高中数学 第二章 等式与不等式 2.2.3 一元二次不等式的解法练习(含解析)新人教B版必修第一册-
高中数学《一元二次不等式的解法》习题(含解析)

解得 x 2 或 x 2 ,即不等式的解集为{x | x 2 或 x 2};
(2)设 t x 0 ,则不等式 2x x 1 ,可化为 2t 2 t 1 0 ,
解得 t 1或 t 1 (舍去),即 2
x 1 ,解得 x 1 ,即不等式的解集为 { x | x 1} .
所以
是
的真子集,
所以
或 ,解得
或
所以 的取值范围是 17.解下列不等式:
或.
(1) x4 x2 2 0 ;
(2) 2x x 1 . 【答案】(1){x | x 2 或 x 2};(2) { x | x 1} .
【解析】
(1)由题意,可得不等式 x4 x2 2 (x2 2)(x2 1) 0 ,解得 x2 2 ,
【解析】
3x2 x 2 0 , 即 (x 1)(3x 2) 0 ,
即 1 x 2 , 3
故 x 取值范围是 (1, 2) . 3
11.不等式
2x 1 x 1
3
的解集为_____________
【答案】 (4, 1)
【解析】
由题意,不等式
2x 1 x 1
3 ,即
2x 1 x 1
3
2x
1 3x x 1
x x
5 2
0},则
A
B
(
)
A.{x |1 x 2} B.{x |1 x 2} C.{x | 2 x 4} D.{x|2<x≤4}
【答案】D 【解析】
依题意 A 1, 4, B 2,5 ,故 A B 2, 4.
6.若不等式 ax2 x a 0 对一切实数 x 都成立,则实数 a 的取值范围为( )
当 m 1 0 时,即 m 1时,此时不等式 1 0 恒成立,满足题意; 当 m 1 0 时,即 m 1 时,则 [3(m 1)]2 4(m 1)(m) 0 ,即 (m 1)(13m 9) 0 , 解得 9 m 1;
新教材高中数学第二章等式与不等式 不等式 一元二次不等式的解法学案含解析新人教B版必修第一册

2.2.3 一元二次不等式的解法学习目标1.经历从实际问题中抽象出一元二次不等式模型的过程,能用符号语言来描述这个模型,提升数学抽象素养;2.通过一元二次不等式实例的求解,能概括解一元二次不等式的一般步骤,提高总结归纳能力;会运用一元二次不等式知识解决有关的问题,发展数学应用意识.自主预习汽车在行驶中,由于惯性,刹车后还要继续向前滑行一段距离才能停止,一般称这段距离为“刹车距离”.刹车距离是分析交通事故的一个重要依据.在一个限速为40 km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查,测得甲车的刹车距离略超过6 m ,乙车的刹车距离略超过10 m .已知甲、乙两种车型的刹车距离s m 与车速v km/h 之间的关系分别为s 甲=1100v 2-110v ,s 乙=1200v 2-120v.试判断甲、乙两车有无超速现象. 不难看出,要判断甲、乙两车是否超速,就是要得到它们车速的取值范围,也就是要解不等式 1100v 2-110v>6和 , 即v 2-10v-600>0和 ,一般地,形如ax 2+bx+c>0的不等式称为 ,其中a ,b ,c 是 ,而且 .一元二次不等式中的不等号也可以是“<”“≥”“≤”等.[尝试与发现1]任意选定一些数,看它们是否是不等式x (x-1)>0的解,由此给出解这个不等式的方法. 注意到 ,结果才能是正数,也就是说,ab>0当且仅当,或,因此,不等式可以转化为两个不等式组,或,用类似的方法可以求得不等式(x+1)(x-1)<0的解,但此时的依据是:ab<0当且仅当,或 ,因为不等式可以转化为两个不等式组,或,一般地,如果x 1<x 2,则不等式(x-x 1)(x-x 2)<0的解集是 .不等式(x-x 1)(x-x 2)>0的解集是 .[尝试与发现2]通过代入数值验证的方法,猜测以下一元二次不等式的解集,由此总结求一元二次不等式解集的一般方法:(1)x 2<-1;(2)x 2>-2;(3)x 2<9.因为任何一个实数的平方一定是一个非负数,因此上述尝试与发现中(1)的解集为 ,(2)的解集为 .对于x 2<9来说,两边同时开根号可得√x 2<√9,即|x|<3,因此-3<x<3,从而得到(3)的解集为(-3,3). 课堂探究例1 求不等式x 2-x-2>0的解集.反思感悟:因式分解法:不等式的左端能够进行因式分解可用此法,它只能适用于解决一类特殊的不等式. 跟踪训练1 求下列不等式的解集:(1)2x 2+x-6>0; (2)(3x-1)(x+4)>0.例2 求下列不等式的解集:(1)x 2+4x+1≥0; (2)x 2-6x-1≤0;(3)-x 2+2x-1<0; (4)2x 2+4x+5>0.反思感悟:配方法:一元二次不等式ax 2+bx+c>0(a ≠0)通过配方总可以化为(x-h )2>k 或(x-h )2<k 的形式,然后根据k值的正负即可求得不等式的解集.跟踪训练2 求下列不等式的解集:(1)x 2+x+1>0. (2)-4x 2+18x-814≥0.例3 求不等式2x+1x -2≥1的解集.反思感悟:1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.跟踪训练3 求下列不等式的解集: (1)x+21-x <0; (2)x+1x -2≤2.核心素养专练1.不等式x 2>1的解集是( )A .{x|x>1}B .{x|x>±1}C .{x|-1<x<1}D .{x|x>1或x<-1}2.不等式x (2-x )<0的解集是( )A .(2,+∞)B .(-∞,2)C .(0,2)D .(-∞,0)∪(2,+∞)3.不等式x 2+2x-3<0的解集为( )A .{x|x<-3或x>1}B .{x|x<-1或x>3}C .{x|-1<x<3}D .{x|-3<x<1}4.求下列不等式的解集:(1)x (x-3)<0; (2)(x+1)(1-x )≥0;(3)x 2+6x-7≤0; (4)x 2-8x+16<0.5.求下列不等式的解集:(1)x 2+2x-5<0; (2)x 2-4x-2≥0;(3)x 2+6x+10≤0; (4)x 2-8x+16≤0;(5)-x 2+8x-1≤0; (6)2x 2-4x+3<0.6.求下列不等式的解集:(1)x+1x -1>0; (2)1x -1>1.参考答案自主预习1200v 2-120v>10,v 2-10v-2 000>0,一元二次不等式,常数,a ≠0,只有两个同号的数相乘,,(x 1,,2),(-∞,x 1)∪(x 2,+∞),⌀,R 课堂探究例1 (-∞,-1)∪(2,+∞).跟踪训练1 (1)(-∞,-2)∪,(2)(-∞,-4)∪,例2 (1)(-∞,-2-√3 ]∪[-2+√3,+∞)(2)[3-√10,3+√10 ](3){x|x ≠1}(4)R跟踪训练2 (1)R(2){94}例3 (-∞,-3]∪(2,+∞)跟踪训练3 (1)(-∞,-2)∪(1,+∞)(2)(-∞,2)∪[5,+∞) 核心素养专练3.D4.(1)(0,3) (2)[-1,1](3)[-7,1] (4)⌀5.(1)[-1-√6,-1+√6](2)(-∞,2-√6 ]∪[2+√6,+∞) (3)⌀(4){4} (5)(-∞,4-√15]∪[4+√15,+∞)(6)⌀6.(1)(-∞,-1)∪(1,+∞) (2)(1,2)学习目标1.能在现实情境或数学情境中提取出一元二次不等式模型.2.能恰当使用因式分解法和配方法解一元二次不等式.课堂探究情境与问题: 汽车在行驶中,由于惯性,刹车后还要继续向前滑行一段距离才能停止,一般称这段距离为“刹车距离”.刹车距离是分析交通事故的一个重要依据. 在一个限速为40 km/h 的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘查,测得甲车的刹车距离略超过6 m ,乙车的刹车距离略超过10 m .已知甲、乙两种车型的刹车距离s m 与车速v km/h 之间的关系分别为s 甲=1100v 2-110v ,s 乙=1200v 2-120v. 试判断甲、乙两车有无超速现象. 任务一:通过阅读上面内容,解答以下问题: 问题1:(1)如何构建数学关系式解决是否超速问题?(2)所得数学关系特征是什么? 一般的,形如 的不等式称为一元二次不等式,其中a ,b ,c 是 ,而且 ,不等号也可以是 .任务二:探究形如:(x-x 1)(x-x 2)>0或(x-x 1)(x-x 2)<0的解集. 问题2:(1)两个数相乘结果为正数,则这两个数满足什么关系?依据:ab>0当且仅当 . (2)x (x-1)>0可以等价转化成什么形式?解集是什么? (3)(x+1)(x-1)<0的解集是什么? 依据:ab<0当且仅当 . 结论:一般地,如果x 1<x 2,则不等式(x-x 1)(x-x 2)<0的解集是 . 不等式(x-x 1)(x-x 2)>0的解集是 . 这种解不等式的方法叫因式分解法. 问题3:使用因式分解法解一元二次不等式的前提是什么?例1 求不等式x 2-x-2>0的解集.回到情境与问题中的不等式,v 2-10v-600>0可以化为(v+20)(v-30)>0,因此甲车的车速v>30;而v 2-10v-2 000>0可以化为 ,因此乙车的车速 .由此可见,乙车肯定超速了. 小结因式分解法解题规律:任务三:探究形如:(x-h )2>k 或(x-h )2<k 的解集问题4:(1)通过代入数值验证的方法,猜测以下一元二次不等式的解集: ①x 2<-1 ;②x 2>-2 ;③x 2<9 .(2)类比方程的研究方法,解不等式x 2<9.(3)借助(2)解法特点解不等式x 2-6x-1≤0.结论:一元二次不等式ax 2+bx+c>0(a ≠0)通过配方总是可以变为(x-h )2>k 或(x-h )2<k 的形式,然后根据k的正负等知识,就可以得到原不等式的解集. 这种解不等式的方法叫配方法. 问题5:(1)配方法适合解什么特征的一元二次不等式?(2)几种特殊情形:①(x-h )2>0的解集为 ;(x-h )2<0的解集为 .②当k<0时,不等式(x-h )2>k 的解集为 ,不等式(x-h )2<k 的解集为 . 例2 求下列不等式的解集:(1)x 2+4x+1≥0; (2)-x 2+2x-1<0;(3)2x 2+4x+5>0.变式训练:x 2-12>-x 2.小结配方法解题规律:拓展性问题:求不等式2x+1x -2≥1的解集.课堂小结 通过本节课的学习,你有什么收获?(知识层面、思想方法层面)布置作业1.阅读课本,结合学案,进行知识整理、整合.2.完成课本第71页A 组 第2,3题;B 组 第1,2题.3.选做题:B 组 第5题.参考答案课堂探究1:(1)1100v 2-110v>6;1200v 2-120v>10 (2)ax 2+bx+c>0;常数;a ≠0;< ≥ ≤问题2:(1)同号;,或,(2),或,(-∞,0)∪(1,+∞)(3)(-1,1);,或,(x1,x2);(-∞,x1)∪(x2,+∞)问题3:一元二次不等式是特殊类型、能因式分解.例1(-∞,-1)∪(2,+∞)情境与问题:(v+40)(v-50)>0;v>50.问题4:(1)①⌀;②R;③(-3,3).(2)∵x2<9,∴√x2<√9,即|x|<3,∴-3<x<3.不等式的解集为(-3,3).(3)[3-√10,3+√10].问题5:(1)一般的一元二次不等式(2)①(-∞,h)∪(h,+∞);⌀;②R;⌀例2(1)(-∞,-2-√3]∪[-2+√3,+∞)(2)(-∞,1)∪(1,+∞)(3)R变式训练:(-∞,-1)∪,拓展性问题:(-∞,-3]∪(2,+∞)课堂小结略布置作业略。
