实验1 假设检验

合集下载

实验设计中的假设检验方法

实验设计中的假设检验方法

实验设计中的假设检验方法实验设计是科学研究中不可或缺的一个部分。

在实验设计中,我们需要根据研究问题设计出合适的实验方案,并进行数据收集和分析。

其中,假设检验是一个非常重要的统计方法,用于对实验结果的可靠性进行验证和判断。

一、假设检验的基本概念假设检验是指根据样本数据对总体参数进行推断的一种统计方法。

在假设检验中,我们通常会根据研究问题和样本数据,提出一个关于总体参数的假设,然后根据一定的统计方法进行检验,以确定该假设是否成立。

举个例子,假设我们想研究某种药物对癌症治疗的效果。

我们可以将患者随机地分成两组,一组使用药物治疗,另一组使用安慰剂进行对比。

然后我们可以根据两组患者的数据,比如生存时间、癌症复发率等指标,来检验使用药物是否对治疗效果产生了显著的影响。

在假设检验中,我们需要根据研究问题和样本数据,提出两种假设:原假设(H0)和备择假设(H1)。

原假设是指我们最初的假设,通常是一个默认或常规假设,比如“两组数据没有显著差异”或“药物对治疗没有显著影响”。

备择假设是指我们希望证实的假设,通常是对原假设的否定或替代假设,比如“两组数据有显著差异”或“药物对治疗有显著影响”。

假设检验的过程主要包括以下几个步骤:1. 建立原假设和备择假设。

2. 确定显著性水平,一般设置为0.05或0.01等。

3. 根据样本数据计算统计量的值。

4. 计算统计量的p值,即原假设成立的概率。

5. 判断p值是否小于显著性水平,如果小于,则拒绝原假设,接受备择假设;如果大于,则接受原假设,拒绝备择假设。

二、假设检验的类型在假设检验中,主要有以下几种类型:1. 单样本假设检验。

这种假设检验适用于只有一个样本的情况,比如我们想比较某种产品的销售额是否达到预期水平。

在这种假设检验中,原假设通常是“产品销售额在预期水平以下”。

2. 独立样本假设检验。

这种假设检验适用于存在两个或多个独立样本的情况,比如我们想比较男性和女性在某项指标上的差异。

假设检验

假设检验
X是的无偏估计量,
U | X 0 | ~ N (0,1)
/ n
3° 在假设 H0成立的条件下,由样本判断 y 小概率事件是否发生。 y pU ( x )

P{| U | u / 2 }
2

2
当 0很小时 ,
uα / 2
O uα / 2
x
{| U | u / 2 }是个小概率事件 (如上图) .
第一节
假设检验的 基本概念
一、假设检验的基本原理 二、假设检验的基本概念 三、两类错误

四、假设检验的一般步骤
停 下
实验设计 数理统计 统计推断
参数估计 假设检验 (回归分析)
统计推断: 研究如何加工、处理数据,从而 对所考察对象的性质做出尽可能精确和可靠的 推断.
很难发生. 但“很难发生”不等于“不发生”, 因而 假设检验所作出的结论有可能是错误的. 这种错误 有两类: (1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称为第Ⅰ类错误, 又叫弃真 错误, 这类错误是“以真为假”. 犯第Ⅰ类错误的概 率就是显著性水平 .
= P { 拒绝原假设H0 | H0为真 }
H0称为原假设或零假设, H1称为备择假设.
4. 拒绝域与临界点样本值x=(x1, x2, · · · , xn)所组成的集合. W1 = { x x 且使H0不成立}
W1 W1 : 拒绝原假设H0的检验统计量的取值范围.
W1 x x , U U
根据小概率原理, 如果H 0为真,则 | x 0 | 不应太大,则由一次试验得到
满足不等式
| u |
| x 0 |
/ n

04_05假设检验-医学课件

04_05假设检验-医学课件

例4.4:
μ0 =4.6(mmol/L)
?=
μ
n=25 X 5.1(mmol / L) S 0.88(mmol / L)
已知总体
未知总体
手头样本
例4.4:
X05.14.60.5
手头样本对应的未知总体均数μ等于已知总体均 数μ0,差别仅仅是由于抽样误差所致
除抽样误差外,样本所来自的未知总体与已知 总体不同,存在本质差异
碰巧猜对吗?
一个统计学故事
假设:她没有这个本事,是碰巧猜对的! 连续猜对8个杯子的可能性 P 是多少? P=0.58=0.00390625 你认为原假设 H0 成立吗?
推断结论她真的有这个本事! (不是碰巧猜对的。)
依据:小概率原理。 P ≤ 0.05为小概率。
做个实验
总体A是100例正常成年男子血红蛋白(g/L,以
t X 0
sn
n1
统计量t表示,在标准误的尺度下,样本均数与总体均
数0的偏离。这种偏离称为标准t离差。
根据抽样误差理论,在H0假设前提下,统计 量t服从自由度为n-1的t分布,即t值在0的附近 的可能性大,远离0的可能性小,离0越远可能 性越小。
t值越小,越利于H0假设 t值越大,越不利于H0假设
假设检验(Hypothesis Test)
------ 统计推断内容之一
Outline
基本思想 基本步骤 均数的假设检验 假设检验中几个基本概念 假设检验中几个值得注意的问题
一个统计学实验
一位常饮牛奶加茶的女士声称,她能辨别先倒 进杯子里的是茶还是牛奶ຫໍສະໝຸດ 对此做了8次试验, 她都正确地说出了。
4.317 4.029 3.833 3.690 3.581

