无人机编队飞行控制方法
无人机编队飞行的分布式控制策略与控制器设计

约束条件 以及行为协调等关键性 问题 , 而引入分布式编队飞行控制策略并简要介绍 了其优 越性 . 进 根据分布式策 略 的层级概念 , 先后讨论 了单机控制器 的设计与上层的编 队控制器的设计 . 最后分别进行 了单 机的 F C( i t ya c D fg nmi l hd adcn o) 真和双机编队仿真 . n o t 1仿 r 仿真结果表 明, 计的控制器在执行效率和控制性能等方面具有突出的优势. 设 关键词 : 无人机 ; 分布式控制 ; 飞行控制 ; 编队飞行
main f g t r are u e a aey Th i lto e u t h w h tt e p o o e o to lr r v d o t ih s we e c rid o t s p r tl . o l e smu ain r s ls s o t a h r p s d c n r les p o i e s me o ttn n d a tg s i x c tv fiin y a d c n r lp ro ma c . u sa dig a v n a e n e e u ie ef e c n o to e r n e c f Ke ywo ds u ma n d a ra e il r : n n e e lv h ce;dsrb td c n r l lih o to ;fr to ih i it u e o to ;f g tc nr l o main f g t i l
Absr c t a t:I iw ft e p a tc lb c g o n n o sr i t ffr to i h o ls fs l UAV d l , n ve o h r cia a k r u d a d c n tan so omain f g tfra c a so mal l mo e s s me k y p o lms iv l e n f r to ih ,s c sman an n o ma in,e vr n n a o sr i t ,a d b — o e r be n ov d i o mai n f g t u h a i ti i gf r t l o n io me t lc n tan s n e h vo o r i a in we e a ay e n d p h i r e o i to u e t e d srb td c n r lsr tg rf r to i h a i rc od n t r n lz d i e t n o d r t nr d c h it u e o to ta e y f o ma in f g t o i o l a d d s u sisa v n a e .Ac odig t h e a c ia o c p s a d o g niai n lsr cur fd srb e o — n ic s t d a tg s c r n o t e hir r hc lc n e t n r a z t a tu t e o itiutd c n o to s h o tol rd sg rb t i ge UAV n hiUAV o ma in r t d e r i ,t e c n r l e in f oh sn l e o a d mu — f r t s we e su i d,r s ci ey.Th r fr o e pe tv l e eo e,
无人机发烧友 5.2.无人机编队飞行介绍(棚拍)

教案1
一、无人机编队飞行
无人机编队飞行的概念产生来源于有人机的集体飞行,随着科技的发展,民用无人机走进大众生活,使得编队飞行的门槛大大降低,应用场景随之增加。
根据使用环境的不同,我们把无人机编队飞行分为室内编队飞行和室外编队飞行两种。
室内编队飞行顾名思义就是在室内运行的编队无人机,根据应用场景的不同,我们又把室内编队飞行分成三种:分别是教学编队飞行、单机表演编队飞行、人机表演编队飞行。
教学编队飞行主要用于对青少年兴趣的培养以及计算机逻辑的了解认识。
无人机编队控制与分布式优化研究

无人机编队控制与分布式优化研究无人机技术的飞速发展为许多应用场景带来了新的机遇和挑战。
无人机编队控制与分布式优化成为了当前研究的焦点之一。
本文将探讨无人机编队控制和分布式优化的关键问题,并讨论当前的研究进展和未来的发展方向。
无人机编队控制是指多架无人机之间通过信息交流和决策,协同地完成特定任务的过程。
在无人机编队控制中,关键问题之一是如何实现编队中各个无人机之间的协作与协调。
分布式控制技术是实现无人机编队控制的重要手段之一。
传统的集中式控制方法由于需要集中的控制器来协调编队中的无人机,容易出现单点故障和通信延迟等问题。
而分布式控制方法通过将决策过程分散到各个无人机中进行,可以提高系统的鲁棒性和灵活性。
在无人机编队控制中,动态的路径规划和障碍物避难是一个关键问题。
无人机编队在执行任务时,需要根据实际情况动态地规划飞行路径,并避免与其他飞行物、地面障碍物的碰撞。
为了解决这个问题,研究者们提出了许多路径规划和避障方法。
例如,基于人工势场的方法可以通过设置势函数和吸引力点来实现路径规划和避障。
此外,还有一些基于强化学习、遗传算法等智能优化算法的路径规划方法。
分布式优化是一种通过将优化问题分解成多个子问题并分配给各个节点进行求解的方法。
在无人机编队控制中,分布式优化可以帮助无人机编队更好地进行任务分配、资源分配和决策制定。
分布式优化的核心问题是如何将全局目标分解成多个局部目标,并将适当的约束条件引入到分布式求解过程中。
研究者们提出了许多分布式优化算法,如ADMM、多Agent系统等,这些算法在提高编队控制效果和降低计算复杂度方面起到了重要作用。
另一个关键问题是无人机编队中的通信与协同。
无人机编队中的无人机通常需要通过无线通信进行信息交换和决策共享。
在无人机编队中,信息的传输和协同对编队效果起着重要的影响。
研究者们提出了许多通信机制和协议来实现编队中的信息交换和共享。
例如,传统的无线通信技术可以实现无人机之间的点对点通信。
四旋翼无人机一致性编队飞行控制方法

四旋翼无人机一致性编队飞行控制方法作者:陈杰敏吴发林耿澄浩徐珊来源:《航空兵器》2017年第06期摘要:四旋翼无人机在民用及军用领域都发挥着越来越重要的作用。