高中数学 第二章 等式与不等式 2.2 不等式 2.2.3 一元二次不等式的解法精品练习(含解析)新

2.2.3 一元二次不等式的解法必备知识基础练进阶训练第一层知识点一不含参数的一元二次不等式的解法1.不等式9x 2+6x +1≤0的解集是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-13 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13≤x ≤13 C .∅ D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =-13 2.解下列不等式: (1)2x 2+7x +3>0;(2)-4x 2+18x -814≥0;(3)-2x 2+3x -2<0;(4)-12x 2+3x -5>0.知识点二含参数的一元二次不等式的解法3.若0<m <1,则不等式(x -m )⎝⎛⎭⎪⎫x -1m <0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m <x <m B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >1m 或x <m C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >m 或x <1m D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m 4.当a >-1时,关于x 的不等式x 2+(a -1)x -a >0的解集是________.5.已知A ={x |x 2-3x +2≤0},B ={x |x 2-(a +1)x +a ≤0},若A B ,则a 的取值X 围是________.知识点三三个“二次”间的关系及应用6.若一元二次方程ax 2+bx +c =0的根为2,-1,则当a <0时,不等式ax 2+bx +c ≥0的解集为( )A .{x |x <-1或x >2}B .{x |x ≤-1或x ≥2}C .{x |-1<x <2}D .{x |-1≤x ≤2}7.若不等式2x 2+mx +n >0的解集是{x |x >3或x <-2},则m ,n 的值分别是( ) A .2,12 B .2,-2 C .2,-12 D .-2,-128.若不等式x 2+mx +m2>0的解集为R ,则实数m 的取值X 围是( )A .m >2B .m <2C .m <0或m >2D .0<m <2关键能力综合练进阶训练第二层一、选择题1.不等式4x 2-12x +9≤0的解集是( ) A .∅ B .RC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠32 D.⎩⎨⎧⎭⎬⎫322.不等式x 2-|x |-2<0的解集是( ) A .{x |-2<x <2} B .{x |x <-2或x >2} C .{x |-1<x <1} D .{x |x <-1或x >1}3.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,则a +b 等于( )A .-3B .1C .-1D .34.若不等式ax 2-x -c >0的解集为{x |-2<x <1},则函数y =ax 2-x -c 的图像为( )5.(易错题)若不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值X 围为( )A .-3<k <0B .-3≤k <0C .-3≤k ≤0 D.-3<k ≤06.在R 上定义运算“⊙”:a ⊙b =ab +2a +b ,则满足x ⊙(x -2)<0的实数x 的取值X 围为( )A .0<x <2B .-2<x <1C .x <-2或x >1D .-1<x <2 二、填空题7.不等式-1<x 2+2x -1≤2的解集是________.8.若关于x 的不等式ax 2-6x +a 2>0的解集为{x |1<x <m },则a =________,m =________. 9.(探究题)关于x的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m<x <2,则m 的取值X 围是________________.三、解答题10.已知y =ax 2+x -a .(1)若函数y 有最大值178,某某数a 的值;(2)若不等式y >-2x 2-3x +1-2a 对一切实数x 恒成立,某某数a 的取值X 围.学科素养升级练进阶训练第三层1.(多选)对于给定的实数a ,关于实数x 的一元二次不等式a (x -a )(x +1)>0的解集可能为( )A .∅B .(-1,a )C .(a ,-1)D .(-∞,-1)∪(a ,+∞) 2.关于x的不等式组⎩⎪⎨⎪⎧x 2-x -2>0,2x 2+2k +5x +5k <0的整数解的集合为{-2},则实数k的取值X 围是________.3.(学科素养—数学运算)已知不等式ax 2+2ax +1≥0对任意x ∈R 恒成立,解关于x 的不等式x 2-x -a 2+a <0.2.2.3 一元二次不等式的解法必备知识基础练1.解析:原不等式可化为(3x +1)2≤0, ∴3x +1=0,∴x =-13.答案:D2.解析:(1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,x 2=-12.又二次函数y =2x 2+7x +3的图像开口向上,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >-12或x <-3. (2)原不等式可化为⎝ ⎛⎭⎪⎫2x -922≤0,所以原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =94.(3)原不等式可化为2x 2-3x +2>0,因为Δ=9-4×2×2=-7<0,所以方程2x 2-3x +2=0无实根,又二次函数y =2x 2-3x +2的图像开口向上,所以原不等式的解集为R .(4)原不等式可化为x 2-6x +10<0,Δ=(-6)2-40=-4<0,所以方程x 2-6x +10=0无实根,又二次函数y =x 2-6x +10的图像开口向上,所以原不等式的解集为∅.3.解析:∵0<m <1,∴1m>1>m ,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m <x <1m,故选D. 答案:D4.解析:原不等式可化为(x +a )(x -1)>0, 方程(x +a )(x -1)=0的两根为-a,1, ∵a >-1,∴-a <1,故不等式的解集为{x |x <-a 或x >1}. 答案:{x |x <-a 或x >1}5.解析:A ={x |x 2-3x +2≤0}={x |1≤x ≤2}; 当a ≤1时,B ={x |a ≤x ≤1},A B 不成立; 当a >1时,B ={x |1≤x ≤a },若A B ,须a >2.答案:a >26.解析:由题意知,-b a =1,c a=-2, ∴b =-a ,c =-2a ,又∵a <0,∴x 2-x -2≤0,∴-1≤x ≤2. 答案:D7.解析:由题意知-2,3是方程2x 2+mx +n =0的两个根,所以-2+3=-m2,-2×3=n2,∴m =-2,n =-12. 答案:D8.解析:由题意得Δ=m 2-4×m2<0,即m 2-2m <0,解得0<m <2.答案:D关键能力综合练.1.解析:原不等式可化为(2x -3)2≤0,故x =32.故选D.答案:D2.解析:令t =|x |,则原不等式可化为t 2-t -2<0, 即(t -2)(t +1)<0.∵t =|x |≥0.∴t -2<0.∴t <2. ∴|x |<2,解得-2<x <2. 答案:A3.解析:由题意得,A ={x |-1<x <3},B ={x |-3<x <2},所以A ∩B ={x |-1<x <2},由题意知,-1,2为方程x 2+ax +b =0的两根,由根与系数的关系可知,a =-1,b =-2,则a +b =-3.答案:A4.解析:因为不等式的解集为{x |-2<x <1},所以a <0,排除C 、D ;又与坐标轴交点的横坐标为-2,1,故选B.答案:B5.解析:当k =0时,显然成立;当k ≠0时,即一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则⎩⎪⎨⎪⎧k <0,Δ=k 2-4×2k ×⎝ ⎛⎭⎪⎫-38<0,解得-3<k <0.综上,满足不等式2kx 2+kx-38<0对一切实数x 都成立的k 的取值X 围是-3<k ≤0. 答案:D6.解析:根据给出的定义得,x ⊙(x -2)=x (x -2)+2x +(x -2)=x 2+x -2=(x +2)(x -1),又x ⊙(x -2)<0,则(x +2)(x -1)<0,故x 的取值X 围为-2<x <1.答案:B7.解析:∵⎩⎪⎨⎪⎧x 2+2x -3≤0,x 2+2x >0,∴-3≤x <-2或0<x ≤1. 答案:{x |-3≤x <-2或0<x ≤1}8.解析:可知1,m 是方程ax 2-6x +a 2=0的两个根, 且a <0, ∴⎩⎪⎨⎪⎧1+m =6a ,1×m =a ,解得⎩⎪⎨⎪⎧a =-3m =-3或⎩⎪⎨⎪⎧a =2m =2(舍去).答案:-3 -39.解析:∵不等式(mx -1)(x -2)>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1m<x <2, ∴方程(mx -1)(x -2)=0的两个实数根为1m和2,且⎩⎪⎨⎪⎧m <0,1m<2,解得m <0,∴m 的取值X 围是m <0.答案:{m |m <0}10.