实验报告假设检验

实验报告假设检验

实验二(2)
辽宁科技大学电信学院16级研究生2016 年10月20日
实验过程与结果
本实验是检验当显著水平分别为”的情况下,车间新生产出来的这批钢丝的折断力均值有无变化,
应当选用方差已知,关于的假设检验---U检验。

第一步:根据题意,提出检验的原假设和备择假设是H°: = 0, H1 : 工0,这是一个双侧检
验问题,0=570;
第二步:打开EXCEL录入实验数据至A2-A17;
第三步:将全部数据选中,右击,选择数据分析,得到数据分析表,系统默认显著水平为;
第四步:分别在D2中录入期望均值570;
第五步:在D3中录入总体的标准差,由题意可知为8;
第六步:在D4中录入样本容量为16;
第七步:在D5中录入样本均值,用AVERAG函数求解,如图
第八步:在D7中求出U值,函数如图所示
第九步:在D8中求出双侧检验的P值,函数如图所示
第十步:当显著水平为时,查表得U o.025 =,由于U=>,落在拒绝域内,故拒绝H。

,接受比,这批钢丝折断力的均值变化了。

第^一步:当显著水平为时,查表得U o.o05=,由于U=>,仍落在拒绝域内,拒绝H o,接受H i,这批钢丝折断力的均值变化了。

第十二步:当显著水平为时,查表得U o.05=,由于u=>,故仍落在拒绝域内,表示这批钢丝折断
力的均值变化了。

第十三步:另一种判断方法,由表知 卩=小于,,,故拒绝H 。

,与上述结果一致,得以验证。

实验过程及均值的 U 检验活动表,数据分析表如图所示:。

统计学中假设检验的基本步骤详解

统计学中假设检验的基本步骤详解

统计学中假设检验的基本步骤详解假设检验是统计学中最基本的方法之一,它用于验证某个总体参数的假设是否成立。

本文将详细介绍假设检验的基本步骤。

一、确定假设任何一项实验或研究都需要一个调查或分析的对象——总体。

首先要确定总体的某一特征或参数,例如总体均值、方差等等。

假设检验需要提出两个假设:零假设H0和备择假设H1,其中H0通常是一个默认的假设,而H1则是我们要研究或验证的假设。

例如,在进行一项关于人群身高的研究时,我们可能对平均身高感兴趣。

此时零假设H0可以设为“这个人群的平均身高为X”,而备择假设H1可以设为“这个人群的平均身高不为X”,即H0和H1是对这个人群平均身高是否等于X的两种假设。

二、确定检验统计量检验统计量是通过对样本数据的统计分析得到的,它量化了样本数据对假设的支持程度。

具体而言,检验统计量应满足以下特点:1. 检验统计量应该与所要检验的参数有关。

2. 检验统计量应该容易计算、便于分析。

3. 检验统计量应该有已知的分布,方便计算其p值。

常用的检验统计量有t值、z值、F值、卡方值等。

三、设定显著性水平显著性水平α是当零假设成立时,拒绝H0的概率。

通常显著性水平α的取值为0.05或0.01。

如果H0在样本数据下被拒绝,我们将得到一个p值,它表示在零假设成立的情况下,观察到这样数据或更极端数据的概率。

四、计算检验统计量计算检验统计量是假设检验的核心步骤,其公式可以根据不同的参数和检验统计量来确定。

例如,在进行样本均值的假设检验时,常使用t检验。

样本均值的t检验统计量为:t=(xbar-μ)/(s/√n)其中,xbar为样本均值,μ为所要检验的总体均值,s为样本标准差,n为样本量。

五、查表或计算p值在得到检验统计量后,需要查表或计算p值,以判断是否拒绝零假设。

对于t检验,可以利用t分布表计算出对应的p值。

如果p值小于等于显著性水平α,则拒绝零假设,否则接受零假设。

六、得出结论最后,我们需要根据计算得到的p值来得出结论。

假设检验的步骤和用途

假设检验的步骤和用途

假设检验的步骤和用途假设检验是统计学中一种常用的推断方法,用于判断样本数据是否支持某个假设。

它可以帮助我们做出关于总体参数的推断,从而对研究问题进行验证和决策。

本文将介绍假设检验的步骤和用途。

一、假设检验的步骤假设检验的步骤通常包括以下几个步骤:1. 确定原假设和备择假设:原假设(H0)是我们要进行检验的假设,通常是我们希望证伪的假设;备择假设(H1)是与原假设相对立的假设,通常是我们希望支持的假设。

