评估测量过程的可重复性和再现性的方法。
重复性指的是同一测量设备在同一测量条件下进行多次测量时产生的结果的一致性,而再现性指的是不同测量设备在相同测量条件下进行多次测量时产生的结果的一致性。
通过统计分析和可视化展示重复性和再现性的数据,可以评估测量过程的稳定性和可靠性。
3.3 线性度和偏移分析线性度和偏移分析是评估测量系统线性度和偏移情况的方法。
线性度指的是测量设备在不同测量范围内的测量结果是否存在线性关系,而偏移指的是测量设备的测量结果是否存在常数偏差。
通过对测量结果进行统计分析和可视化展示,可以确定测量系统的线性度和偏移情况。
4. MSA分析的应用MSA分析在实际应用中具有广泛的用途,特别是在制造业领域。
以下是一些常见的应用场景:•生产线上定期进行测量设备的校验和维护,以确保测量结果的准确性和稳定性。
MSA 测量系统分析
9
4.1低质量数据的原因和影响
■低质量数据的普遍原因之一是变差太大 ■一组数据中的变差多是由于测量系统及其环境的相
互作用造成的。 ■如果相互作用产生的变差过大,那么数据的质量会
太低,从而造成测量数据无法利用。如:具有较大 变差的测量系统可能不适合用于分析制造过程,因 为测量系统的变差可能掩盖制造过程的变差。
17
测量系统的统计特性
Bias偏倚(Bias) Repeatability重复性(precision精度) Reproducibility再现性 Linearity线性 Stability稳定性
18
1.偏倚(Bias)
基准值 偏倚
偏倚:是测量结果的观测平均 值与基准值的差值。 真值的取得可以通过采用 更高等级的测量设备进行多次 测量,取其平均值。
➢ 违背假定、在应用常量上出错
➢ 应用─零件尺寸、位置、操作者 技能、疲劳、观察错误
■量具:任何用来获得测量结果的装置,经常用来特指 用在车间的装置;包括通过/不通过装置。
■测量系统:是用来对被测特性定量测量或定性评价的 仪器或量具、标准、操作、方法、夹具、 软件、人员、环境和假设的集合;用来获 得测量结果的整个过程。
7
3.量测过程
S :标准 W :零件 I :仪器 P :人/程序 E :环境
15
二、测量系统统计特性
16
数据变差的来源
工作件(零件)
相互关连
弹性变形 质量
的特性
清洁
仪器(量具)
发展的变异
发展
创建公差
使用假设 稳健设计 偏移
扩大
接触几何 变形效应
弹性特性 支撑特性
适合的 数据
MSA测试系统分析
MSA测试系统分析概述MSA(Measurement System Analysis)是指测量系统分析,是用来评估和确认测量系统的可靠性和准确性的一种方法。
在各行各业的生产和质量控制过程中,测量系统都扮演着十分重要的角色,因此,对测量系统进行分析和评估是非常必要的。
本文将介绍MSA测试系统分析的背景、涉及的主要步骤和相关的统计方法。
背景在生产过程中,对产品的测量和检验是十分重要的环节。
通过测量,可以评估产品特性是否符合要求,从而提高生产过程的控制和产品质量。
然而,测量结果的准确性和可靠性受到许多因素的影响,包括测量设备、操作人员和环境等。
为此,需要对测量系统进行分析和评估,以确保测量结果的准确性和可靠性。
MSA测试系统分析通常包括以下几个主要步骤:确定测量系统的目的首先,需要明确测量系统的目的和应用情境。
例如,是用于产品的检验还是生产过程的控制,或者是用于供应商评估等。
不同的目的和应用情境可能需要使用不同的测量方法和统计方法。
选择适当的指标选择适当的指标是进行MSA测试系统分析的关键步骤。
常见的指标包括测量误差、重复性、稳定性等。
根据不同的情况,选择合适的指标进行分析。
收集数据是进行MSA测试系统分析的必要步骤。
根据所选择的指标,使用适当的方法进行数据的采集和记录。
通常可以使用测量仪器来收集数据,并记录在数据表中。
分析数据在收集到足够的数据后,可以对数据进行分析。
常用的统计方法包括统计描述、方差分析、回归分析等。
通过这些统计方法,可以评估测量系统的准确性、稳定性和重复性等指标。