解析:(1)显然a <0,且-4a 2-14a =178,解得a =-2或a =-18.(2)由y >-2x 2-3x +1-2a ,得 (a +2)x 2+4x +a -1>0.当a =-2时,不符合题意;当a ≠-2时,得⎩⎪⎨⎪⎧a +2>0,Δ=16-4a +2a -1<0,解得a >2.综上,a 的取值X 围为(2,+∞).学科素养升级练1.解析:对于a (x -a )(x +1)>0,当a >0时,y =a (x -a )(x +1)开口向上,与x 轴的交点为a 和-1, 故不等式的解集为x ∈(-∞,-1)∪(a ,+∞); 当a <0时,y =a (x -a )(x +1)开口向下, 若a =-1,不等式解集为∅;若-1<a <0,不等式的解集为(-1,a );若a <-1,不等式的解集为(a ,-1); 综上,ABCD 都成立. 答案:ABCD2.解析:由x 2-x -2>0,解得x >2或x <-1,又由2x 2+(2k +5)x +5k <0可得,(2x +5)(x +k )<0,如图所示,由已知条件可得⎩⎪⎨⎪⎧-k >-52,-2<-k ≤3,解得-3≤k <2.答案:[-3,2)3.解析:∵ax 2+2ax +1≥0对任意x ∈R 恒成立. 当a =0时,1≥0,不等式恒成立;当a ≠0时,则⎩⎪⎨⎪⎧a >0,Δ=4a 2-4a ≤0,解得0<a ≤1.综上,0≤a ≤1.由x 2-x -a 2+a <0,得(x -a )[(x +a -1)]<0. ∵0≤a ≤1,∴①当1-a >a ,即0≤a <12时,a <x <1-a ;②当1-a =a ,即a =12时,⎝ ⎛⎭⎪⎫x -122<0,不等式无解;③当1-a <a ,即12<a ≤1时,1-a <x <a .综上,当0≤a <12时,原不等式的解集为{x |a <x <1-a };当a =12时,原不等式的解集为∅;当12<a ≤1时,原不等式的解集为{x |1-a <x <a }.。
2021_2022学年新教材高中数学课时过程性评价第二章等式与不等式2.2.3一元二次不等式的解法练

或
1 0<x<a
B.-1a <x<0 或 0<x<-1b
C.x<1b
或
1 x>a
D.-1a <x<-1b
【解析】选
C.因为
1 a>x
>b,所以
ax2>x>bx2(x≠0),由
ax2>x
可得
x<0
或
1 x>a
,由 x>bx2
可得
x>0
或
1 x<b
,求交集可得,x<1b
或
1 x>a
.
3.(2020·泰安高一检测)某文具店购进一批新型台灯,每盏最低售价为 15 元,若按最 低售价销售,每天能卖出 30 盏;若售价每提高 1 元,日销售量将减少 2 盏,为了使 这批台灯每天获得 400 元以上(不含 400 元)的销售收入,则这批台灯的销售单价 x(单 位:元)的取值范围是( ) A.10<x<20 B.15≤x<20 C.15<x<20 D.10≤x<20 【解析】选 B.由题意,x[30-2(x-15)]>400, 则-2x2+60x-400>0,即 x2-30x+200<0, 所以(x-10)(x-20)<0,即 10<x<20, 因为每盏最低售价为 15 元,所以 15≤x<20.
m+1>0 Δ=(-m)2-4(m+1)(m-1)≤0
,
即m3m>2--14≥0
m>-1 ,所以m≤-2 33或m≥2 33
,
解得
2 m≥3
3,
所以 m 的取值范围是32
(新教材)2022年高中数学人教B版必修第一册学案:2.2.3 一元二次不等式的解法 (含答案)

2.2.3 一元二次不等式的解法1.一元二次不等式的概念 形如ax 2+bx +c >0的不等式称为一元二次不等式,其中a ,b ,c 是常数,而且a ≠0.一元二次不等式中的不等号也可以是“<”“≥”“≤”等.不等式x 2+2x >0是一元二次不等式吗?提示:不是,一元二次不等式一定为整式不等式.2.一元二次不等式的解法(1)因式分解法:如果x 1<x 2,则不等式(x -x 1)(x -x 2)<0的解集是(x 1,x 2);不等式(x -x 1)(x -x 2)>0的解集是(-∞,x 1)∪(x 2,+∞).(2)配方法:一元二次不等式ax 2+bx +c >0 (a ≠0)通过配方总是可以变为(x -h )2>k或(x -h )2<k 的形式,再由k 值情况,可得原不等式的解集,如表: k >0 k =0 k <0 (x -h )2>k 转化为|x -h |>k ,解集为(-∞,h -k )∪(h +k ,+∞)(-∞,h )∪(h ,+∞) R (x -h )2<k 转化为|x -h |<k ,解集为(h -k ,h +k )∅ ∅1.辨析记忆(对的打“√”,错的打“×”).(1)mx 2-5x <0是一元二次不等式.( )提示:×.当m =0时,是一元一次不等式;当m ≠0时,是一元二次不等式.(2)若方程ax 2+bx +c =0可以变形为a (x -1)(x +1)=0,则ax 2+bx +c <0的解集为(-1,1).( )提示:×.当a >0时,ax 2+bx +c <0的解集为(-1,1).(3)一元二次不等式ax 2+bx +c >0 (a ≠0)通过配方总是可以变为(x -h )2>k 或(x -h )2<k 的形式.( )提示:√.2.不等式4-x 2<0的解集为( )A .(-∞,-2)∪(2,+∞)B .(2,+∞)C .[-2,2]D .[0,2] 【解析】选A.由4-x 2<0可得x 2-4>0,即⎝⎛⎭⎫x -2 ⎝⎛⎭⎫x +2 >0,解得x <-2或x >2.因此,原不等式的解集为⎝⎛⎭⎫-∞,-2 ∪⎝⎛⎭⎫2,+∞ .3.(教材例题改编)不等式x 2-2x -3≥0的解集为( )A .[-1,3]B .(-∞,-1]∪[3,+∞)C .(-∞,-3]∪[1,+∞)D .[-3,1]【解析】选B.不等式x 2-2x -3≥0化为(x +1)(x -3)≥0,解得x ≤-1或x ≥3,所以不等式的解集为(-∞,-1]∪[3,+∞).类型一 解一元二次不等式(数学运算)解不含参数的一元二次不等式【典例】已知集合A ={x |x 2-x -2>0},则R A =( )A .{x |-1<x <2}B .{x |-1≤x ≤2}C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2} 【思路导引】解一元二次不等式可得集合A ,再求其补集即可.【解析】选B.方法一:由x 2-x -2>0左边因式分解得(x +1)(x -2)>0, 解得x <-1或x >2,则A ={x |x <-1或x >2},所以R A ={x |-1≤x ≤2}.方法二:由x 2-x -2>0左边配方可得⎝ ⎛⎭⎪⎫x -12 2 -94 >0,即⎝ ⎛⎭⎪⎫x -12 2 >94 ,两边开方得⎪⎪⎪⎪⎪⎪x -12 >32 , 所以x >2或者x <-1,所以R A ={x |-1≤x ≤2}.将本例题的条件不变,添加集合B ={x |(x -1)(x -3)<0},则()R A ∩B=________.【解析】由典例知R A ={x |-1≤x ≤2}.由(x -1)(x -3)<0,解得1<x <3,所以()R A ∩B ={x |1<x ≤2}.答案:{x |1<x ≤2}解含有参数的一元二次不等式【典例】(2021·长沙高一检测)已知不等式mx 2+3x -2>0的解集为{x |n <x <2}.(1)求m ,n 的值,并求不等式nx 2+mx +2>0的解集;(2)解关于x 的不等式ax 2-(n +a )x -m >0(a ∈R ,且a <1).【思路导引】根据题意得m <0,再结合根与系数的关系即可得m ,n 的值,再求解一元二次不等式即可;(2)结合(1)得不等式,再分类讨论即可得答案.【解析】由题意知m <0,x =n 和x =2是方程mx 2+3x -2=0的实数根,故由根与系数的关系得⎩⎪⎨⎪⎧n +2=-3m 2·n =-2m ,解得⎩⎨⎧m =-1n =1, 则nx 2+mx +2=x 2-x +2=⎝ ⎛⎭⎪⎫x -12 2 +74 >0, 即nx 2+mx +2>0的解集为R .(2)由(1)得:ax 2-(1+a )x +1=(ax -1)(x -1)>0,当a <0时,不等式可化为(-ax +1)(x -1)<0⇒1a <x <1,当a =0时,不等式-x +1>0⇒x <1,当0<a <1时,1a >1,则(ax -1)(x -1)>0⇒x <1或x >1a .综上所述:当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x <1 ; 当a =0时,不等式的解集为{x |x <1};当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <1或x >1a .【点评】本题以含参数的不等式为背景,考查解不等式,破解的关键是需对参数进行分类讨论,在分类的过程中,一定要做到不重、不漏,此类题能培养学生的逻辑推理和数学运算的核心素养.通过此类题的解决,学生能有条理解含参数的不等式的解集,并能有效借助运算方法解决问题.1.利用配方法解一元二次不等式的步骤(1)把一元二次不等式的二次项系数化为1.(2)一元二次不等式通过配方变为(x -h )2>k 或(x -h )2<k 的形式.(3)根据k 值情况确定不等式的解集.2.含参数的一元二次不等式求解的注意事项(1)参数只在一次项系数位置时,首先利用配方法或者因式分解法得其一元二次方程的根,然后分析根的大小作出结论.(2)如果二次项系数为参数,则通常是先分析二次项系数的正、0、负三种情况,分别得其解后再分析解的大小,从而作出结论.1.不等式x 2-2x >0的解集为( )A .(2,+∞)B .(-∞,2)C .(0,2)D .(-∞,0)∪(2,+∞)【解析】选D.方程x 2-2x =0的解为x =0或x =2,结合二次函数的图像得到不等式的解集为(-∞,0)∪(2,+∞).2.设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( )A .⎝⎛⎭⎪⎫-3,-32 B .⎝ ⎛⎭⎪⎫-3,32 C .⎝ ⎛⎭⎪⎫1,32 D .⎝ ⎛⎭⎪⎫32,3 【解析】选D.由x 2-4x +3<0,得(x -1)(x -3)<0,解得1<x <3,所以A=(1,3).由2x -3>0,解得x >32 ,所以B =⎝ ⎛⎭⎪⎫32,+∞ ,所以A ∩B =⎝ ⎛⎭⎪⎫32,3 . 3.(2021·菏泽高一检测)设f (x )=ax 2-(a +2)x +2.(1)当a =1时,解关于x 的不等式f (x )>0;(2)当a ∈R 时,解关于x 的不等式f (x )>0.