2. 选择适当的检验统计量:根据研究问题和数据类型,选择适当的检验统计量。

常见的检验统计量有t检验、F检验、卡方检验等。

3. 确定显著性水平:显著性水平(α)是我们在进行假设检验时事先设定的一个阈值,用于判断样本数据是否支持原假设。

常见的显著性水平有0.05和0.01。

4. 计算检验统计量的观察值:根据样本数据计算出检验统计量的观察值。

5. 确定拒绝域:拒绝域是在给定显著性水平下,检验统计量观察值落在其中时,我们拒绝原假设的区域。

6. 做出决策:根据检验统计量的观察值是否落在拒绝域内,做出接受或拒绝原假设的决策。

二、假设检验的用途假设检验在实际应用中有着广泛的用途,主要包括以下几个方面: 1. 参数估计:假设检验可以帮助我们对总体参数进行估计。

通过对样本数据进行假设检验,我们可以得到对总体参数的点估计和置信区间估计。

2. 假设验证:假设检验可以帮助我们验证研究问题中的假设。

通过对样本数据进行假设检验,我们可以判断样本数据是否支持原假设,从而对研究问题进行验证。

3. 决策制定:假设检验可以帮助我们做出决策。

通过对样本数据进行假设检验,我们可以根据检验结果做出接受或拒绝原假设的决策,从而对实际问题进行决策制定。

4. 质量控制:假设检验可以帮助我们进行质量控制。

通过对生产过程中的样本数据进行假设检验,我们可以判断生产过程是否正常,从而进行质量控制和改进。

5. 科学研究:假设检验在科学研究中有着重要的应用。

假设检验与实验设计

假设检验与实验设计在科学研究领域中,假设检验与实验设计是两个非常重要的概念。

通过合理的实验设计和有效的假设检验方法,研究者可以推断样本数据与总体之间是否存在显著差异,从而为科学研究提供可靠的结论。

本文将介绍假设检验与实验设计的基本概念、步骤和常见方法,并探讨其在科研实践中的应用。

一、假设检验的基本概念在进行假设检验之前,我们首先需要明确研究问题,并建立相应的假设。

假设是对总体参数的陈述或猜测,可以分为零假设(H0)和备择假设(H1或Ha)。

零假设是研究者希望拒绝的假设,通常表示总体参数无变化或无差异;备择假设则是对零假设的反面陈述,表示总体参数存在某种变化或差异。

假设检验的基本思想是根据样本数据推断总体参数的真实值。

通过计算样本统计量,并将其与理论分布进行比较,可以得出样本数据与总体之间是否存在显著差异的结论。

常用的假设检验方法有Z检验、T 检验和卡方检验等。

二、实验设计的基本概念实验设计是科学研究的基础,通过合理、科学地设置实验方案,控制干扰因素,研究者可以更准确地获得实验结果并得出结论。

在实验设计中,我们需要明确实验目的、选择实验变量、确定实验组和对照组,并随机分配样本。

常见的实验设计方法有完全随机设计、随机区组设计和因子设计等。

在完全随机设计中,实验对象被随机分为实验组和对照组,以消除干扰变量的影响;在随机区组设计中,实验对象被分为若干均匀的区组,以进一步控制干扰;在因子设计中,研究者通过设置多个因子和水平,来观察不同因素对实验结果的影响。