结果解释和改进措施根据数据分析的结果,可以对测量系统进行评估和解释。
如果测量系统存在问题,可以采取相应的改进措施,如调整测量设备、培训操作人员或改善环境等。
通过对测量系统进行分析和评估,可以得出结论和建议。
根据分析结果,可以评估测量系统的可靠性和准确性,并提出改进建议,以提高测量系统的性能和效果。
结论MSA测试系统分析是一种重要的方法,用于评估和确认测量系统的可靠性和准确性。
MSA量测系统分析
MSA量测系统分析引言MSA(Measurement System Analysis)即量测系统分析,是一种用于评估和改进量测系统的方法。
在各种工业生产和实验环境中,准确的量测是非常重要的。
量测系统包括测量设备、测量方法和人工操作。
通过进行MSA分析,我们可以确定量测系统的可靠性和精度,并且找出并消除潜在的误差来源,以达到准确和可重复的量测结果。
本文将对MSA量测系统分析方法进行详细说明,并讨论其应用和实施过程。
MSA分析方法MSA分析通常包括以下几个步骤:1.确定量测系统的目标:首先,我们需要明确量测系统的目标和测量要求。
例如,我们可能需要测量某个零件的尺寸,或者测量某个过程中的温度变化。
2.选择适当的测量方法:根据量测的特点和要求,选择适当的测量方法。
常见的测量方法包括直接测量、间接测量和视觉检测等。
3.收集测量数据:使用所选的测量方法,收集一定数量的测量数据。
这些数据将被用于后续的分析和评估。
4.进行变差分析:通过对收集到的测量数据进行统计分析,评估测量系统的变差情况。
常见的变差分析方法包括方差分析、极差分析和变异系数分析等。
5.评估测量系统的可靠性和精度:根据变差分析的结果,评估测量系统的可靠性和精度。
通常会使用一些指标来表示测量系统的性能,例如Gage R&R(重复性与再现性)指标。
6.确定并消除误差来源:根据评估结果,确定可能导致测量误差的主要来源,并采取相应的措施来消除或减小这些误差。
7.持续监控和改进:一旦改进措施被实施,需要定期监控和评估测量系统的性能,以确保其稳定并满足要求。
如果发现问题,需要及时采取措施进行改进。
MSA实施过程下面将详细介绍MSA实施过程的每个步骤。
1. 确定量测系统的目标在进行MSA分析之前,首先需要明确量测系统的目标和测量要求。
这可以通过与相关人员的讨论和需求分析来完成。
确定量测目标对于后续的工作非常重要,它将指导我们选择合适的测量方法和评估指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1目的1.1本程序规定了测量系统分析的方法和接受准则。
通过了解变差的来源,判断计量器具是否符合规定的要求,以确保检测结果的有效性。
1.2评价生产环境中的测量系统的统计特性:偏倚、重复性、再现性、稳定性和线性(参见“MSA手册”);1.3获得测量系统与环境交互作用时,该系统有关测量变差量和类型的信息;2范围2.1本指导书适用于特殊特性的计数、计量型测量系统。
3定义3.1量具:任何可用来获得测量结果的装置;包括用来测量合格/不合格的装置;3.2测量系统:用来对被测量特性附值的操作、程序、量具、设备、软件以及操作人员的集合;用来获得测量结果的整个过程。
3.3测量系统分析(MSA):是指通过分析被测特性赋值的操作程序、量具、设备、软件以及操作人员的集合,来获得测量结果的整个过程。
所用的量具测量系统对每个零件能重复读数或能判断合格/不合格,但不包括非工业界的测量系统;3.4偏倚:测量结果的观测平均值与基准值的差值;3.5基准值:又称为可接受的基准值或标准值,是充当测量值的一个一致认可的基准,一个基准值可以通过采用更高级别的测量设备进行多次测量,取其平均值来确定;3.6重复性:由一个评价人,采用一种测量仪器,多次测量同一零件的同一特性时获得的测量值变差;3.7再现性:由不同评价人,采用相同的测量仪器,测量同一零件特性时测量平均值的变差;3.8稳定性:也称“漂移”,是测量系统某持续时间内测量同一基准或零件的单一特性时获得的测量值总变差;3.9线性:在量具预期的工作量程内,偏倚值的差值。