【解析】(1)因为a =1,所以f (x )=x 2-3x +2,所以x 2-3x +2>0,解得x <1或x >2,所以f (x )>0的解集为(-∞,1)∪(2,+∞).(2)令f (x )=ax 2-(a +2)x +2=0,解得x =2a 或x =1,当a <0时,因为f (x )=ax 2-(a +2)x +2>0,所以f (x )>0的解集是⎝ ⎛⎭⎪⎫2a ,1 ; 当a =0时,因为f (x )=-2x +2>0,所以f (x )>0的解集是(-∞,1);当0<a <2时,因为f (x )=ax 2-(a +2)x +2>0,所以f (x )>0的解集是(-∞,1)∪⎝ ⎛⎭⎪⎫2a ,+∞ ; 当a ≥2时,因为f (x )=ax 2-(a +2)x +2>0,所以f (x )>0的解集是⎝⎛⎭⎪⎫-∞,2a ∪(1,+∞). 综上所述:当a <0时,f (x )>0的解集是⎝ ⎛⎭⎪⎫2a ,1 ; 当a =0时,f (x )>0的解集是(-∞,1);当0<a <2时,f (x )>0的解集是(-∞,1)∪⎝ ⎛⎭⎪⎫2a ,+∞ ; 当a ≥2时,f (x )>0的解集是⎝ ⎛⎭⎪⎫-∞,2a ∪(1,+∞). 类型二 解简单的分式不等式(数学运算)【典例】解不等式:2-x x +3>1. 【思路导引】将分式不等式化为整式不等式再求解【解析】方法一:不等式移项得2-x x +3-1>0, 通分可得-2x -1x +3>0, 将其化为整式不等式为:(-2x -1)(x +3)>0,即(2x +1)(x +3)<0.解不等式得-3<x <-12 .故所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-3<x <-12 . 方法二:由题意x +3≠0,所以(x +3)2>0,原不等式两边同乘以(x +3)2得:(2-x )(x +3)>(x +3)2且x +3≠0,即(x +3)(-2x -1)>0,所以(x +3)(2x +1)<0,故-3<x <-12 ,故原不等式的解集为⎝ ⎛⎭⎪⎫-3,-12 .1.解分式不等式的步骤(1)移项.将不等式移项,使其一侧为0;(2)通分.将不等式通分成同分母的分式不等式;(3)转化.将分式不等式转化为整式不等式;(4)求解.解出整式不等式的解集,并作答.2.解分式不等式的关注点(1)根据实数运算的符号法则,分式不等式经过同解变形可化为四种类型,解题思路如下: ①f (x )g (x )>0⇔f(x)g(x)>0; ②f (x )g (x )<0⇔f(x)g(x)<0; ③f (x )g (x )≥0⇔f(x)g(x)≥0且g(x)≠0⇔f(x)g(x)>0或f(x)=0; ④f (x )g (x )≤0⇔f(x)g(x)≤0且g(x)≠0⇔f(x)g(x)<0或f(x)=0. (2)对于不等号右边不为零的较复杂的分式不等式,先两边同时乘以分母的平方去分母,再移项,因式分解,转化为整式不等式后求解.解关于x 的不等式:x 2+2x -23+2x -x 2≤x. 【解析】由x 2+2x -23+2x -x 2 ≤x 知:x 3-x 2-x -2x 2-2x -3≥0, 所以x 2(x -2)+(x -2)(x +1)(x -3)(x +1) =(x -2)(x 2+x +1)(x -3)(x +1)≥0,又x 2+x +1>0,所以⎩⎨⎧(x +1)(x -2)(x -3)≥0,(x +1)(x -3)≠0解得-1<x≤2或x>3;所以解集为(-1,2]∪(3,+∞).【拓展延伸】 高次不等式的求解方法1.利用因式分解法将高次不等式化为多个因式相乘的形式.2.利用“数轴穿根法”分析得其解集.【拓展训练】解关于x 的不等式:(1-x )(2-x )3-x≤0. 【解题指南】将(1-x )(2-x )3-x ≤0变为(x -1)(x -2)x -3≥0,按奇过偶不过的方法解高次不等式,注意分母不为零.【解析】因为(1-x )(2-x )3-x ≤0,所以(x -1)(x -2)x -3≥0.所以原不等式的解集为{x|1≤x≤2或x>3}.【点评】本题考查高次不等式的解法,设F(x)=k(x -a 1)(x -a 2)(x -a 3)…(x -a n )(k>0),解不等式F(x)>0(或F(x)<0)时,将方程F(x)=0的根a 1,a 2,a 3,…,a n 从小到大依次标到数轴上,从数轴的右上方开始按奇过偶不过的方法穿过数轴.数轴上方的部分为正,即为F(x)>0的解集;数轴下方的部分为负,即为不等式F(x)<0的解集.类型三 一元二次不等式的实际应用(数学建模、数学运算)【典例】某农贸公司按每担200元收购某农产品,并按每100元纳税10元(又称征税率为10个百分点),计划可收购 a 万担,政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x(x≠0)个百分点,预测收购量可增加2x个百分点.(1)写出税收y(万元)与x的函数关系式.(2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x 的取值范围.【思路导引】由题意构建函数关系或不等式解决问题.【解析】(1)降低税率后的税率为(10-x)%,农产品的收购量为a(1+2x%)万担,收购总金额为200a(1+2x%).依题意:y=200a(1+2x%)(10-x)%=150a(100+2x)(10-x)(0<x<10).(2)原计划税收为200a·10%=20a(万元).依题意得:150a(100+2x)(10-x)≥20a×83.2%,化简得,x2+40x-84≤0,所以-42≤x≤2.又因为0<x<10,所以0<x≤2.所以x的取值范围是{x|0<x≤2}.【补偿训练】某自来水厂的蓄水池存有400吨水,水厂每小时可向蓄水池中注水60吨,同时蓄水池又向居民小区不间断供水,t小时内供水总量为1206t吨(0≤t≤24).(1)从供水开始到第几小时时,蓄水池中的存水量最少?最少水量是多少吨?(2)若蓄水池中水量少于80吨时,就会出现供水紧张现象,请问:在一天的24小时内,有几小时出现供水紧张现象?【解析】(1)设t 小时后蓄水池中的水量为y 吨,则y =400+60t -1206t (0≤t≤24). 令x =6t ,则t =x 26 ,所以y =400+10x 2-120x =10(x -6)2+40(0≤x≤12),所以当x =6,即t =6时,y min =40,即从供水开始到第6小时时,蓄水池水量最少,只有40吨.(2)由已知400+10x 2-120x<80,得x 2-12x +32<0,解得4<x<8,即4<6t <8,83 <t<323 ,而323 -83 =8,所以每天约有8小时供水紧张.解不等式应用题的四步骤(1)审:认真审题,把握问题中的关键量,找准不等关系.(2)设:引进数学符号,用不等式表示不等关系.(3)求:解不等式.(4)答:回答实际问题.特别提醒:确定答案时应注意变量具有的“实际含义”.1.不等式3x 2-2x +1>0的解集为( )A .⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-1<x <13B .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪13<x <1 C .∅D .R 【解析】选D.由3x 2-2x +1>0得x 2-23 x +13 >0,所以⎝ ⎛⎭⎪⎫x -13 2 >-29 显然成立,所以原不等式的解集为R . 2.已知集合A ={x |(x -1)(x +2)<0},集合B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x x -1>0 ,则A ∩B =( )A .{x |-2<x <0}B .{x |1<x <2}C .{x |0<x <1}D .R【解析】选A.因为集合A ={x |(x -1)(x +2)<0}={x |-2<x <1},集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎪x x -1>0 =(-∞,0)∪(1,+∞), 所以A ∩B ={x |-2<x <0}.3.(教材练习改编)已知集合M ={x|x 2+x -2≤0},N ={-1,0,1,2},则M∩N 的子集个数为( )A .2B .4C .8D .16【解析】选C .因为M ={x|x 2+x -2≤0}={x|-2≤x≤1},N ={-1,0,1,2},所以M∩N ={-1,0,1},所以M∩N 的子集个数为23=8.4.设集合M={x|x2-x<0},N={x|x2<4},则M与N的关系为________.【解析】因为M={x|x2-x<0}={x|0<x<1},N={x|x2<4}={x|-2<x<2},所以M N.答案:M N5.二次函数y=ax2+bx+c(x∈R)的部分对应值表如下:则a=________;不等式ax+bx+c>0的解集为________.【解析】由表知x=-2时,y=0,x=3时,y=0,所以二次函数y=ax2+bx+c可化为:y=a(x+2)(x-3),又因为x=1时,y=-6,所以a=1,图像开口向上.结合二次函数的图像可得不等式ax2+bx+c>0 的解集为x<-2或x>3. 答案:1x<-2或x>3。
高中数学第二章一元二次函数方程和不等式典型例题(带答案)