三、假设检验与实验设计的关系假设检验和实验设计是紧密相关的概念,在科学研究中相辅相成。

实验设计提供了实验数据,假设检验则用于分析数据并进行推断。

在设计实验时,研究者可以根据预期效应大小和样本量来选择合适的假设检验方法。

比如,如果样本容量较大、总体方差已知且正态分布,可以使用Z检验;如果总体方差未知且样本容量较小,可以使用T检验。

此外,实验设计还需要合理设置控制变量,并进行实验组和对照组的随机分配,以确保实验结果的可靠性。

假设检验的步骤和用途

假设检验的步骤和用途假设检验是统计学中一种重要的推断方法,用于判断样本数据与总体参数之间是否存在显著差异。

在进行假设检验时,需要经过一系列步骤来完成检验过程,同时也需要清楚地了解假设检验的具体用途。

本文将详细介绍假设检验的步骤和用途,帮助读者更好地理解和应用这一统计方法。

### 假设检验的步骤假设检验通常包括以下几个步骤:1. **建立假设**:在进行假设检验之前,首先需要明确研究的问题,并建立原假设(H0)和备择假设(H1)。

原假设通常是研究者想要进行推翻的假设,备择假设则是与原假设相对立的假设。

2. **选择显著性水平**:显著性水平(α)是在假设检验中设定的一个阈值,用于判断样本数据是否足够显著以拒绝原假设。

通常情况下,显著性水平取0.05或0.01。

3. **选择检验统计量**:根据研究问题的特点和数据类型,选择适当的检验统计量,如t检验、F检验、卡方检验等。

4. **计算检验统计量的取值**:根据样本数据计算出检验统计量的具体数值。

5. **确定拒绝域**:根据显著性水平和自由度确定拒绝域的临界值,如果计算得到的检验统计量落在拒绝域内,则拒绝原假设。

6. **做出决策**:比较计算得到的检验统计量与拒绝域的临界值,根据判断结果做出接受或拒绝原假设的决策。

7. **得出结论**:根据决策结果,得出对研究问题的结论,判断样本数据是否支持备择假设。

### 假设检验的用途假设检验在统计学中具有广泛的应用,主要用途包括:1. **判断总体参数**:通过假设检验可以判断样本数据与总体参数之间是否存在显著差异,从而对总体参数进行推断。

2. **比较实验组与对照组**:在实验设计和医学研究中,假设检验常用于比较实验组与对照组之间的差异,判断实验处理是否有效。

3. **验证研究假设**:研究者在进行科学研究时,通常会提出研究假设,通过假设检验来验证研究假设的成立与否。

4. **质量控制**:在生产过程中,假设检验可以用于质量控制,判断产品是否符合标准要求。

假设检验的基本方法

假设检验的基本方法假设检验是统计学中用于评估假设是否成立的一种重要方法。

基本方法如下:1. 提出假设:首先需要提出一个假设,即需要验证的假设,例如,假设某种药物能够显著提高患者的生存率。

2. 设计实验:根据假设,设计实验并进行数据收集。

3. 数据分析:收集到足够的数据后,需要进行数据分析,以验证假设是否成立。

4. 建立统计模型:根据数据分析结果,建立统计模型,例如,使用回归分析方法来评估药物对生存率的影响。

5. 进行假设检验:根据建立的模型和数据,计算统计量,例如,t 值或 F 值,以评估假设是否成立。

如果统计量大于临界值,则拒绝原假设,否则不拒绝原假设。

6. 解读结果:根据实验结果和统计模型,解读结果并得出结论。

常见的假设检验方法包括 t 检验、方差分析、回归分析等。

其中,t 检验是最常用的方法之一,例如,在使用 t 检验时,需要提出一个零假设,即假设实验组和对照组之间的均值相等,然后计算统计量,例如 t 值,并计算 p 值,以评估假设是否成立。

在假设检验中,需要注意以下几点:1. 控制α错误:在假设检验中,需要控制α错误,即拒绝零假设时出现的错误。

通常将α值设置为 0.05 或 0.1。

2. 样本量:样本量越大,结果的准确性和可靠性越高。

因此,需要根据实验条件和数据收集难度等因素,选择合适的样本量。

3. 稳健性:在某些情况下,假设检验的结果可能不可靠,例如,当数据存在偏差或异常值时,假设检验的结果可能不准确。

在这种情况下,可以使用非参数检验方法,例如 Kolmogorov-Smirnov 检验或 Mann-Whitney U 检验。

假设检验是统计学中非常重要的方法,可以用于评估假设是否成立。

在使用时,需要注意以下几点,以确保结果的准确性和可靠性。

实验报告 正态分布均值参数的假设检验1


1 , 2 , 2 均为未知。
我们用 t 统计量来检验假设 H 0 : 1 2 0, H1: 1 2 0 。
t
(n 1) S12 (n2 1) S2 2 (X Y ) xy 2 ,其中S w 1 n1 n2 2 1 1 1 1 Sw sw n1 n2 10 10
多元统计分析实验报告——刘晓丽
; run;
第二步:在“分析家”窗口将 Work 数据库中的数据集打开; 第三步: 在“分析家”窗口, 单击【Statistics】【Hypothesis Tests】 【Two-Sample t-test for Means】(当两样本量不同且两样本独立),运行结果见图 1 和图 2;
假设检验 H 0 : 1 2 的 SAS 实现。 第一步:在程序编辑窗口建立 SAS 数据集 test;
data test; input old new; cards; 78.1 79.1 72.4 81.0 76.2 77.3 74.3 79.1 77.4 80.0 78.4 78.1 76.0 79.1 75.5 77.3 76.7 80.2 77.3 82.1
图 1 对数据集“tes t”进行“Two-Sample t-test for Means ”的源自行结果图2t 分布图
第四步:对输出的结果进行分析,做出拒绝或接受零假设的决策。 从图 1 中可以看出: (1)零假设是 H 0 : 1 2 ,备选假设是 H1 : 1 2 ; (2)检验统计量 t 的值是在两总体方差相等和不等的情况下均为-4.098; (3) p 0.0007 0.025 ,因此按0.05水平拒绝零假设。 (4) t分布图也进一步显示了-4.098落在了小概率事件的范围内,故应拒绝零假设, 认为建 议的新操作方法较原来的方法为优。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