为了完成某些特定任务,需要由多架四旋翼组成的编队保持适当队形飞行。
与单架四旋翼执行任务相比,四旋翼编队具有能增加任务成功率、提高整体抗干扰性能、扩大监控范围等优点。
本文基于主从式编队结构,结合信息拓扑理论,把四旋翼编队描述为二阶一致性系统,设计编队控制器来实现四旋翼编队的稳定飞行。
主机和从机均采用PID控制,主机跟踪预设轨迹,从机跟踪编队控制器计算出的轨迹跟踪指令。
最后通过仿真分析了控制算法对四旋翼编队队形生成及队形保持的控制效果。
关键词:四旋翼无人机;编队飞行;信息拓扑理论;一致性理论;主从式编队中图分类号: V249.1 文献标识码: A 文章编号: 1673-5048(2017)06-0025-07[SQ0]0 引言四旋翼无人机(以下简称四旋翼)是一种有四个螺旋桨且螺旋桨分别呈十字交叉型的飞行器。
在过去的数十年中,传感器及电子元器件的微型化、低廉化推动了四旋翼的快速发展。
四旋翼在军事领域可用于巡逻侦察、定点攻击等方面,在民用领域可用于遥感测绘、农业植保、通信中继、航拍航测、短途运输等方面,具有广泛的应用前景和实际用途,成为商业公司和科研单位的研究热点[1]。
随着无线传感网络等技术的创新应用,由多架无人机组成的编队在民用及军事等方面都展现出越来越广泛的用途,如能进行空中集群表演、组建军事通信网络、构建网络化军事打击编队等。
无人机编队飞行,是指在三维空间中,多架无人机按照一定的队形进行排列,使其在飞行过程中保持队形不变或者相对位置在一定范围内变动,并能根据外部情况和任务需求进行动态调整,以保持编队的协同一致性。
无人机编队飞行控制方式主要有主从法[2]、虚拟结构法[3-4]、行为控制法[5-6]等。
主从法结构中,其中一个飞行器被指定为主机,其余飞行器则被指定为从机。
无人机发烧友 3.2.室内编队飞行软件操作界面介绍

教师姓名
授课名称
室内编程飞行软件操作界面介绍
授课形式
理论教学
授课班级
授课地点
授课日期
章节名称
无人机与特技表演、地质勘探、高速公路巡查、森林防火的基本技能
教学目的
1.掌握室内编程飞行操作界面
重点难点
重点:室内编程飞行软件操作界面介绍
难点:各操作界面之间的内容。
主要内容
一、室内编程飞行软件操作界面介绍
复制:将所选无人机的编程内容复制给一架新的无人机
导出:将所选无人机的编程内容导出为编程文件保存在电脑中
点击右下角按钮,您可以将导出的后缀名为hg的无人机编程文件重新上传到当前的编程中。
删除:删除所选无人机
重命名:自定义无人机名称。注意,重新命名的无人机必须含有飞机编号。
方法手段
讲授法
布置作业
1.分组完成室内编程飞行软件操作界面介绍小组汇报;
2.复习所学内容,下次课进行课前测。
课后体会
内容简单,学生比较容易接收。
编队飞行软件有两种编程模式,分别是对无人机编队中的每台无人机进行单独编程的普通模式和对8台无人机编队进行快速编程的图形模式,您可以通过右上角的按钮进行切换。
来到控制界面
在普通模式下,您可以通过点击加号按钮或删除按钮对无人机进行增删操作,您最多可以添加16架无人机,您还可以通过点击右键对无人机进行如下几种操作。
编队飞行软件一般由三个主要界面组成,他们分别是设置界面,代码界面,控制界面。
来到设置界面
打开文件菜单点击新作品,即可新建一个编程项目,点击从电脑中上传,即可打开您之前所保存的后缀为“Scratch123”的项目文件,点击保存到电脑,即可将当前的项目文件保存到电脑本地。
编队无人机控制方法研究

编队无人机控制方法研究作者:赵银申来源:《环球市场》2019年第06期随着科学技术水平的不断进步,无人飞机慢慢的被人们重视了起来,它相对于载人飞机而言拥有很多优势,例如体积小,使用方便,成本低廉,生存和隐蔽能力强,可保证操作人员生命安全等。
所以在特定的场合,它已经取代载人飞机,执行一些探查,跟踪,电子对抗和协助军事打击等一系列任务,在民用范畴,它也逐渐被开发于勘探地形,抢险救灾,喷洒农药和环境保护等等方面。
目前世界各国都在着力于研发更加成熟和高效的无人机技术应用,无人机编队的发展也日益迅猛。
然而,随着任务复杂度的日益增长,对无人机的要求也越来越高,单个无人机在很多时候都不适合这种任务变化,设备偶然损坏,工作区间狭小,载重量不高和执行任务单一等等问题不断制约着单个无人机的发展。
而解决这些问题的最简单的方法就是采用多个无人机进行编队共同执行任务,就像自然界中的大雁南飞一样。
这样无人机之间可以进行技术互补,飞行范围和工作多样性都进行了大大的提高,如果其中一两个无人机出现了故障,也不会影响到整体无人机的任务目标,其余无人机仍然可以继续完成任务,从而减少因偶然故障因素带来的任务失败风险。
因此,专家们逐渐注意到了无人机编队这一研究方向,希望通过编队飞行的方式来减少这方面的风险。
经过一系列研究发现,编队飞行时由于飞机之间的相互气流作用,可以有效地减少行进间所受到的空气阻力,从而减少飞行过程中的能量消耗。
此外,当无人机在相对密集的队形之下,雷达观测屏上只能检测到无人机存在的信号,并不会展现出每一架无人机的具体信息,因此,这样做能够在军事战争中大大的干扰敌方指挥官的作战判断,实现出奇制胜的战略意图。
美国是现今社会公认的无人机强国,也是最早研究无人机并将其应用于军事领域国家之一。
近些年以美国为主导的局部战争之中不难看出,美国已经发展出了有关于无人机的多种战术体系,成为了无人机应用领域的领头羊,其国内无人机型号琳琅满目,各有所长,是当今无人机界的教科书级范例,这其中就数掠食者无人侦察机和全球鹰军用无人机最为人所知,他们在海湾战争、科索沃和伊拉克等等战争中表现出众,为最后的胜利打下了坚实的信息基础。
无人机编队飞行的分布式控制策略与控制器设计