3.10量具R&R:测量系统重复性和再现性的综合变差的估计值。
3.11参考值:被认可并同意基于参考或基准值作为一被测量物的数值比较,它可能是:一个理论值或基于科学原理而建立的数值;基于一些国家或国际组织的一个指定值;基于在一科学或工程组织主持的合作研究实验工作下,一致确定的数值;或者用于一特定用途,利用一可接受的参考方法所获得一致同意的可接受数值。
与某一特定量化定义并被接受的一致的数值,按照惯例有时被接受用于某已知的目的。
4涉及部门4.1质量部4.2生产部5一般原则(测量系统的统计特性)5.1测量系统必须处于统计控制中,这意味着测量系统中的变差只能是由于普通原因而不是由于特殊原因造成的,称为统计稳定性;5.2测量系统的变异必须比制造过程变异小;5.3变异应小于公差带;5.4测量精度应高于过程变异和公差带两者中精度较高者,一般来说,测量精度是过程变异和公差带两者中较高者的十分之一;5.5测量系统统计特性可能随被测项目的改变而变化。
若真的如此,则测量系统最大的(最坏)变差应小于过程变差和公差带两者中的较小者;6程序6.1测量系统分析(MSA)6.1.1本程序中介绍的测量系统分析(MSA)是指通过分析被测特性赋值的操作程序、量具、设备、软件以及操作人员的集合,来获得测量结果的整个过程。
所用的量具测量系统对每个零件能重复读数或能判断合格/不合格,但不包括非工业界的测量系统。
6.1.2MSA主要是测量系统中的误差,这些误差包括:量具的偏倚、线性、稳定性、重复性和再现性。
由于在量具的周期检定过程中对其偏倚、线性和稳定性都由检定部门作了保证,因此,这里不做讨论,主要对重复性和再现性作分析和评价。
6.1.3MSA的量具分类和分析方法根据量具特性不同,可将量具分为计量型和计数型量具,对计量型量具进行测量系统X&R分析法),对计数型量具采用假设试验分析法分析时采用均值和极差法分析((具体方法见6.4.3.2)。
6.2MSA的范围6.2.1在产品工序控制计划中所标注的计量器具必须做MSA。
6.2.2如果顾客有特殊要求,且在图纸中标有特殊特性的符号,对该参数测量的量具要求做MSA。
6.2.3若图纸中没标明,但在工艺中标出是关键特性值,测量的量具要做MSA。
6.3MSA的管理6.3.1由测量系统分析员(本公司由计量管理员担任)根据质量控制计划中所列的量具制订《年度测量系统分析计划》;6.3.2 由测量系统分析员到现场指定零件评价人测量零件,并记录数据。
6.3.3分析员根据原始数据计算R&R 值,并做出评价,形成报告,递交质量经理批准生效。
对不合格的量具应分析查找原因,或更换新的量具。
6.4 MSA 过程 6.4.1 MSA 的前期准备 6.4.1.1选择评价人评价人一般选择加工零件的操作工人或检验员,并由评价人对产品进行测量,选择的人数一般为2~3人。
6.4.1.2 确定取样零件取样零件一般选择10个,且必须从生产过程中选取,并能够代表整个过程(或工作范围)。
样本选择的时机可以为一个样本/天或者一个样本/小时。
6.4.1.3 仪器的分辨率仪器的分辨率应是变差的1/10,在同等精度下为1/3~1/6的公差范围。
6.4.2 MSA 数据的收集6.4.2.1由测量系统分析员事先选择好进行测量分析的项目、评价人、确定取样零件。
并事先对零件进行编号。
6.4.2.2 测量的过程6.4.2.2.1 对于计量型MSA ,由三位评价人使用同一种测量方法,对指定的零件做2~3次测量。
测量系统分析员记录下测得的数据,并将数据填入《计量型器具测量系统分析报告》;6.4.2.2.2 对于计数型MSA ,由三位评价人使用同一种测量方法,对指定的零件各做2~3次评价,测量系统分析员将判断的结果填入《计数型器具测量系统分析报告》;可接受的在方表格填 “1”,不可接受的在表格填“0”。
6.4.2.3评价人事先应在不知道零件编号的情况下测量零件,在读数中应估计到可得到的最接近的数字,并且在测试过程中要细心,认真。
6.4.3 MSA 数据的分析、处理 6.4.3.1均值和极差法1) 对每位评价人的测量平均值(X a 、X b 、X c )和极差的平均值(R a 、R b 、R c )分别进行计算。