高中数学第二章一元二次函数方程和不等式典型例题单选题1、已知a,b为正实数,且a+b=6+1a +9b,则a+b的最小值为()A.6B.8C.9D.12答案:B分析:根据题意,化简得到(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab,结合基本不等式,即可求解.由题意,可得(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab≥6(a+b)+16,则有(a+b)2−6(a+b)−16≥0,解得a+b≥8,当且仅当a=2,b=6取到最小值8.故选:B.2、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.3、不等式−x2+3x+18<0的解集为()A.{x|x>6或x<−3}B.{x|−3<x<6}C.{x|x>3或x<−6}D.{x|−6<x<3}答案:A分析:根据二次不等式的解法求解即可.−x2+3x+18<0可化为x2−3x−18>0,即(x−6)(x+3)>0,即x>6或x<−3.所以不等式的解集为{x|x>6或x<−3}.故选:A4、已知正实数a、b满足1a +1b=m,若(a+1b)(b+1a)的最小值为4,则实数m的取值范围是()A.{2}B.[2,+∞)C.(0,2]D.(0,+∞)答案:B分析:由题意可得(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,所以有b=1a ,将1a+1b=m化为a+1a=m,再利用基本不等式可求得m的范围.解:因为a,b为正实数,(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,此时有b=1a,又因为1a +1b=m,所以a+1a=m,由基本不等式可知a+1a≥2(a=1时等号成立),所以m ≥2. 故选:B.5、已知a,b ∈R 且满足{1≤a +b ≤3−1≤a −b ≤1,则4a +2b 的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8] 答案:C分析:设4a +2b =A (a +b )+B (a −b ),求出A ,B 结合条件可得结果. 设4a +2b =A (a +b )+B (a −b ),可得{A +B =4A −B =2,解得{A =3B =1,4a +2b =3(a +b )+a −b ,因为{1≤a +b ≤3−1≤a −b ≤1可得{3≤3(a +b )≤9−1≤a −b ≤1,所以2≤4a +2b ≤10. 故选:C.6、关于x 的不等式(x −a )(x −3)>0成立的一个充分不必要条件是−1<x <1,则a 的取值范围是( ) A .a ≤−1B .a <0C .a ≥2D .a ≥1 答案:D分析:由题意可知,(−1,1)是不等式(x −a )(x −3)>0解集的一个真子集,然后对a 与3的大小关系进行分类讨论,求得不等式的解集,利用集合的包含关系可求得实数a 的取值范围. 由题可知(−1,1)是不等式(x −a )(x −3)>0的解集的一个真子集.当a =3时,不等式(x −a )(x −3)>0的解集为{x |x ≠3},此时(−1,1){x |x ≠3}; 当时,不等式(x −a )(x −3)>0的解集为(−∞,3)∪(a,+∞), ∵(−1,1)(−∞,3),合乎题意;当a <3时,不等式(x −a )(x −3)>0的解集为(−∞,a )∪(3,+∞), 由题意可得(−1,1)(−∞,a ),此时1≤a <3. 综上所述,a ≥1. 故选:D.3a小提示:本题考查利用充分不必要条件求参数,同时也考查了一元二次不等式的解法,考查计算能力,属于中等题.7、已知函数y =ax 2+2bx −c(a >0)的图象与x 轴交于A (2,0)、B (6,0)两点,则不等式cx 2+2bx −a <0 的解集为( )A .(−6,−2)B .(−∞,16)∪(12,+∞) C .(−12,−16)D .(−∞,−12)∪(−16,+∞)答案:D解析:利用函数图象与x 的交点,可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6,再利用根与系数的关系,转化为b =−4a ,c =−12a ,最后代入不等式cx 2+2bx −a <0,求解集. 由条件可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6, 则2+6=−2b a,2×6=−ca,得b =−4a ,c =−12a ,∴cx 2+2bx −a <0⇔−12ax 2−8ax −a <0, 整理为:12x 2+8x +1>0⇔(2x +1)(6x +1)>0, 解得:x >−16或x <−12,所以不等式的解集是(−∞,−12)∪(−16,+∞).故选:D小提示:思路点睛:本题的关键是利用根与系数的关系表示b =−4a ,c =−12a ,再代入不等式cx 2+2bx −a <0化简后就容易求解. 8、a,b,c 是不同时为0的实数,则ab+bc a 2+2b 2+c 2的最大值为( )A .12B .14C .√22D .√32答案:A分析:对原式变形,两次利用基本不等式,求解即可. 若要使ab+bc a 2+2b 2+c 2最大,则ab,bc 均为正数,即a,b,c 符号相同,不妨设a,b,c 均为正实数,则ab+bc a 2+2b 2+c 2=a+c a 2+c 2b+2b≤2√a 2+c 2b×2b=(22)=12√a 2+2ac+c 22(a 2+c 2)=12√12+ac a 2+c 2≤12√12+2√a 2×c2=12, 当且仅当a 2+c 2b=2b ,且a =c 取等,即取等号,即则ab+bca 2+2b 2+c 2的最大值为12, 故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致. 多选题9、下列函数中最大值为12的是( ) A .y =x 2+116x 2B .y =x ⋅√1−x 2,x ∈[0,1]C .y =x 2x 4+1D .y =x +4x+2,x >−2 答案:BC解析:利用基本不等式逐项判断即可. 解:对A ,y =x 2+116x2≥2√x 2⋅116x 2=12,当且仅当x 2=116x2,即x =±12时取等号,故A 错误;对B ,y =x ⋅√1−x 2=√x 2⋅(1−x 2)≤x 2+1−x 22=12,当且仅当x 2=1−x 2,又∵x ∈[0,1],即x =√22时取等号,故B 正确;对C ,y =x 2x 4+1=1x 2+1x2≤12,a b c ==当且仅当x2=1x2,即x=±1时等号成立,故C正确;对D,y=x+4x+2=x+2+4x+2−2≥2√(x+2)⋅4x+2−2=2,当且仅当x+2=4x+2,又∵x>−2,∴x=0时取等号,故D错误.故选:BC.10、设正实数m、n满足m+n=2,则下列说法中正确的是()A.2m−n>14B.mn的最大值为1C.√m+√n的最小值为2D.m2+n2的最小值为2答案:ABD分析:利用不等式的性质以及指数函数的性质可判断A选项的正误,利用基本不等式可判断BCD选项的正误. 对于A选项,因为正实数m、n满足m+n=2,则0<m<2,m−n=m−(2−m)=2−2m∈(−2,2),故2m−n>2−2=14,A对;对于B选项,由基本不等式可得mn≤(m+n2)2=1,当且仅当m=n=1时,等号成立,B对;对于C选项,由基本不等式可得(√m+√n)2=m+n+2√mn≤2(m+n)=4,因为√m+√n>0,故√m+√n≤2,当且仅当m=n=1时,等号成立,C错;对于D选项,∵2(m2+n2)=(m2+n2)+(m2+n2)≥m2+n2+2mn=(m+n)2=4,可得m2+n2≥2,当且仅当m=n=1时,等号成立,D对.故选:ABD.11、已知a,b,c∈R+,则下列不等式正确的是()A.1a +1b≥4a+bB.a+b≤√a2+b2C.b2a +a2b≥a+b D.a2+b22≥a+b−1答案:ACD分析:对AC,利用基本不等式可求解;对B,根据(a+b)2=a2+b2+2ab>a2+b2可判断;对D,利用(a−1)2+(b−1)2≥0可判断.对A ,因为(1a +1b )(a +b )=b a +a b +2≥2√b a ⋅a b +2=4,当且仅当b a =a b 时等号成立,所以1a +1b ≥4a+b ,故A正确;对B ,(a +b )2=a 2+b 2+2ab >a 2+b 2,所以a +b >√a 2+b 2,故B 错误; 对C ,b 2a+a +a 2b+b ≥2√b 2a⋅a +2√a 2b⋅b =2a +2b ,当且仅当a =b 等号成立,所以b 2a+a 2b≥a +b ,故C正确;对D ,因为(a −1)2+(b −1)2≥0,所以a 2+b 2−2a −2b +2≥0,所以a 2+b 22≥a +b −1,当且仅当a =b =1等号成立,故D 正确. 故选:ACD.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD[0,1]13、已知a >0,b >0,且a +2b =1,则( ) A .ab 的最大值为19B .1a +2b 的最小值为9C .a 2+b 2的最小值为15D .(a +1)(b +1)的最大值为2答案:BC分析:对A ,直接运用均值不等式2√2ab ≤a +2b 即可判断; 对B ,1a +2b =(1a +2b)⋅(a +2b )=5+2b a+2a b,运用均值不等式即可判断;对C ,a 2+b 2=(1−2b )2+b 2,讨论二次函数最值即可;对D ,(a +1)(b +1)=2(a +b )(a +3b )=2[(a +2b )2−b 2]=2(1−b 2),讨论最值即可. a >0,b >0,2√2ab ≤a +2b =1⇒ab ≤18,当a =2b 时,即a =12,b =14时,可取等号,A 错;1a+2b =(1a +2b )⋅(a +2b )=5+2b a+2a b≥5+2√2b a ⋅2a b=9,当2b a =2ab时,即a =b =13时,可取等号,B 对; a 2+b 2=(1−2b)2+b 2=5b 2−4b +1=5(b −25)2+15≥15,当a =15,b =25时,可取等号,C 对;(a +1)(b +1)=2(a +b )(a +3b )=2(a 2+4ab +3b 2)=2[(a +2b )2−b 2]=2(1−b 2)<2,D 错. 故选:BC 填空题14、若一个三角形的三边长分别为a ,b ,c ,设p =12(a +b +c ),则该三角形的面积S =√p (p −a )(p −b )(p −c ),这就是著名的“秦九韶-海伦公式”若△ABC 的周长为8,AB =2,则该三角形面积的最大值为___________. 答案:2√2分析:计算得到p =4,c =2,a +b =6,根据均值不等式得到ab ≤9,代入计算得到答案. p =12(a +b +c )=4,c =2,a +b =6,a +b =6≥2√ab ,ab ≤9,当a =b =3时等号成立.S =√p (p −a )(p −b )(p −c )=√8(4−a )(4−b )=√128−32(a +b )+8ab ≤2√2. 所以答案是:2√2.15、若关于x 的二次方程x 2+mx +4m 2−3=0的两个根分别为x 1,x 2,且满足x 1+x 2=x 1x 2,则m 的值为______ 答案:分析:先求出方程有两根时m 的范围,再由根与系数关系将x 1,x 2用m 表示,建立关于m 的方程,求解即可. 关于x 的二次方程x 2+mx +4m 2−3=0有两个根, 则Δ=m 2−4(4m 2−3)=−3(5m 2−4)≥0, ∴−2√55≤m ≤2√55,x 1+x 2=−m,x 1⋅x 2=4m 2−3,又∵x 1+x 2=x 1x 2,∴−m =4m 2−3,即4m 2+m −3=0, 解得m =34或m =−1(舍去),∴m 的值为.