第5卷第5期智 能 系 统 学 报 V o.l 5 .52010年10月 C AA I T ransactions on Inte lligent Syste m s O ct .2010do:i 10.3969/.j issn .1673 4785.2010.05.003无人机编队飞行的分布式控制策略与控制器设计朱杰斌,秦世引(北京航空航天大学自动化科学与电气工程学院,北京100191)摘 要:针对一种小型无人机模型及其编队飞行的实际背景和限制条件,分析了编队飞行所必须涉及的队形保持、约束条件以及行为协调等关键性问题,进而引入分布式编队飞行控制策略并简要介绍了其优越性.根据分布式策略的层级概念,先后讨论了单机控制器的设计与上层的编队控制器的设计.最后分别进行了单机的FDC(fligh t dyna m i c and contro l )仿真和双机编队仿真.仿真结果表明,设计的控制器在执行效率和控制性能等方面具有突出的优势.关键词:无人机;分布式控制;飞行控制;编队飞行中图分类号:TP273.1 文献标识码:A 文章编号:1673 4785(2010)05 0392 08Distri bute d contr ol strategy and controller desi gn for UAV for mati on flightZ HU Jie b in ,Q I N Sh i y in(Schoo l of A uto m a tion Sc i ence and E lectr ica l Eng i neer i ng,B eihang U n i versity ,Be iji ng 100191,Ch i na)Abst ract :In v ie w of the practica l backg r ound and constra i n ts of for m ati o n fli g ht for a c lass o f s m a llUAV m ode ls ,so m e key pr oble m s i n vo l v ed i n for m ati o n fli g h,t such asm ai n taining for m ation ,env ironm enta l constraints ,and be hav ior coor d i n ation w ere analyzed in depth i n order to intr oduce the distri b uted contro l strategy for for m ation flight and d iscuss its advantages .Accord i n g to the h i e rarc h ica l concepts and organ izati o na l structure of d istri b uted con tro ls ,the contro ller desi g n for both sing le UAV and m ulti UAV for m ati o ns w ere st u died ,respective l y .There fore ,t h e FDC (flight dyna m ics and control)si m ulation for si n g l e UAV and genera lS i m ulink si m u lation f o r t w o UAV for m ati o n fli g h ts w ere carried out separately .The si m u lation resu lts show that the pr oposed con tro ll e rs prov ide so m e outstandi n g advantages in executive effic iency and con tro l perfor m ance .K eywords :unm anned aeria l veh i c le ;distributed con tro;l flight contro;l for m ati o n fli g ht 收稿日期:2010 07 26.基金项目:国防基础研究基金资助项目(D212006001);国家自然科学基金重点资助项目(60736025);国家自然科学基金资助项目(60875072).通信作者:朱杰斌.E m ai:l z j bbu aa @.无人机技术经过几十年的发展已经相对成熟,在军事和民用领域发挥着独特的作用.而无人机编队飞行技术作为无人机合作化发展中的一个核心概念,越来越得到人们的重视[1].在军事侦察中,无人机编队飞行可以扩大侦察视野,提高作战命中率和任务成功率,具有单机飞行无法比拟的优点.无人机要实现编队飞行,包括基于主 僚机编队模式的队形保持和队形变化,就必须实现对各个微小型飞行器的空间位置和姿态进行有效的控制[1].文献[2]提出了基于飞机的飞行自驾仪的编队飞行控制器设计,其中假定了飞机的自驾仪方程为一阶惯性环节,然后在此基础上进行长机和僚机的编队控制器设计.当面向实际的编队控制对象时,必须首先完成对文中所提到的自驾仪的设计.文献[3]中利用了FDC (flight dyna m ic and contro l)工具箱进行了编队控制器的设计与非线性仿真,为最终走向双机编队的试飞提供了重要的参考.在实际应用中,主 僚机编队模式由于简便性和实用性而被广泛采用.事实上,基于这种模式已经设计出了多种形式的编队控制器,并给出了仿真验证结果[4 5].但是,在上述这些方法和试验中,大部分只是单独讨论编队控制器,并没有将编队控制器的设计与编队控制的约束与控制策略,单机自主控制器设计过程结合起来,缺乏一定的系统性、实用性.本文从无人机编队飞行的特点入手,讨论了编队飞行的编队方式和约束条件,并从分布式控制策略出发,研究了处于底层的单机控制器和处于上层的编队控制器的设计、以及二者之间的接口关系.仿真试验结果验证了本文所设计的控制器的可行性与有效性.1 问题的提法1.1 编队方式与约束条件无人机编队飞行,就是将多架无人机按照一定的队形进行排列,并使其在整个飞行过程中保持队形不变.按照不同的队形,主要有雁形编队、平行编队、纵列编队、蛇形编队、球形编队等.不同的编队队形有不同的优缺点,如雁形编队僚机可以有效利用长机的气流影响,减少阻力,提高巡航时间.而按照不同的控制策略,编队方式又分为集中式、分布式、分散式等[1].无人机编队的任务往往是大规模的机群编队,在完成编队任务的过程中,很可能因为一些干扰因素引起扰动.防止冲突的策略就是要避免在扰动下可能发生的碰撞和信息交互中的阻塞.多架无人机要保持一定的阵型,就需要更充分的信息交互.在密集编队下由于无人机会受到长机上洗气流的干扰,造成了僚机的阻力有较大的变化[6].按照空气动力学估算受上洗气流影响后的僚机阻力为D FF!D∀-L∀WV.式中:D FF为僚机受到的阻力,D∀为长机的阻力,L∀为长机的升力,W为上洗气流的速度,V为编队飞行的前向速度.可见,相对长机而言,僚机所受阻力减小了,这将会迫使其偏离原定的飞行航迹.