项目八 假设检验、回归分析与方差分析实验1 假设检验实验目的 掌握用Mathematica 作单正态总体均值、方差的假设检验, 双正态总体的均值差、方差比的假设检验方法, 了解用Mathematica 作分布拟合函数检验的方法.基本命令1.调用假设检验软件包的命令<<Statistics\HypothesisTests.m输入并执行命令<<Statistics\HypothesisTests.m2.检验单正态总体均值的命令MeanTest命令的基本格式为MeanTest[样本观察值,0H 中均值0μ的值, TwoSided->False(或True), Known Variance->None (或方差的已知值20σ),SignificanceLevel->检验的显著性水平α,FullReport->True]该命令无论对总体的均值是已知还是未知的情形均适用.命令MeanTest 有几个重要的选项. 选项Twosided->False 缺省时作单边检验. 选项Known Variance->None 时为方差未知, 所作的检验为t 检验. 选项Known Variance->20σ时为方差已知(20σ是已知方差的值), 所作的检验为u 检验. 选项Known Variance->None 缺省时作方差未知的假设检验. 选项SignificanceLevel->0.05表示选定检验的水平为0.05. 选项FullReport->True 表示全面报告检验结果.3.检验双正态总体均值差的命令MeanDifferenceTest命令的基本格式为MeanDifferenceTest[样本1的观察值,样本2的观察值,0H 中的均值21μμ-,选项1,选项2,…]其中选项TwoSided->False(或True), SignificanceLevel->检验的显著性水平α,FullReport->True 的用法同命令MeanTest 中的用法. 选项EqualVariances->False(或True)表示两个正态总体的方差不相等(或相等).4.检验单正态总体方差的命令VarianceTest命令的基本格式为VarianceTest[样本观察值,0H 中的方差20σ的值,选项1,选项2,…]该命令的选项与命令MeanTest 中的选项相同.5.检验双正态总体方差比的命令VarianceRatioTest命令的基本格式为VarianceRatioTest[样本1的观察值,样本2的观察值,0H 中方差比2221σσ的值,选项1,选项2,…] 该命令的选项也与命令MeanTest 中的选项相同.注: 在使用上述几个假设检验命令的输出报告中会遇到像OneSidedPValue->0.000217593这样的项,它报告了单边检验的P 值为0.000217593. P 值的定义是: 在原假设成立的条件下, 检验统计量取其观察值及比观察值更极端的值(沿着对立假设方向)的概率. P 值也称作“观察”到的显著性水平. P 值越小, 反对原假设的证据越强. 通常若P 低于5%, 称此结果为统计显著; 若P 低于1%,称此结果为高度显著.6.当数据为概括数据时的假设检验命令当数据为概括数据时, 要根据假设检验的理论, 计算统计量的观察值, 再查表作出结论. 用以下命令可以代替查表与计算, 直接计算得到检验结果.(1)统计量服从正态分布时, 求正态分布P 值的命令NormalPValue. 其格式为NormalPValue[统计量观察值,显著性选项,单边或双边检验选项](2)统计量服从t 分布时, 求t 分布P 值的命令StudentTPValue. 其格式为StudentTPValue[统计量观察值,自由度,显著性选项,单边或双边检验选项](3)统计量服从2χ分布时, 求2χ分布P 值的命令ChiSquarePValue. 其格式为ChiSquarePValue[统计量观察值,自由度,显著性选项,单边或双边检验选项](4)统计量服从F 分布时, 求F 分布P 值的命令FratioPValue. 其格式为FratioPValue[统计量观察值,分子自由度,分母自由度,显著性选项,单边或双边检验选项](5)报告检验结果的命令ResultOfTest. 其格式为ResultOfTest[P 值,显著性选项,单边或双边检验选项,FullReport->True]注:上述命令中, 缺省默认的显著性水平都是0.05, 默认的检验都是单边检验.实验举例单正态总体均值的假设检验(方差已知情形)例 1.1 (教材 例 1.1) 某车间生产钢丝, 用X 表示钢丝的折断力, 由经验判断),(~2σμN X , 其中228,570==σμ, 今换了一批材料, 从性能上看, 估计折断力的方差2σ不会有什么变化(即仍有228=σ), 但不知折断力的均值μ和原先有无差别. 现抽得样本, 测得其折断力为578 572 570 568 572 570 570 572 596 584取,05.0=α试检验折断力均值有无变化?根据题意, 要对均值作双侧假设检验570:,570:10≠=μμH H输入<<Statistics\HypothesisTests.m 执行后, 再输入 data1={578,572,570,568,572,570,570,572,596,584};MeanTest[data1,570,SignificanceLevel->0.05,KnownVariance->64,TwoSided->True,FullReport->True](*检验均值, 显著性水平05.0=α, 方差083.02=σ已知*)则输出结果{FullReport->MeanTestStat Distribution 575.2 2.05548 NormalDistribution[]TwoSidedPValue->0.0398326,Reject null hypothesis at significance level ->0.05}即结果给出检验报告: 样本均值2.575=x , 所用的检验统计量为u 统计量(正态分布),检验统计量的观测值为 2.05548, 双侧检验的P 值为0.0398326, 在显著性水平05.0=α下, 拒绝原假设, 即认为折断力的均值发生了变化.例 1.2 (教材 例 1.2) 有一工厂生产一种灯管, 已知灯管的寿命X 服从正态分布)40000,(μN , 根据以往的生产经验, 知道灯管的平均寿命不会超过1500小时. 为了提高灯管的平均寿命, 工厂采用了新的工艺. 为了弄清楚新工艺是否真的能提高灯管的平均寿命,他们测试了采用新工艺生产的25只灯管的寿命. 其平均值是1575小时, 尽管样本的平均值大于1500小时, 试问: 可否由此判定这恰是新工艺的效应, 而非偶然的原因使得抽出的这25只灯管的平均寿命较长呢?