小提示:本题考查一元二次方程根与系数关系的应用,要注意两根存在的条件,属于基础题.16、若关于x 的不等式x 2−(m +2)x +2m <0的解集中恰有3个正整数,则实数m 的取值范围为___________. 答案:(5,6]分析:不等式化为(x −m)(x −2)<0,根据解集中恰好有3个正整数即可求得m 的范围. x 2−(m +2)x +2m <0可化为(x −m)(x −2)<0, 该不等式的解集中恰有3个正整数,∴不等式的解集为{x|2<x <m},且5<m ⩽6; 所以答案是:(5,6]. 解答题343417、求实数m 的范围,使关于x 的方程x 2+2(m −1) x +2m +6=0. (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根α , β,且满足0<α<1<β<4; (3)至少有一个正根. 答案:(1)m <−1 (2)−75<m <−54(3)m ≤−1分析:设y =f (x )=x 2+2(m −1)x +2m +6,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定. (1)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有f (2)<0,即4+4(m −1)+2m +6<0,得m <−1. (2)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有{f (0)=2m +6>0f (1)=4m +5<0f (4)=10m +14>0,解得−75<m <−54.(3)设y =f (x )=x 2+2(m −1)x +2m +6. 方程至少有一个正根,则有三种可能:①有两个正根,此时可得{Δ≥0f (0)>02(m−1)−2>0,即{m ≤−1或m ≥5m >−3m <1.∴−3<m ≤−1. ②有一个正根,一个负根,此时可得f (0)<0,得m <−3. ③有一个正根,另一根为0,此时可得{6+2m =02(m −1)<0,∴m =−3.综上所述,得m ≤−1.18、阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数y=x2和y=√x,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数y=x2的图象是向下凸的,在上任意取两个点M1,M2,函数y=x2的图象总是在线段M1M2的下方,此时函数y=x2称为下凸函数;函数y=√x的图象是向上凸的,在上任意取两个点M1,M2,函数y=√x的图象总是在线段M1M2的上方,则函数y=√x称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≤f(x1)+f(x2)2,则称y=f(x)为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的下方.定义2:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≥f(x1)+f(x2)2,则称y=f(x)为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数y=x3在(−∞,0]为上凸函数,在[0,+∞)上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数f(x)=−x2+bx+c是上凸函数;(3)已知函数f(x)=x|x−a|,若对任意x1,x2∈[2,3],恒有f(x1+x22)≥f(x1)+f(x2)2,尝试数形结合探究实数a的取值范围.答案:(1)y=1x,x∈(0,+∞);(2)证明见解析;(3)a≥3.[0,1][0,1][0,1]分析:(1)根据下凸函数的定义举例即可;(2)利用上凸函数定义证明即可;(3)根据(2)中结论,结合条件,函数满足上凸函数定义,根据数形结合求得参数取值范围.(1)y =1x ,x ∈(0,+∞); (2)对于二次函数f(x)=−x 2+bx +c ,∀x 1,x 2∈R ,满足f (x 1+x 22)−f (x 1)+f (x 2)2=−(x 1+x 22)2+b ⋅x 1+x 22+c −−x 12+bx 1+c −x 22+bx 2+c 2=−x 12+x 22+2x 1x 24+x 12+x 222=(x 1−x 2)24≥0, 即f (x 1+x 22)≥f (x 1)+f (x 2)2,满足上凸函数定义,二次函数f(x)=−x 2+bx +c 是上凸函数.(3)由(2)知二次函数f(x)=−x 2+bx +c 是上凸函数,同理易得二次函数f(x)=x 2+bx +c 为下凸函数,对于函数f(x)=x |x −a |={x 2−ax,x >a −x 2+ax,x ≤a,其图像可以由两个二次函数的部分图像组成,如图所示,若对任意x 1,x 2∈[2,3],恒有f (x 1+x 22)≥f (x 1)+f (x 2)2,则函数f(x)=x|x −a|满足上凸函数定义,即[2,3]⊆(−∞,a],即a ≥3.。
新教材高中数学第二章等式与不等式 不等式 一元二次不等式的解法学案含解析新人教B版必修第一册
2.2.3 一元二次不等式的解法[课程目标] 1.掌握一元二次不等式的概念;2.会用因式分解法和配方法解一元二次不等式.知识点一一元二次不等式的概念[填一填]一般地,形如ax2+bx+c>0的不等式称为一元二次不等式,其中a,b,c均为常数,而且a≠0.一元二次不等式中的不等号也可以是“<”“≥”“≤”等.知识点二一元二次不等式的解法[填一填]1.因式分解法(1)一般地,如果x1<x2,则不等式(x-x1)(x-x2)<0的解集是(x1,x2),不等式(x-x1)(x-x2)>0的解集是(-∞,x1)∪(x2,+∞).(2)解一元二次不等式,先把不等式化成定义形式ax2+bx+c>0(其中不等号也可以是“<”“≥”“≤”等),若ax2+bx+c比较容易因式分解,可先将其进行因式分解,然后根据不等式解集的形式写出不等式的解集.2.配方法(1)把一元二次不等式x2+bx+c>0化为(x+h)2>k(h,k为常数)的形式,当k≥0时,就可以用直接开平方法求出不等式的解集.这种解一元二次不等式的方法叫做配方法.(2)一般步骤:一移,将含未知数的项移到不等号的左边,常数项移到不等号的右边;二除,二次项的系数不为1时,不等号两边同时除以二次项的系数,将其化为1;三配,不等号两边同时加上一次项系数一半的平方,将其左边配成完全平方式;四开,不等号右边是非负数时,用直接开平方法解不等式;方程右边是负数时,原不等式的解集为任意实数.[答一答]1.不等式x2-3x+2>0的解集是什么?提示:x2-3x+2=(x-1)(x-2)>0其解集为{x|x<1或x>2}.2.不等式(x-1)(x-a)>0(a∈R)的解是什么?提示:当a>1时,不等式的解集是(-∞,1)∪(a,+∞);当a=1时,不等式的解集是(-∞,1)∪(1,+∞);当a<1时,不等式的解集是(-∞,a)∪(1,+∞).3.用配方法解不等式x2+2x≤0.提示:x2+2x=(x+1)2-1≤0,即(x+1)2≤1,-1≤x+1≤1,即-2≤x≤0,不等式的解集是[-2,0].类型一 因式分解法解一元二次不等式 [例1] 求下列不等式的解集: (1)x 2-5x -6>0; (2)(2-x )(x +3)<0; (3)x 2-2x -8<0;(4)4(2x 2-2x +1)>x (4-x ).[解] (1)因为x 2-5x -6=(x -6)(x +1), 所以原不等式等价于(x -6)(x +1)>0.所以原不等式的解集为(-∞,-1)∪(6,+∞). (2)原不等式等价于(x -2)(x +3)>0,所以不等式的解集为(-∞,-3)∪(2,+∞). (3)因为x 2-2x -8=(x -4)(x +2), 所以原不等式等价于(x -4)(x +2)<0. 所以原不等式的解集为(-2,4). (4)由原不等式得8x 2-8x +4>4x -x 2, 所以原不等式等价于9x 2-12x +4>0. 因为9x 2-12x +4=(3x -2)2, 所以原不等式等价于(3x -2)2>0, 所以原不等式的解集为{x |x ≠23}.用因式分解法解一元二次不等式,首先要把不等式进行因式分解,注意先把二次项系数化为正数,否则得到相反的结论.[变式训练1] 求下列不等式的解集: (1)2x 2+7x +3>0; (2)-x 2+8x -15>0; (3)x 2-4x -5<0; (4)-3x 2-2x +8≥0.解:(1)因为2x 2+7x +3=(2x +1)(x +3),所以原不等式等价于(2x +1)(x +3)>0. 所以原不等式的解集为(-∞,-3)∪(-12,+∞).(2)原不等式等价于x 2-8x +15<0. 因为x 2-8x +15=(x -3)(x -5), 所以原不等式等价于(x -3)(x -5)<0.所以原不等式的解集为(3,5). (3)因为x 2-4x -5=(x +1)(x -5), 所以原不等式可化为(x -5)(x +1)<0. 所以原不等式的解集为(-1,5). (4)原不等式可化为3x 2+2x -8≤0, 即3(x -43)(x +2)≤0,即(x -43)(x +2)≤0,所以原不等式的解集为[-2,43].类型二 配方法解一元二次不等式 [例2] 用配方法解下列不等式: (1)4x 2+4x -5≤0; (2)14x 2+x +2≥0. [解] (1)4x 2+4x -5=(2x +1)2-6≤0, 即(2x +1)2≤6,-6≤2x +1≤6, -1+62≤x ≤6-12.所以不等式的解集为⎩⎨⎧⎭⎬⎫x |-1+62≤x ≤6-12. (2)14x 2+x +2=(12x +1)2+1≥0, 因为不等式恒成立,所以不等式的解集为R .[变式训练2] 用配方法求下列不等式的解集: (1)x 2+6x >1; (2)2x 2+6≥7x .解:(1)原不等式等价于x 2+6x -1>0,因为x 2+6x -1=x 2+6x +9-9-1=(x +3)2-10,所以原不等式可化为(x +3)2-10>0,即(x +3)2>10.两边开平方,得|x +3|>10,从而可得x +3>10或x +3<-10,所以x >10-3,或x <-10-3.所以原不等式组的解集为(-∞,-10-3)∪(10-3,+∞).(2)原不等式可化为x 2-72x +3≥0,因为x 2-72x +3=x 2-72x +(74)2-(74)2+3=(x -74)2-116,所以原不等式可化为(x -74)2-116≥0,即(x -74)2≥116,得x -74≥14或x -74≤-14,解得x ≥2或x ≤32.