因此,编队控制器的设计必须考虑在涡流影响条件下的紧密编队模型.1.2 队形保持与行为协调无人机编队在执行任务的过程中,由长机的感知传感器实时监控战场环境与态势,并将感知信息传给智能决策模块,由智能决策模块根据感知信息进行分析、整理与推理,确定是否需要进行队形的变更,若需要改变队形,则将处理后的感知信息传给队形控制模块,由队形控制模块根据当前环境和态势产生新的编队队形信息,通过长机的通信系统传给2架僚机的通讯系统,再由僚机的编队控制模块根据新的编队信息形成新的队形.另一方面,由于战场环境和态势的动态变化,长机可以根据当前形势变更自身的预定航迹.首先由长机的感知模块检测到当前环境中的动态事件或突发威胁,将感知信息传递给智能决策模块,通过智能决策模块的分析与推理,确定是否需要进行航迹的变更.若需要变更航迹,则将处理后的感知信息传给航迹规划模块,由航迹规划模块给出新的航迹并控制长机跟踪当前航迹,由于僚机始终保持与长机的编队跟踪,因此僚机自然地跟随长机沿着变更后的航迹飞行.2 分布式控制策略及其优越性要实现多架无人机的协同编队需要在传统的两机编队的基础上,采取分布式控制策略:按照层级的概念把大规模的无人机编队分割成若干个两机编队,每个单元编队之间又是紧密联系的,最终实现多机的编队[7].其编队组态关系如图1所示.图1 分布式控制编队组态关系F ig.1 Fo r m ati on con figuration o f d istri buted controls在图1中,V1为长机,V2和V4跟随V1飞行并保持与V1的相对位置不变,从而实现其与V1之间的稳定编队;V3则可在V2的引领下根据要求的相对位置飞行,同理,V5也在V4的引领下根据要求的编队位置飞行,从而使整体编队保持稳定.整个队列可由若干个基本的两机跟随飞行编队组成,具有良好的扩充性.在分布式控制策略中,每一架无人机需知道与之相邻无人机的信息,虽然控制效果相对较差,但信息交互较少,大大减少了计算量,系统实现效率高.如果用集中式控制策略完成编队,信息交互将是海量的,这是因为处理这些信息的复杂程度与编队无人机的数量成几何关系.而如果采用分散式控制策略只要保持自己与约定点的相对关系,不和其他无人机发生交互,因此其控制效果最差[1].3 飞行动态模型和扰动分析本文中采用的小型实验无人机对象的实物如图2所示.与其相关的各动态变量和物理参量的符号表示由表1给出.#393#第5期 朱杰斌,等:无人机编队飞行的分布式控制策略与控制器设计图2 小型无人机实物照F i g.2 P rofile of the s m a llU AV表1 符号说明Tab l e1 Instruct i on of sign s参数名称符号参数名称符号无人机速度V滚转角速度p无人机质量m俯仰角速度q发动机推力T偏航角速度r飞行阻力D滚转力矩M x飞行升力L俯仰力矩Mz 侧力Z偏航力矩M y迎角 X轴转动惯量Ix 侧滑角 Y轴转动惯量I y俯仰角Z轴转动惯量Iz 偏航角!X轴距离X d滚转角∀Y轴距离Yd 航迹角#Z轴距离Z d航迹偏转角!s翼展b速度滚转角∀s机翼面积S升降舵∃e动压 q副翼舵∃a平均气动弦长 c 发动机安装角∀T根据经典飞行控制理论,可建立小型无人机的12阶微分方程模型,其中包括动力学模型和运动学模型.m d Vd t=T cos( +%T)cos -D-mg si n,m V d#d t=T[co s( +%T)sin si n∀S+sin( +∀T)co s∀s]+L co s∀S-Z sin∀S-m g cos#,-m V cos#d&sd t=T[-cos( +%T)sin cos∀s+sin( +%T)sin∀s]+L sin∀s+Z co s∀s,d x d d t =V cos#cos!s, d y dd t=V sin#,d z dd t=-V cos#sin!s,I x d pd t=M x-(I z-I y)q#r,I y d rd t=M y-(I x-I z)p#q,I x d qd t=M z-(I y-I x)p#r,d!d t=1cos(r cos∀-q si n∀),dd t=r si n∀+q cos∀,d∀d t=p-tan(r cos∀-q si n∀).在小扰动的假设条件下,一般情况就能将飞行器的运动方程进行线性化.但是为了便于将线性扰动方程组分离为彼此独立的2组,即纵向和横侧小扰动方程,以减少方程组阶次而解析求解,还需作下列假设:1)飞行器具有对称平面(气动外形和质量分布均匀对称),且略去机体内部的转动部件的陀螺力矩效应.2)在基准运动中,对称平面处于铅垂位置,并且运动所在平面与飞行器对称平面相重合[8].利用水平无侧滑飞行条件∀= ∃0和p=r∃0,将飞机运动方程解耦为不依赖于横侧向状态量( ,∀,p,r,!)的纵向运动方程:mV=T cos -D-m g sin#,m V#=T si n +L-mg cos#,=q- #,I zq=M z.式中:T、D、L及M z分别为发动机推力、气流阻力、升力及绕俯仰轴力矩,这些参量需要根据飞机当前的飞行状态来确定,在此以飞机某一平衡状态为基准,在小扰动情况下,假设这些力和力矩为相应量的线性关系.若将无人机的定常直线无侧滑飞行作为基准运动,在小扰动假设下就可得到无人机的纵向近似模型为mV=(T0+Tv∋v+T∃e∃e)cos -(D0+Dv∋v+D∋ +D∃e∃e)-mg si n#,m V#=T sin +(L0+Lv∋v+L∋ +L∋+Lq∋q+D∃e∃e)-m g co s#,=q- #,I zq=M z0++M zv∋v+M z∋ +M z∋+M zq∋q+M z∃e∃e.同理亦可通过小扰动理论得到横侧向的近似模型:m V=(Z o+Z∋ +Zp∋p+Zr∋r+#394#智 能 系 统 学 报 第5卷Z ∃a ∃a + Z ∃e∃e )-m V (-p sin +r cos ), ∀=p -(r cos ∀-q sin ∀)tan ,!=r co s ∀-q sin ∀cos,I x p =M x 0+M x ∋ + M x p ∋p + M xr ∋r + M x ∃ ∃a + M x∃e∃e ,I y r =M y 0+ M y ∋ + M y p ∋p + M yr ∋r + M y ∃a ∃a + M y∃e∃e . 将无人机的固有参数和通过吹风试验得到的飞行参数,以及通过系统辨识方法得到的发动机参数代入到其中可以得到纵向与横向的状态方程.4 控制器设计实现纵向与横航向的解耦建模之后,单机控制器的设计亦可分为纵向控制器和横侧向控制器分别进行.