根据题意, 需对均值的作单侧假设检验 1500:,1500:10>≤μμH H检验的统计量为 n X U /0σμ-=, 输入 p1=NormalPValue[(1575-1500)/200*Sqrt[25]]ResultOfTest[p1[[2]],SignificanceLevel ->0.05,FullReport ->True]执行后的输出结果为OneSidedPValue ->0.0303964{OneSidedPValue->0.0303964,Fail to reject null hypothesis at significance level ->0.05}即输出结果拒绝原假设单正态总体均值的假设检验(方差未知情形)例1.3 (教材 例1.3) 水泥厂用自动包装机包装水泥, 每袋额定重量是50kg, 某日开工后随机抽查了9袋, 称得重量如下:49.6 49.3 50.1 50.0 49.2 49.9 49.8 51.0 50.2设每袋重量服从正态分布, 问包装机工作是否正常(05.0=α)?根据题意, 要对均值作双侧假设检验:50:;50:10≠=μμH H输入 data2={49.6,49.3,50.1,50.0,49.2,49.9,49.8,51.0,50.2};MeanTest[data2,50.0,SignificanceLevel ->0.05,FullReport ->True](*单边检验且未知方差,故选项TwoSided,KnownVariance 均采用缺省值*)执行后的输出结果为{FullReport->Mean TestStat Distribution,49.9 -0.559503 StudentTDistribution[8]OneSidedPValue ->0.295567,Fail to reject null hypothesis at significance level ->0.05}即结果给出检验报告: 样本均值9.49=X , 所用的检验统计量为自由度8的t 分布(t 检验),检验统计量的观测值为-0.559503, 双侧检验的P 值为0.295567, 在显著性水平05.0=α下, 不拒绝原假设, 即认为包装机工作正常.例1.4 (教材 例1.4) 从一批零件中任取100件,测其直径,得平均直径为5.2,标准差为1.6.在显著性水平05.0=α下,判定这批零件的直径是否符合5的标准.根据题意, 要对均值作假设检验:.5:;5:10≠=μμH H 检验的统计量为n s T /0μ-=, 它服从自由度为1-n 的t 分布. 已知样本容量,100=n 样本均值2.5=X , 样本标准差6.1=s .输入StudentTPValue[(5.2-5)/1.6*Sqrt[100],100-1,TwoSided->True]则输出TwoSidedPValue->0.214246 即P 值等于0.214246, 大于0.05, 故不拒绝原假设, 认为这批零件的直径符合5的标准.单正态总体的方差的假设检验例1.5 (教材 例1.5) 某工厂生产金属丝, 产品指标为折断力. 折断力的方差被用作工厂生产精度的表征. 方差越小, 表明精度越高. 以往工厂一直把该方差保持在64(kg 2)与64以下. 最近从一批产品中抽取10根作折断力试验, 测得的结果(单位为千克) 如下:578 572 570 568 572 570 572 596 584 570 由上述样本数据算得74.75,2.5752==s x .为此, 厂方怀疑金属丝折断力的方差是否变大了. 如确实增大了, 表明生产精度不如以前, 就需对生产流程作一番检验, 以发现生产环节中存在的问题.根据题意, 要对方差作双边假设检验:64:;64:2120>≤σσH H 输入 data3={578,572,570,568,572,570,572,596,584,570};VarianceTest[data3,64,SignificanceLevel->0.05,FullReport->True](*方差检验,使用双边检验,05.0=α*)则输出{FullReport->Variance TestStat Distribution75.7333 10.65 ChiSquareDistribution[9]OneSidedPValue->0.300464,Fail to reject null hypothesis at significance level->0.05}即检验报告给出: 样本方差,7333.752=s 所用检验统计量为自由度4的2χ分布统计量(2χ 检验), 检验统计量的观测值为10.65, 双边检验的P 值为0.300464, 在显著性水平05.0=α 时, 接受原假设, 即认为样本方差的偏大系偶然因素, 生产流程正常, 故不需再作进一步的 检查.例1.6 (教材 例1.6) 某厂生产的某种型号的电池, 其寿命(以小时计) 长期以来服从方差50002=σ的正态分布, 现有一批这种电池, 从它的生产情况来看, 寿命的波动性有所改变. 现随机取26只电池, 测出其寿命的样本方差92002=s .问根据这一数据能否推断这批电池的寿命的波动性较以往的有显著的变化(取02.0=α)?根据题意, 要对方差作双边假设检验: 5000:;5000:2120≠=σσH H 所用的检验统计量为,)1(2022σχS n -=它服从自由度为1-n 的2χ分布.已知样本容量,26=n 样本方差.92002=s 输入ChiSquarePValue[(26-1)*9200/5000, 26-1,TwoSided->True]则输出TwoSidedPValue->0.0128357.即P 值小于0.05, 故拒绝原假设. 认为这批电池寿命的波动性较以往有显著的变化.双正态总体均值差的检验(方差未知但相等)例1.7 (教材 例1.7) 某地某年高考后随机抽得15名男生、12名女生的物理考试成绩如下:男生: 49 48 47 53 51 43 39 57 56 46 42 44 55 44 40女生: 46 40 47 51 43 36 43 38 48 54 48 34从这27名学生的成绩能说明这个地区男女生的物理考试成绩不相上下吗?(显著性水平05.0=α).