故原不等式的解集为{x |x ≤32或x ≥2}.类型三 含参数的一元二次不等式的解法 [例3] 解关于x 的不等式ax 2+3x +2>-ax -1(a >0).[解] 不等式ax 2+3x +2>-ax -1可化为ax 2+(a +3)x +3>0,即(ax +3)(x +1)>0. 当-3a<-1,即0<a <3时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >-1或x <-3a ;当-3a =-1,即a =3时,原不等式的解集为{x |x ≠-1}; 当-3a>-1,即a >3时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >-3a .综上所述,当0<a <3时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-3a 或x >-1;当a =3时,原不等式的解集为{x |x ≠-1}; 当a >3时,原不等式的解集为{x |x <-1或x >-3a }.含参数的一元二次不等式要注意对参数的讨论,不重复不遗漏.如本题要依据-3a 与-1的大小关系进行讨论.[变式训练3] 关于x 的不等式(mx -1)(x -2)>0,若此不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <2,则m 的取值范围是(-∞,0).解析:∵不等式(mx -1)(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x |1m <x <2, ∴方程(mx -1)(x -2)=0的两个实数根为1m 和2,且⎩⎪⎨⎪⎧m <0,1m<2,解得m <0,∴m 的取值范围是m <0.类型四 分式不等式的解法 [例4] 解下列不等式. (1)2x -13x +1≥0;(2)2-x x +3>1. [解] (1)∵2x -13x +1≥0⇔⎩⎪⎨⎪⎧(2x -1)(3x +1)≥0,3x +1≠0⇔⎩⎨⎧x ≤-13或x ≥12,x ≠-13⇔x <-13或x ≥12,∴原不等式的解集为{x |x <-13,或x ≥12}.(2)方法1:原不等式可化为⎩⎪⎨⎪⎧x +3>0,2-x >x +3,或⎩⎪⎨⎪⎧x +3<0,2-x <x +3⇔⎩⎪⎨⎪⎧x >-3,x <-12,或⎩⎪⎨⎪⎧x <-3,x >-12⇔-3<x <-12. ∴原不等式的解集为{x |-3<x <-12}.方法2:原不等式可化为(2-x )-(x +3)x +3>0⇔-2x -1x +3>0⇔2x +1x +3<0⇔(2x +1)(x +3)<0⇔-3<x <-12.∴原不等式的解集为{x |-3<x <-12}.(1)对于比较简单的分式不等式,可直接转化为一元二次不等式或一元二次不等式组求解,但要注意分母不为零.(2)对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.[变式训练4] (1)下列选项中,使不等式x <1x <x 2成立的x 的取值范围是( A )A .x <-1B .-1<x <0C .0<x <1D .x >1解析:由x <1x <x 2可得⎩⎨⎧x <1x,1x<x 2,即⎩⎨⎧x 2-1x<0,1-x3x <0,解得⎩⎪⎨⎪⎧x <-1或0<x <1,x <0或x >1,所以x <-1.(2)不等式:x +2x 2+x +1>1的解集为{x |-1<x <1}.解析:因为x 2+x +1=⎝⎛⎭⎫x +122+34>0,所以原不等式可化为x +2>x 2+x +1,即x 2-1<0,解得-1<x <1,所以原不等式的解集为{x |-1<x <1}.1.下列各式:①x 2+3>x ;②2x 2-3x >2x (x -1)-1;③3x 2-4x >5;④x 2>-1x +2.其中一元二次不等式有( B )A .1个B .2个C .3个D .4个解析:①③把各项移到“>”左边,右边变为0,满足一元二次不等式的概念特征,是一元二次不等式;②化简后不含二次项,不是一元二次不等式;④中含有分式,不是一元二次不等式.2.不等式-x 2-2x +3>0的解集为( C ) A .(-2,1) B .(-3,-1) C .(-3,1) D .(-1,3)解析:原不等式等价于x 2+2x -3<0,即(x +3)(x -1)<0,所以不等式的解集为(-3,1). 3.不等式2x -1x +3>0的解集是( D )A.⎝⎛⎭⎫12,+∞ B .(4,+∞)C .(-∞,-3)∪(4,+∞)D .(-∞,-3)∪⎝⎛⎭⎫12,+∞解析:2x -1x +3>0⇔(2x -1)(x +3)>0⇒x <-3或x >12.故选D.4.不等式-x 2+5x >6的解集是(2,3). 解析:不等式-x 2+5x >6变形为x 2-5x +6<0, 因式分解为(x -2)(x -3)<0,解得2<x <3. ∴不等式-x 2+5x >6的解集为(2,3). 5.解下列不等式: (1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1; (3)x 2-2x +3>0.解:(1)原不等式可化为2x 2-3x -2<0, 所以(2x +1)(x -2)<0,故原不等式的解集是⎩⎨⎧⎭⎬⎫x |-12<x <2.(2)原不等式可化为2x 2-x -1≥0, 所以(2x +1)(x -1)≥0,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-12或x ≥1.(3)因为x 2-2x +3=(x -1)2+2>0, 故原不等式的解集是R .。
必修一第二章-一元二次函数、方程和不等式全章讲解训练-(含答案)
第二章 一元二次函数、方程和不等式全章复习讲解 (含答案)【要点梳理】(不等式性质、解一元二次不等式、基本不等式) 一、不等式1.定义 不等式:用不等号(>,<,≥,≤,≠)表示不等关系的式子.2..不等式的性质不等式的性质可分为基本性质和运算性质两部分 基本性质有:性质1 对称性:a b b a >⇔<; 性质2 传递性:,a b b c a c >>⇒>;性质3 加法法则(同向不等式可加性):()a b a c b c c R >⇔+>+∈;;性质4 乘法法则:若a b >,则000c ac bc c ac bc c ac bc ,,.>⇒>⎧⎪=⇒=⎨⎪<⇒<⎩补充:除法法则:若a b >且0c =,则00a bc c ca b c c c⎧>⇒>⎪⎪⎨⎪<⇒<⎪⎩., 性质5 可加法则:,a b c d a c b d >>⇒+>+; 性质6 可乘法则:0,00a b c d a c b d >>>>⇒⋅>⋅>; 性质7 可乘方性:()*00n n a b n a b N >>∈⇒>>;可开方性:()01a b n n N 且+>>∈>⇒要点诠释:不等式的性质是不等式同解变形的依据. 二、比较两代数式大小的方法 作差法:1. 任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小.*①0a b a b ->⇔>; ②0a b a b -<⇔<; ③0a b a b -=⇔=. 作商法:任意两个值为正的代数式a 、b ,可以作商a b ÷后比较ab与1的关系,进一步比较a 与b 的大小. ①1a a b b >⇔>; ②1a a b b <⇔<; ③1aa bb =⇔=. 要点诠释:若代数式a 、b 都为负数,也可以用作商法. 中间量法:若两个代数式a 、b 不容易直接判断大小,可引入第三个量c 分别与a 、b 作比较,若满足a b >且b c >,则a c >. 第三个量就是中间量. 这种方法就是中间量法,其实质是不等式的传递性.一般选择0或1为中间量.三、一元二次不等式与相应函数、方程之间的联系设()2f x ax bx c =++(0)a >,判别式24b ac ∆=-,按照0∆>,0∆=,0∆<该函数图象(抛物线)与x 轴的位置关系也分为三种情况,相应方程的解与不等式的解集形式也不尽相同. 如下表所示:】24b ac ∆=-0∆>0∆=0∆<函数()y f x = 的图象方程()=0f x#的解有两相异实根 1212,()x x x x <有两相等实根 122b x x a==-无实根不等式()0f x >的解集 {}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭*R不等式()0f x <的解集{}12x xx x <<∅ ∅要点诠释:(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线y =2ax bx c ++与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集.…四、解一元二次不等式1. 解一元二次不等式()2ax +bx+c a ≠>00的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法);②0∆=时,求根122b x x a==-; ③0∆<时,方程无解 (3)根据不等式,写出解集. 五、基本不等式1.对公式222a b ab +≥及2a b+≥. `(1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数; (2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”. 2.由公式222a b ab +≥和2a b+≥ ①2b aa b +≥(,a b 同号); ②2b aa b+≤-(,a b 异号);③20,0)112a b a b a b+≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>> 要点诠释: 222a b ab +≥可以变形为:222a b ab +≤,2a b +≥可以变形为:2()2a b ab +≤.2a b+≤求最大(小)值 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等. ① 一正:函数的解析式中,各项均为正数;-② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值. 要点诠释:1.基本不等式的功能在于“和积互化”.若所证不等式可整理成一边是和,另一边是积的形式,则考虑使用平均不等式;若对于所给的“和式”中的各项的“积”为定值,则“和”有最小值,对于给出的“积式”中的各项的“和”为定值,则“积”有最大值.2.