必须注意到,本文所设计的单机控制器是服务于其上层的导航与编队系统,从而使得编队飞行过程能够按照导航系统或编队控制器所要求飞行参量(速度、高度及偏航信号等)实现稳定、快速、准确的控制效果[9].4.1 单机纵向控制器的设计根据编队试飞的要求,纵向自驾仪的设计主要包括高度控制器(控制高度)和速度控制系统.首先确定飞机的平飞状态,并代入到上面介绍的小扰动方程中,整理得到纵向的状态方程:X =A lon X +B lon u ,Y =C lon X +D lon u.式中:X =[V q H ]T,V 为前向速度, 为迎角,q 为俯仰角速度, 为俯仰角,H 为高度,u =[∃e ∃T ]T.∃e 、∃T 分别为升降舵与油门舵机输入.在本文中,将平飞速度与高度确定后,其对应的状态矩阵和控制矩阵分别为A lon =-0.06415.25790-9.8000-0.000-0.0309-5.04971.00000-0.0012-0.0287-26.2897-4.17580-0.0000001.0000000-1515,B lon =274.95020.4336-1.6634-34.86500000,C lon =I 5,D lon =05%2.1)俯仰保持控制器设计.该控制器内环是俯仰角速率反馈回路.该回路通过增加短周期模态的阻尼来增加其纵向的稳定性.其反馈系数可以通过根轨迹法来确定.外环是俯仰角反馈回路,在该回路的前向通道,仅仅是比例式控制器往往是有稳态误差的,需要在前向通道加入积分式控制器.本文使用Tyreus Luyben 方法设计该回路中的PI 控制器[10].其俯仰保持的控制律表示形式为∃e =Kp ( g - )+KI &( g -)d t-k q q .(1)式中:Kp 为前向通道的比例系数,KI 为前向通道的积分系数,k q 为俯仰角反馈系数, g 为期望俯仰角(控制律的表达式中系数的书写规则:K 为前向通道系数,下标p 表示比例系数,下标I 表示积分系数;上标则表示对应于相应的回路,如式(1)中上标 表示俯仰角回路;k 为反馈系数,下标表示对应的反馈回路).2)高度保持控制器的设计.高度保持控制器的是在俯仰保持控制器的外环.通过高度保持控制器的控制,UAV 可以爬升到飞行包线范围内任意高度.在编队控制系统中,该控制器直接接受导航系统或者是僚机编队控制系统的信号.引入俯仰角偏离信号,飞机在未达到给定高度时,就提前收回舵面,减少飞机的上升率,对高度稳定系统起到阻尼作用,为进一步增加阻尼,同时还引入了高度微分信号∋ H [11].图3 高度保持控制器组织结构F ig .3 O rganiza ti on structure o f he i ght contro ller#395#第5期 朱杰斌,等:无人机编队飞行的分布式控制策略与控制器设计高度保持控制系统的控制律表达形式为∃e =Kp ( c - )+Ki &( c -)d t -k q q, c =K Hp∋H +K HI&∋H d t .式中:∋H =H g -H -k H H 为高度偏差信号.3)速度保持控制器的设计.通过控制油门的大小来达到改变发动机推力从而达到控制的目的.其基本方案如图4所示.从图中可以看到,UAV 到自动控制驾驶仪为虚线连接,这表示自动驾驶仪从UAV 感受的量是随着目标的不同而变化的,当需要飞机进行俯仰保持时,则感受的是俯仰角和俯仰角速率,若需要UAV 保持高度飞行时则自驾仪感受的是飞机的高度和高度变化率.图4 速度控制器的组织结构F i g.4 O rganiza ti on structure o f veloc it y contro ller速度误差信号包括2部分,一部分是期望速度与实际速度输出的差值,另一部分是速度微分信号.其控制律的表达形式为∃T =K Vp (∋V +Kv V)+K VI (∋V +K v V)d t .式中:∋V =V g -V .4.2 单机横航向控制器的设计在横向与航向控制器的设计中,采用与纵向控制器类似的结构.内环是滚转保持控制器,外环为横航向保持的控制器.因此其基本设计思路与高度控制器类似.1)滚转保持控制器.该回路通过控制副翼偏转,产生升力差,从而产生滚转力矩.其控制律表达形式为∃a =K ∀p∋∀+K∀I&∋d t .式中:∋∀=∀g -∀-k p p.2)偏航保持控制器.该回路通过飞机滚转产生侧力,使飞机发生偏航.其控制律表达形式为∃a =K ∀p ∋∀+K ∀I&∋∀d t+K !p ∋!+K !I &∋!d t .式中:∋!=!g -!-k ! !.为保证飞机能够无侧滑且不掉高地协调转弯,还必须加入消除侧滑的控制器和高度保持控制器.在飞机的协调转弯中,横航向的偏航角速度与滚转角速度的关系是 !=gV 0∀,横侧向控制器的基本框架如图5所示.图5 横侧向自驾仪组织结构F i g .5 O rg an i zati on structure o f lateral autop ilot4.3 编队接口关系在考虑到分布式控制系统中的层级概念,前面所述的单机控制系统处于整个编队系统中的最底层.因此底层的控制与上层系统之间数据的交互显得非常重要.考虑双机编队过程中的运动学模型,在图6的参考坐标系中标出了长机和僚机的瞬时位置和速度向量.图6 僚机的参考坐标系F i g .6 T he re ference coo rdina te syste m o fw i ng m an在参考坐标系中,设长机的位置为(x,y ,z),运动学方程为d xd t=V L cos !e - !W y -V W ,d yd t=V L sin !e - !W x ,z =h W -h L .式中:航向角误差为!e =!L -!W .由上式可知,僚机与长机的相对距离(x,y ,z ),僚机编队控制器必须与底层的控制器交互!、h 、V 这3个接口的数据.这3个接口对应于上述所设计的单机自主控制器的输入端.在设计僚机对长机的跟踪控制时,主要是利用x 、#396#智 能 系 统 学 报 第5卷y 、z 三通道控制完成对编队中僚机三方面的控制.其中前向距离与侧向距离可以通过对V W c 与!W c 的控制达到编队保持与变换目的.其控制律的形式为V W c =K xp (x l -x W ),!W c =K yp (y l -y W )+K yI &(y l -y W )d t .式中:下标l 表示长机,下标W 表示僚机.高度的控制可以直接由下层的高度保持控制器实现,无需单独设计控制律形式.5 仿真分析与性能评价5.1 基于FDC 的仿真结果分析FDC 工具箱即飞行动力学与控制工具箱.