根据题意, 要对均值差作单边假设检验:211210:,:μμμμ≠=H H输入 data4={49.0,48,47,53,51,43,39,57,56,46,42,44,55,44,40};data5={46,40,47,51,43,36,43,38,48,54,48,34};MeanDifferenceTest[data4,data5,0,SignificanceLevel->0.05,TwoSided->True,FullReport->True,EqualVariances->True,FullReport->True](*指定显著性水平05.0=α,且方差相等*) 则输出{FullReport->MeanDiff TestStat Distribution3.6 1.56528 tudentTDistribution[25],OneSidedPValue->0.13009,Fail to reject null hypothesis at significance level->0.05} 即检验报告给出: 两个正态总体的均值差为3.6, 检验统计量为自由度25的t 分布(t 检验),检验统计量的观察值为1.56528, 单边检验的P 值为0.13009, 从而没有充分理由否认原假 设, 即认为这一地区男女生的物理考试成绩不相上下.双正态总体方差比的假设检验例1.8 (教材 例1.8) 为比较甲、乙两种安眠药的疗效, 将20名患者分成两组, 每组10人, 如服药后延长的睡眠时间分别服从正态分布, 其数据为(单位:小时):甲: 5.5 4.6 4.4 3.4 1.9 1.6 1.1 0.8 0.1 -0.1乙: 3.7 3.4 2.0 2.0 0.8 0.7 0 -0.1 -0.2 -1.6问在显著性水平05.0=α下两重要的疗效又无显著差别.根据题意, 先在21,μμ未知的条件下检验假设:2221122210:,:σσσσ≠=H H输入 list1={5.5,4.6,4.4,3.4,1.9,1.6,1.1,0.8,0.1,-0.1};list2={3.7,3.4,2.0,2.0,0.8,0.7,0,-0.1,-0.2,-1.6};VarianceRatioTest[list1,list2,1,SignificanceLevel->0.05,TwoSided->True,FullReport->True](*方差比检验,使用双边检验,05.0=α*) 则输出 {FullReport->Ratio TestStat Distribution1.41267 1.41267 FratioDistribution[9,9],TwoSidedPValue->0.615073,Fail to reject null hypothesis at significancelevel->0.05}即检验报告给出: 两个正态总体的样本方差之比2221s s 为1.41267, 检验统计量的分布为)9,9(F 分布(F 检验), 检验统计量的观察值为1.41267, 双侧检验的P 值为0.615073. 由检验报告知两总体方差相等的假设成立.其次, 要在方差相等的条件下作均值是否相等的假设检验:211210:,:μμμμ≠'='H H 输入MeanDifferenceTest[list1,list2,0,EqualVariances->True,SignificanceLevel->0.05,TwoSided->True,FullReport->True](*均值差是否为零的检验,已知方差相等,05.0=α,双边检验*)则输出{FullReport->MeanDiff TestStat Distribution1.26 1.52273 StudentTDistribution[18],TwoSidedPValue->0.1452,Fail to reject null hypothesis at significance level->0.05}根据输出的检验报告, 应接受原假设,:210μμ='H 因此, 在显著性水平05.0=α下可认为21μμ=.综合上述讨论结果, 可以认为两种安眠药疗效无显著差异.例1.9 (教材 例1.9) 甲、乙两厂生产同一种电阻, 现从甲乙两厂的产品中分别随机抽取12个和10个样品, 测得它们的电阻值后, 计算出样本方差分别为,40.121=s .38.422=s 假设电阻值服从正态分布, 在显著性水平10.0=ε下, 我们是否可以认为两厂生产的电阻值的方差相等.根据题意, 检验统计量为,2221S S F =它服从自由度(1,121--n n )的F 分布.已知样本容量10,1221==n n , 样本方差.38.4,40.12221==s s 该问题即检验假设: 2221122210:,:σσσσ≠=H H输入FRatioPValue[1.40/4.38,12-1,10-1,TwoSided->True,SignificanceLevel->0.1]则输出TwoSidedPValue->0.0785523,Reject null hypothesis at significance level->0.1}所以, 我们拒绝原假设, 即认为两厂生产的电阻阻值的方差不同分布拟合检验——2χ检验法例1.10 (教材 例1.10) 下面列出84个伊特拉斯坎男子头颅的最大宽度(单位:mm):141 148 132 138 154 142 150 146 155 158 150 140 147 148 144150 149 145 149 158 143 141 144 144 126 140 144 142 141 140145 135 147 146 141 136 140 146 142 137 148 154 137 139 143140 131 143 141 149 148 135 148 152 143 144 141 143 147 146150 132 142 142 143 153 149 146 149 138 142 149 142 137 134144 146 147 140 142 140 137 152 145试检验上述头颅的最大宽度数据是否来自正态总体(1.0=α)?输入数据data2={141,148,132,138,154,142,150,146,155,158,150,140, 147,148,144,150,149,145,149,158,143,141,144,144,126,140, 144,142,141,140,145,135,147,146,141,136,140,146,142,137, 148,154,137,139,143,140,131,143,141,149,148,135,148,152, 143,144,141,143,147,146,150,132,142,142,143,153,149,146, 149,138,142,149,142,137,134,144,146,147,140,142,140,137,152,145};输入Min[data2]|Max[data2] 则输出126|158 即头颅宽度数据的最小值为126, 最大值为158. 考虑区间[124.5,159.5], 它包括了所有的数据. 以5为间隔, 划分小区间. 计算落入每个小区间的频数, 输入pshu=BinCounts[data2,{124.5,159.5,5}] 则输出{1,4,10,33,24,9,3} 因为出现了两个区间内的频数小于5, 所以要合并小区间. 