每个零件均值也进行计算。
接下来计算评价人平均值极差X DIFF ,评价人极差平均值R ,和零件平均值的极差p R 。
2) 对评价人极差控制上限UCLR 和下限LCLR 的分别按下列公式计算:UCLR = R×D4* LCLR = R×D3*3)对评价人均值控制上限UCLX和下限LCLX,并按下列公式计算:UCLX =RAX2+ LCLX =RAX2-*对D4、D3、A2的数值可以查下表(控制图常数)子组内观察次数 A2 D4 D32 1.880 0 3.2673 1.023 0 2.5754 0.729 0 2.2825 0.577 0 2.1156 0.483 0 2.0047 0.419 0.076 1.9244)按《计量型器具测量系统分析报告》提供的计算公式,计算出EV、AV、R&R、PV、TV、ndc的值,并根据接受准则做出合格性判断,填入《计量型器具测量系统分析报告》;5)在《计量型器具测量系统分析报告》中作图,分别在零件评价人平均值图、重复性极差控制图中划出控制线,按要求作图;6.4.3.2假设试验分析法1)计算期望的数量,按下列公式计算:A0B0=A0总测量次数×B0总测量次数/总测量次数2)计算kappa值,按下列公式计算:kappa =(P0-Pe)/(1-Pe)P0:观测比例的总和Pe:期部分的总和有效性=做出正确决定的次数/总决定次数错误率=实际不好判为好的/实际不好的错误警报率=实际好判为不好的/实际好的3)测量系统分析员将根据接受准则做出合格性判断,填入《计数型器具测量系统分析报告》6.5MSA接受准则6.5.1计量型MSA接受准则6.5.1.1量具重复性和再现性(R&R)的可接受性准则是:低于10%的误差——测量系统良好,可以接受;10至30%的误差——根据应用的重要性,量具成本,维修的费用等,可以是可接受的,并且应对测量系统进行分析;大于30%的误差——测量系统不可接受。
需分析各种问题加以改进,或更换新的量具。
另外,区别分类数ndc要能≥56.5.1.2“计量型器具测量系统分析评价图”中,对“零件评价人平均值图”中的数据点50%应落在控制线外,才能说明零件变差远远大于测量系统变差;对“重复性极差控制图”中的数据点应全部在控制线之中。
6.5.1.3重复性(R1)和再现性(R2)比较分析1)若R1>R2,原因可能是:仪器需要维护;量具应重新设计来提高刚度;夹具和检验点需要改进;存在过大的零件内变差。
2)若R1<R2,原因可能是:量具的刻度不清楚;评价人需要更好地培训如何使用量具和读数;需要某种夹具帮助评价人提高使用量具的一致性。
根据得出的R&R结果,要具体分析不符合原因,并制订相应纠正措施或更换新的量具。
6.5.2计数型假设试验分析法接受准则:Kappa值大于0.75则表示有很好的一致性(最大的Kappa=1) ;Kappa值小于0.40则表示一致性不好。
6.5.2.1根据得出的结果,要具体分析不符合原因,并制订相应纠正措施。
如果不能改进该量具,则应更换量具并重新加以评定。
7职责与权限7.1计量员7.1.1负责依据相关的文件或要求选择需要进行测量系统分析的量具、零件与评价人;7.1.2制订量具测量系统分析的计划与频率;7.1.3负责量具测量系统的分析与合格与否的判断;7.1.4及时向上级主管反馈量具测量系统分析的结果并采取必要的措施。
7.2质量经理7.2.1为量具的测量系统分析提供必要的支持;7.2.2当量具的测量系统分析结果为不合格时,提出处理方案并安排对该量具所检测的产品进行追溯性检查。
7.3生产部7.3.1配合量具测量系统分析的工作,提供测量系统分析所需的相关资源。
7.4评价人7.4.1负责量具测量系统分析所需数据的收集与测试工作。
8流程图8.1无9表格和附件9.1《计量型器具测量系统分析报告》ADD-PCD-QA-010.F1E9.2《计数型器具测量系统分析报告》ADD-PCD-QA-010.F2E10参考文件10.1MSA测量系统分析手册11修改说明11.1新程序第零次修改。