它是由来自Delft 大学的M arc Rauw 应用Si m ulink 编写的开放的针对于飞行动力学研究的专用工具箱[12].利用M atla b /FDC ,在以下假设条件下进行仿真:1)空速V =15m /s ,迎角 =5.1853∋,高度H =30.2)仿真时间10s .以下仿真试验均在以上的假设条件下进行.5.1.1 速度控制器的仿真结果分析仿真输入:在时间为3s 的时候接收到一个∋V =5m /s 阶跃输入.图7 速度控制器的仿真结果F i g .7 Si m ulati on results of ve locity contro ller从图7中可以看出,UAV 很好地跟踪了指令信号,在2s 之内便已经能够无误差的跟踪.同时在保证速度跟踪到位的时候,由于要保证定高加速,俯仰角也从原有的俯仰角减小到1.5∋左右.并且从高度变化图中,也可以看到UAV 从速度15m /s 增加到20m /s 的过程中,高度仅仅短暂上升了3c m 后又迅速收敛回到原有的高度,达到了定高增速的目的.5.1.2 高度控制器的仿真结果分析高度控制器的仿真结果:此时断开内环俯仰保持对升降舵的控制,同时打开速度保持器,保持速度不变.飞机的平飞条件同上,在时间为1s 处接收一个阶跃输入∋H =6m.仿真结果见图8.图8 高度控制器的仿真结果F i g .8 Si m ulati on results of he i ght contro ll e r从仿真结果可以看出,UAV 需要上升6m 时,飞机俯仰角短暂迅速达到60∋左右,然后又迅速低头回到原始俯仰角,飞机的速度也迅速提高,在1.5s 内迅速恢复到原始速度,从而使得UAV 在2s 内达到期望高度.5.1.3 横航向控制器的仿真结果分析采用的转弯策略是:通过转动副翼,使得UAV 滚转,并启动航向误差消除控制器,调整方向舵,消除侧滑.飞机的初始平飞条件同上,在0时刻接收到一个偏航角为10的阶跃输入.仿真结果见图9~10.图9 横航向控制器的仿真结果F i g .9 S i m u l ation resu lts o f l a tera l au t op il o t#397#第5期 朱杰斌,等:无人机编队飞行的分布式控制策略与控制器设计图10 高度与侧滑角变化F i g .10 Change of heigh t and si deslip ang le从图9中的前2幅子图中可以看到,飞机通过滚转产生偏航,并且滚转角迅速回复到0,最后一副子图则说明了偏航角的变化迅速跟踪到偏航信号,且响应时间不超过1s .从图10的第1幅子图可以看到,UAV 在发生滚转初始时刻,发生一定的掉高,但是在高度保持器的作用下,迅速恢复到0.从图10第2幅子图可以看到,飞机发生轻微的侧滑,但在飞机自身的横航向阻尼以及飞机自身的侧滑消除控制器的共同作用下,迅速恢复到0.以上仿真结果说明本文设计的偏航控制器能够迅速地跟踪到偏航信号,并且能够保证在与纵向耦合的情况下,保证一定程度下不掉高的偏航.5.2 基于线性模型的编队仿真结果分析在验证控制器能够在搭建的非线性模型下依然保持足够的有效性、快速性和精确性之后,拟将本文设计的控制器移植到相同初始条件下的线性模型中,便于多架无人机进行编队的仿真(减少计算量与仿真时间).利用M atlab /Si m ulink 在以下几个假设条件和前提条件下进行仿真.1)2架无人机采用主僚机编队形式;2)飞行速度保持在15m /s ;3)队形初始条件:主僚机前向距离与侧向距离20m;4)队形变化后:主僚机前向距离与侧向距离10m ;5)15s 处长机加入偏航信号;6)仿真时间60s .仿真结果如图11.从仿真结果可以看出,僚机准确地跟踪了长机,并保持了变换后的队形.在长机15s 处发生偏航的情况下,僚机依然能够准确跟踪到长机,并维持设定的队形距离.该仿真结果说明了本文设计的编队控制器均能够达到预期的结果.图11 双机编队仿真结果F i g.11 Si m ulati on results of t wo UAV f o r m ati on5.3 仿真结果比较与性能评价本文设计的控制器是建立在分布式的控制策略的基础之上的.其所搭建的编队控制系统是搭建于各个僚机与长机的姿态与轨迹控制系统之上的.其上层与底层的交互,仅通过3个编队接口即可实现,避免了集中式的大数据量的交换.与文献[5]比较,本文将高度差和内环姿态控制器的计算完全依赖于各UAV 自带的自驾仪的计算,而外环仅仅计算队形中横向与纵向的距离控制.因此有效地减轻了编队控制器自身的计算量,并且达到了良好的控制效果.非线性仿真更加贴近实际飞行环境,因此相较普通的线性模型仿真结果更为逼真,但是其仿真计算量大,在进行多UAV 的编队仿真时,这个缺点会更加明显.本文设计的仿真试验在综合考虑了非线性仿真与线性仿真的优缺点之后,首先在非线性模型下验证所设计的单机控制器,在确保其所设计的控制器能够有效地控制非线性模型的基础之上,将控制器移植到线性模型下进行双机编队控制器的仿真试验.其仿真试验,在不增加仿真计算量的基础上,相对于文献[2]有更大的实用价值.6 结束语本文在深入分析多机编队过程中所必须涉及的队形保持、约束条件以及行为协调等3个关键问题的基础上,引入分布式编队控制策略,将自主控制器的设计与编队接口结合起来,详细论述了单机控制器的控制律设计与编队控制律设计以及二者之间的接口关系.进而通过FDC 工具箱中的非线性动态模型的仿真实验验证了本文所设计的单机自主控制器与编队控制器的有效性,可为编队试飞提供技术支#398#智 能 系 统 学 报 第5卷持.将长机的自主导航与编队过程行为协调和航迹规划等方面将是进一步的研究重点.参考文献:[1]李文皓,张珩.无人机编队飞行技术的研究现状与展望[J].飞行力学,2007,25(1):9 11.L I W enhao,Z HANG H eng.R ev ie w s on un m anned aer i a l veh i c l e for m ati on fli ght[J].F light D ynam ic,2007,25(1):9 11.[2]PACHTER M,DA'ZZO J J,DARGAN J L.A uto m a tic form ati on fli ght contro l[J].A I AA Journa l o fG uidance,Con tro l and D ynam i cs,1994,17(6):838 857.