现在把频数为1, 4的两个区间合并, 再把频数为9, 3的两个区间合并. 这样只有5个小区间. 这些区间为(5.134,-∞),),,5.154(,],5.139,5.134(+∞为了计算分布函数在端点的值, 输入zu=Table[129.5+j*5,{j,1,4}] 则输出{134.5,139.5,144.5,149.5} 以这4个数为分点,把),(+∞-∞分成5个区间后,落入5个小区间的频数分别为5, 10, 33, 24, 12.它们除以数据的总个数就得到频率. 输入plv={5,10,33,24,12}/Length[data2]则输出⎭⎬⎫⎩⎨⎧71,72,2811,425,845下面计算在0H 成立条件下, 数据落入5个小区间的概率. 输入nor=NormalDistribution[Mean[data2],StandardDeviationMLE[data2]];(*Mean[data2]是总体均值的极大似然估计,StandardDeviationMLE[data2]是总体标准差的极大似然估计,NormalDistribution 是正态分布,因此nor 是由极大似然估计得到的正态分布*)Fhat=CDF[nor,zu] (*CDF 是分布函数的值*)则输出{0.0590736,0.235726,0.548693,0.832687}此即0H 成立条件下分布函数在分点的值. 再求相邻两个端点的分布函数值之差, 输入 Fhat2=Join[{0},Fhat,{1}];glv=Table[Fhat2[[j]]-Fhat2[[j-1]],{j,2,Length[Fhat2]}]则输出{0.0590736,0.176652,0.312967,0.283994,0.167313}输入计算检验统计量2χ值的命令chi=Apply[Plus,(plv-glv)^2/glv*Length[data2]]则输出3.59235再输入求2χ分布的P 值命令ChiSquarePValue[chi,2] (*5-2-1=2为2χ分布的自由度*)则输出OneSidedPValue->0.165932这个结果表明0H 成立条件下, 统计量2χ取3.59235及比它更大的概率为0.165932, 因此不拒绝0H , 即头颅的最大宽度数据服从正态分布.实验习题1.设某种电子元件的寿命X (单位:h)服从正态分布22,),,(σμσμN 均未知. 现测得16只元件的寿命如下:159 280 101 212 224 379 179 264222 362 168 250 149 260 485 170问是否有理由认为元件的平均寿命225h?是否有理由认为这种元件寿命的方差≤852?2.某化肥厂采用自动流水生产线,装袋记录表明,实际包重)2,100(~2N X ,打包机必须定期进行检查,确定机器是否需要调整,以确保所打的包不至过轻或过重,现随机抽取9包, 测得数据(单位:kg)如下102 100 105 103 98 99 100 97 105若要求完好率为95%,问机器是否需要调整?3.某炼铁厂的铁水的含碳量X 在正常情况下服从正态分布.现对操作工艺进行了某些改进,从中抽取5炉铁水测得含碳量百分比的数据如下4.421 4.052 4.357 4.287 4.683据此是否可以认为新工艺炼出的铁水含碳量的方差仍为?)05.0(108.02=α4.机器包装食盐,假设每袋盐的净重服从正态分布,规定每袋标准重量为500g,标准差不能超过0.02.某天开工后,为检验机械工作是否正常,从装好的食盐中随机地抽取9袋,则其净重(单位:500g)为0.994 1.014 1.02 0.95 0.968 0.968 1.048 0.982 1.03 问这天包装机工作是否正常(05.0=α)?5.(1)某切割机在正常工作时,切割每段金属棒的平均长度为10.5cm.今从一批产品中随机地抽取15段,测得其长度(单位:cm)如下10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.210.9 10.6 10.8 10.5 10.7 10.2 10.7 设金属棒长度服从正态分布,且标准差没有变化,试问该机工作是否正常(05.0=α)?(2)上题中假定切割的长度服从正态分布,问该机切割的金属棒的平均长度有无显著变化(05.0=α)? (3)如果只假定切割的长度服从正态分布,问该机切割的金属棒长度的标准差有无显著变化(05.0=α)?6. 在平炉上进行一项试验以确定改变操作方法的建议是否会增加钢的得率,试验是在同一平炉进行的, 每炼一炉钢时除操作方法外, 其他方法都尽可能做到相同.先用标准方法炼一炉, 然后用建议的新方法炼一炉, 以后交替进行, 各炼了10炉, 其得率分别为(1) 标准方法 78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3(2) 新 方 法 79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1设这两个样本相互独立, 且分别来自正态总体),(21σμN 和),(22σμN ,21,μμ和2σ均未知.问建议的新操作方法能否提高得率(05.0=α).7.某自动机床加工同一种类型的零件.现从甲、乙两班加工的零件中各抽验了5各,测得它们的直径(单位:cm)分别为甲: 2.066 2.063 2.068 2.060 2.067乙: 2.058 2.057 2.063 2.059 2.060已知甲、乙二车床加工的零件其直径分别为),(~),,(~2221σμσμN Y N X ,试根据抽样结果来说明两车床加工的零件的平均直径有无显著性差异(05.0=α)?8.设某产品的使用寿命近似服从正态分布,要求平均使用寿命不低于1000h.现从一批产品中任取25只, 测得平均使用寿命为950h,样本方差为100, 在05.0=α下,检验这批产品是否合格.9. 两台机器生产某种部件的重量近似服从正态分布.分别抽取60与30个部件进行检测,样本方差分别为.66.9,46.152221==s s 试在05.0=α下检验假设 .:;:2221122210σσσσ>=H H 10.设某电子元件的可靠性指标服从正态分布,合格标准之一为标准差.05.00=σ现检测15次,测得指标的平均值95.0=x ,指标的标准差.03.0=s 试在1.0=α下检验假设.05.0:;05.0:221220≠=σσH H11.对两种香烟中尼古丁含量进行6次测试,得到样本均值与样本方差分别为 22.9,25.6,67.25,5.252221====s s y x 设尼古丁含量都近似服从正态分布,且方差相等.取显著性水平,05.0=α检验香烟中尼古丁含量的方差有无显著差异.。

相关文档
最新文档