[3]W AN S,C AM PA G,NAPOL I TANO M.D esi gn of f o r m ati on contro l laws for resea rch aircraft m ode ls[C]//P roceed ings of the A I AA G u i dance,N avigati on,and Control Con ference and Exh i bit.A usti n,T exas:A I AA,2003:5730 5740.[4]L I S M,M E HRA K R.G l oball y stable auto m a tic for m ati onflight con tro l i n t wo di m ens i ons[C]//P ro ceedi ngs o f t heA I AA G uidance,N av i gation,and Contro l Conference andExh i b it.M ontrea,l Canada:A IAA,2001:4046 4053. [5]GU Y,SEANNOR B,CAM PA G.D esign and fli ght testi ngeva l uation o f for m ation contro l la w s[J].IEEE T ransacti ons on Contro l System s T echno l ogy,2006,14(6):1105 1112.[6]樊琼剑.多无人机协同编队仿生飞行控制关键技术研究[D].南京:南京航空航天大学,2008.FAN Q i ong ji an.K ey techn i ques research of coopera ti ve for m ati on bio m i m etic fli ght control for mu lti UAV[D].N an ji ng:N anji ng U niversity o f A eronautics and A erospace, 2008.[7]宗令蓓,谢凡,秦世引.基于MA S的无人机编队飞行智能优化控制[J].航空学报,2008,29(5):1326 1333.ZONG L i ngbe,i X I E F an,Q I N Sh i y i n.Intelligent opti m i zi ng contro l o f forma ti on fli ght f o r UAV s based on M AS[J].Ch i nese Journa l o fA eronautics,2008,29(5):1326 1333.[8]方振平,陈万春,张曙光.航空飞行器飞行动力学[M].北京:北京航空航天大学出版社,2005:15 28.[9]M ARKDOOM I H,Q I N Shiy i n.M a tl ab based fli ght contro ldes i gn sche m e f o r UAV s[C]//P roceed i ngs of t he Intelli g ent Contro l and A uto m ation.Ji(nan,Ch i na,2010:1107 1112.[10]TYREU S B D,LUYBE N W L.T un i ng P I contro llers fo ri n teg ra t o r/dead ti m e process[J].Industr i a l and Eng ineeri ng Che m istry R esearch,1992,31(11):2625 2628.[11]张明廉.飞行控制系统[M].北京:航空工业出版社,1994:55 72.[12]RAUW M O.FDC1.4A Si m uli nk too l box f o r fli ght dyna m i cs and con tro l ana lysis[EB/OL].(2005 5 25)[2010 7 24].htt p://ho m e.w anadoo.nl/du tchroll/manua.l ht m.l作者简介:朱杰斌,男,1987年生,硕士研究生,主要研究方向为无人机编队飞行过程建模与智能优化控制.秦世引,男,1955年生,教授,博士生导师,主要研究方向为复杂系统的智能控制、图像处理与模式识别等.作为负责人主持完成(或在研)国家攀登计划项目的子项目、国家)973∗项目的子课题、国家)863∗项目、国家自然科学基金项目、国防科技预研基金项目、武器装备预研基金项目等18项.1999年获全国优秀科技图书奖暨科技进步奖(科技著作)一等奖,1999年获国家第五届工程设计优秀软件金奖.发表学术论文130余篇,出版学术著作1部,研究生教材1部,译著2部.#399#第5期 朱杰斌,等:无人机编队飞行的分布式控制策略与控制器设计。
基于固定翼飞行器编队控制仿真软件设计
基于固定翼飞行器编队控制仿真软件设计一、引言随着无人机技术的不断发展,固定翼飞行器编队控制技术已成为无人机应用领域中的重要研究方向之一。
编队控制可以实现多架无人机协同执行任务,提高任务效率和安全性。
本文将介绍基于固定翼飞行器编队控制仿真软件设计。
二、固定翼飞行器编队控制原理1. 飞行器动力学模型在进行编队控制前,需要对固定翼飞行器进行建模。
飞行器动力学模型是描述飞行器运动规律的数学模型。
通常采用欧拉角和牛顿-欧拉方程描述。
2. 编队形成算法编队形成算法是指多架无人机按一定规律排列或形成某种特定形态的算法。
常见的编队形式有直线、V字形、菱形等。
常用的算法有领航者跟随算法、虚拟结构算法等。
3. 编队控制方法编队控制方法是指在保持编队形态基础上,实现多架无人机之间的协同运动和任务执行。
其中包括位置控制、速度控制和姿态控制等。
三、仿真软件设计1. 软件功能需求仿真软件需要具备的功能包括飞行器建模、编队形成算法实现、编队控制方法实现、仿真环境搭建等。
2. 软件开发平台本文采用MATLAB/Simulink作为软件开发平台。
MATLAB/Simulink 是一种基于数值计算的技术,可以进行系统建模、仿真和分析。
它具有易学易用、高效精确等特点,适合进行飞行器动力学模型建立和仿真。
3. 软件模块设计(1)飞行器动力学模型模块:该模块主要完成固定翼飞行器的动力学建模工作,包括欧拉角计算、牛顿-欧拉方程求解等。
(2)编队形成算法实现模块:该模块主要实现常见的编队形式,如直线、V字形、菱形等,并生成无人机初始位置。
(3)编队控制方法实现模块:该模块主要完成位置控制、速度控制和姿态控制等任务。
(4)仿真环境搭建模块:该模块主要负责搭建仿真环境,包括地形、气象条件等。
四、仿真实验结果分析本文以V字形编队为例进行仿真实验。
实验中,编队由两架无人机组成,飞行高度为100米,飞行速度为20m/s。
实验结果表明,编队控制方法可以有效保持编队形态,并完成任务。
无人机群智能编队控制及路径规划方法
无人机群智能编队控制及路径规划方法无人机群智能编队控制及路径规划方法无人机群在现代应用中扮演着越来越重要的角色,无论是在事领域还是在民用领域,如环境监测、物流运输、灾难救援等。
智能编队控制和路径规划是无人机群应用中的关键技术,它们直接影响到无人机群的效率、安全性和任务完成的成功率。
本文将探讨无人机群智能编队控制及路径规划的方法。
一、无人机群编队控制概述无人机群编队控制是指通过控制算法,使多架无人机按照预定的队形和规则进行协同飞行。
编队控制不仅要求每架无人机能够飞行,还要求它们能够根据环境变化和任务需求进行动态调整。
编队控制的核心问题包括队形保持、队形变换、队形重构和队形优化等。
1.1 编队控制的基本原理编队控制的基本原理是通过设计控制律,使得无人机群能够根据领导者的指令或者预设的规则进行协同飞行。
这通常涉及到领导者-跟随者模型、虚拟结构模型和行为模型等不同的控制策略。
1.2 编队控制的关键技术编队控制的关键技术包括队形设计、队形稳定性分析、队形调整策略和队形优化算法。
队形设计需要考虑无人机的动力学特性和任务需求,设计出合理的队形结构。
队形稳定性分析则需要评估在不同环境和干扰下,编队能否保持稳定。
队形调整策略和优化算法则用于在飞行过程中对队形进行动态调整,以适应任务需求和环境变化。
二、无人机群路径规划方法路径规划是无人机群飞行中的一个重要环节,它涉及到从起点到终点的最优或可行路径的选择。
路径规划需要考虑多种因素,如飞行安全、飞行时间、能耗、避障等。
2.1 路径规划的基本原则路径规划的基本原则是确保无人机群能够安全、高效地从起点飞到终点。
这通常需要在满足飞行安全和任务需求的前提下,尽可能减少飞行时间和能耗。
2.2 路径规划的关键技术路径规划的关键技术包括环境感知、路径搜索算法、避障策略和多无人机协同规划。
环境感知技术用于获取无人机周围环境的信息,为路径规划提供依据。
路径搜索算法则用于在已知环境中搜索最优或可行的飞行路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无人机编队飞行控制方法
无人机编队飞行控制方法
引言
在无人机技术的快速发展中,无人机编队飞行控制成为一项重要
的研究领域。
通过编队飞行,多架无人机可以实现协同作战、搜索救援、航拍等各种任务,具有广阔的应用前景。
本文将详细介绍几种常
见的无人机编队飞行控制方法,包括以下几个方面:
•中心控制方法
•分布式控制方法
•基于视觉的控制方法
•基于遗传算法的控制方法
1. 中心控制方法
中心控制方法是指通过一个中心节点对整个无人机编队进行控制
和协调。
具体实现方式可以是将所有无人机连接到同一个中心控制器,或者通过无线通信的方式实现中心控制。
这种方法适用于任务比较简
单且编队规模较小的情况。
•优点:
–控制简单,易于实现;
–可以实现高度协同的编队飞行。
•缺点:
–单点故障问题,如果中心节点失效,整个编队将无法正常飞行;
–编队规模受限,不适用于大规模编队运行。
2. 分布式控制方法
分布式控制方法是指每个无人机都具有一定的自主决策能力,通过协同合作实现编队飞行。
每个无人机通过相互通信交换信息,并根据规则进行调整和协调。
这种方法适用于任务复杂、编队规模较大的情况。
•优点:
–没有单点故障问题,每个无人机可独立运行;
–适用于大规模编队,具有良好的可扩展性。
•缺点:
–控制复杂,需要对各个无人机之间的通信和决策进行合理设计;
–需要较高的计算能力和通信能力。
3. 基于视觉的控制方法
基于视觉的控制方法是指通过无人机的摄像头或其他传感器获取环境信息,并根据这些信息进行编队飞行控制。
通过对各个无人机位置和姿态的识别和跟踪,实现编队的控制和协调。
•优点:
–不依赖于外部设备,无需额外的传感器或通信设备;
–可以实现对多种环境的自适应控制。
•缺点:
–受限于传感器的性能和环境条件,可能存在识别误差;
–对计算能力和算法要求较高。
4. 基于遗传算法的控制方法
基于遗传算法的控制方法是指通过模拟生物进化过程,对编队飞行控制策略进行优化。
通过遗传算法的搜索和优化能力,找到最优的控制策略,实现编队的高效飞行。
•优点:
–可以找到全局最优解,具有较强的优化能力;
–自适应性强,适用于各种复杂环境。
•缺点:
–计算复杂度高,需要较长的时间来搜索和优化解;
–对初始条件和参数设定要求较高。
结论
无人机编队飞行控制方法是一个复杂而关键的问题。
不同的方法
适用于不同的场景和任务需求。
在实际应用中,可以根据具体需求选
择合适的控制方法,并结合多种方法进行综合控制。
随着技术的不断
进步和发展,无人机编队飞行控制方法将会得到进一步的改进和优化,为无人机编队飞行提供更多可能性。
5. 机器学习的控制方法
机器学习的控制方法是指利用机器学习算法对无人机编队飞行进
行控制和优化。
通过对大量数据的学习和训练,模型可以自动调整编
队飞行策略和参数,不断优化控制效果。
•优点:
–可以根据实际情况自主学习和适应,具有较强的智能化能力;
–可以处理大规模数据和复杂问题,具有较高的适应性和泛化能力。
•缺点:
–对大量标注数据的需求较高,数据获取较为困难;
–需要较高的计算资源和算法设计能力。
6. 无线网络控制方法
无线网络控制方法是指通过无线通信网络对无人机编队进行控制
和协调。
通过建立无线网络,实现无人机之间的通信和数据传输,从
而实现编队飞行的控制和协同。
•优点:
–可以实现无线远程控制,方便灵活;
–可以对编队飞行进行实时监控和调整。
•缺点:
–对网络稳定性和通信质量要求较高,可能受到干扰和限制;
–对网络的布设和维护需要一定的成本和技术支持。
结论
以上是几种常见的无人机编队飞行控制方法的介绍。
每种方法都
有各自的优点和缺点,在实际应用中需根据具体需求和条件进行选择
和综合考虑。
随着技术的不断进步和发展,无人机编队飞行控制方法
将不断优化和完善,为无人机编队飞行带来更多机遇和挑战。