利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③各项能取得相等的值.…【典型例题】类型一 不等式性质例1.对于实数a b c ,,判断以下说法的对错.(1)若a b >,则ac bc <; (2)若22ac bc >,则a b >; (3)若0a b <<, 则22a ab b >>; (4)若0a b <<, 则a b >; (5)若a b >,1a >1b, 则00a b ,><. ~举一反三:【变式1】如果a <b <0,那么下列不等式成立的是( ) A .B .a+c <b+cC .a ﹣c >b ﹣cD .a •c <b •c例2、比较下列两代数式的大小:(1)(5)(9)x x ++与2(7)x +;举一反三:—【变式1】比较22x x +与2x +的大小【变式2】已知0a b >>,则2222a b a b -+ _________a ba b-+ (填,,><=)类型二 解二次不等式例3. 解下列一元二次不等式(1)250x x -<; (2)2440x x -+>; (3)2450x x -+->:举一反三:【变式1】已知函数222,0,()2,0x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩解不等式f (x )>3.;【变式2】 不等式组⎩⎪⎨⎪⎧x 2-1<0x 2-3x <0的解集为( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3} 【变式3】下列选项中,使不等式x <1x<x 2成立的x 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)例4. 不等式20x mx n +-<的解集为(4,5)x ∈,求关于x 的不等式210nx mx +->的解集./【总结升华】二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系,这一点是解此类题的关键. 举一反三:【变式1】不等式ax 2+bx+12>0的解集为{x|-3<x<2},则a=_______, b=________.【变式2】已知关于x 的不等式20x ax b ++<的解集为(1,2),求x 的不等式210bx ax ++>的解集."【变式3】 若关于x 的不等式2260ax x a -+<的解集为(1,)m ,则实数m 等于 . 【变式4】 已知关于x 的不等式x 2+bx +c >0的解集为{x |x <-1或x >2},则b 2+c 2=( )A .5B .4C .1D .2例5.已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立,求实数a 的取值范围.【思路点拨】不等式对一切实数恒成立,即不等式的解集为R ,要解决这个问题还需要讨论二次项的系数。
高中数学必修一第二章一元二次函数方程和不等式专项训练(带答案)
高中数学必修一第二章一元二次函数方程和不等式专项训练单选题1、若a>0,b>0,则下面结论正确的有()A.2(a2+b2)≤(a+b)2B.若1a +4b=2,则a+b≥92C.若ab+b2=2,则a+b≥4D.若a+b=1,则ab有最大值12答案:B分析:对于选项ABD利用基本不等式化简整理求解即可判断,对于选项C取特值即可判断即可. 对于选项A:若a>0,b>0,由基本不等式得a2+b2≥2ab,即2(a2+b2)≥(a+b)2,当且仅当a=b时取等号;所以选项A不正确;对于选项B:若a>0,b>0,1 2×(1a+4b)=1,a+b=12×(1a+4b)(a+b)=12(5+ba+4ab)≥12(5+2√ba⋅4ab)=92,当且仅当1a +4b=2且ba=4ab,即a=32,b=3时取等号,所以选项B正确;对于选项C:由a>0,b>0,ab+b2=b(a+b)=2,即a+b=2b,如b=2时,a+b=22=1<4,所以选项C不正确;对于选项D:ab≤(a+b2)2=14,当且仅当a=b=12时取等则ab有最大值14,所以选项D不正确;故选:B2、若不等式2x2+2mx+m4x2+6x+3<1对一切实数x均成立,则实数m的取值范围是()A .(1,3)B .(−∞,1)C .(−∞,1)∪(3,+∞)D .(3,+∞) 答案:A分析:因为4x 2+6x +3=4(x +34)2+34>0恒成立,则2x 2+2mx+m 4x 2+6x+3<1恒成立可转化为2x 2+(6−2m )x +(3−m )>0恒成立,则Δ<0,即可解得m 的取值范围 因为4x 2+6x +3=4(x +34)2+34>0恒成立 所以2x 2+2mx+m 4x 2+6x+3<1恒成立⇔2x 2+2mx +m <4x 2+6x +3恒成立 ⇔2x 2+(6−2m )x +(3−m )>0恒成立 故Δ=(6−2m )2−4×2×(3−m )<0 解之得:1<m <3 故选:A3、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( )A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞)答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13} 则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16) 故选:A4、不等式|5x −x 2|<6的解集为( )A .{x|x <2,或x >3}B .{x|−1<x <2,或3<x <6}C .{x|−1<x <6}D .{x|2<x <3}答案:B分析:按照绝对值不等式和一元二次不等式求解即可. 解:∵|5x−x2|<6,∴−6<5x−x2<6∴{x 2−5x−6<0x2−5x+6>0⇒{−1<x<6x<2或x>3⇒−1<x<2或3<x<6则不等式的解集为:{x|−1<x<2或3<x<6}故选:B.5、已知x>0,y>0,且x+y=2,则下列结论中正确的是()A.2x +2y有最小值4B.xy有最小值1C.2x+2y有最大值4D.√x+√y有最小值4答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可解:x>0,y>0,且x+y=2,对于A,2x +2y=12(x+y)(2x+2y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y=1时取等号,所以A正确,对于B,因为2=x+y≥2√xy,所以xy≤1,当且仅当x=y=1时取等号,即xy有最大值1,所以B错误,对于C,因为2x+2y≥2√2x⋅2y=2√2x+y=4,当且仅当x=y=1时取等号,即2x+2y有最小值4,所以C错误,对于D,因为(√x+√y)2=x+y+2√xy≤2(x+y)=4,当且仅当x=y=1时取等号,即√x+√y有最大值4,所以D错误,故选:A6、已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=A.{x|−4<x<3}B.{x|−4<x<−2}C.{x|−2<x<2}D.{x|2<x<3}答案:C分析:本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.由题意得,M={x|−4<x<2},N={x|−2<x<3},则M∩N={x|−2<x<2}.故选C.小提示:不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.7、关于x的方程x2+(m−2)x+2m−1=0恰有一根在区间(0,1)内,则实数m的取值范围是()A.[12,32]B.(12,23]C.[12,2)D.(12,23]∪{6−2√7}答案:D分析:把方程的根转化为二次函数的零点问题,恰有一个零点属于(0,1),分为三种情况,即可得解. 方程x2+(m-2)x+2m-1=0对应的二次函数设为:f(x)=x2+(m-2)x+2m-1因为方程x2+(m-2)x+2m-1=0恰有一根属于(0,1),则需要满足:①f(0)⋅f(1)<0,(2m-1)(3m-2)<0,解得:12<m<23;②函数f(x)刚好经过点(0,0)或者(1,0),另一个零点属于(0,1),把点(0,0)代入f(x)=x2+(m-2)x+2m-1,解得:m=12,此时方程为x2-32x=0,两根为0,32,而32⋅(0,1),不合题意,舍去把点(1,0)代入f(x)=x2+(m-2)x+2m-1,解得:m=23,此时方程为3x2-4x+1=0,两根为1,13,而13⋅(0,1),故符合题意;③函数与x轴只有一个交点,Δ=(m-2)2-8m+4=0,解得m=6±2√7,经检验,当m=6-2√7时满足方程恰有一根在区间 (0,1) 内;综上:实数m的取值范围为(12,23]⋅{6-2√7}故选:D8、已知1a <1b<0,则下列结论正确的是()A.a<b B.a+b<ab C.|a|>|b|D.ab>b2答案:B分析:结合不等式的性质、差比较法对选项进行分析,从而确定正确选项.因为1a <1b<0,所以b<a<0,故A错误;因为b<a<0,所以a+b<0,ab>0,所以a+b<ab,故B正确;因为b<a<0,所以|a|>|b|不成立,故C错误;ab−b2=b(a−b),因为b<a<0,所以a−b>0,即ab−b2=b(a−b)<0,所以ab<b2成立,故D错误.故选:B多选题9、若a,b,c∈R,则下列命题正确的是()A.若ab≠0且a<b,则1a >1bB.若0<a<1,则a2<aC.若a>b>0且c>0,则b+ca+c >baD.a2+b2+1≥2(a−2b−2)答案:BCD分析:由不等式的性质逐一判断即可.解:对于A,当a<0<b时,结论不成立,故A错误;对于B,a2<a等价于a(a−1)<0,又0<a<1,故成立,故B正确;对于C,因为a>b>0且c>0,所以b+ca+c >ba等价于ab+ac>ab+bc,即(a−b)c>0,成立,故C正确;对于D,a2+b2+1≥2(a−2b−2)等价于(a−1)2+(b+2)2≥0,成立,故D正确. 故选:BCD.10、已知正实数a,b满足a+b=ab,则()A.a+b≥4B.ab≥6C.a+2b≥3+2√2D.ab2+ba2≥1答案:ACD分析:根据特殊值判断B,利用ab⩽(a+b)24判断A,利用换“1”法判断C,变形后利用基本不等式判断D. 对于B,当a=b=2时,满足a+b=ab,此时ab<6,B错误;对于A,ab⩽(a+b)24,则(a+b)24⩾a+b,变形可得a+b⩾4,当且仅当a=b=2时等号成立,A正确;对于C ,a +b =ab ,变形可得1a +1b =1,则有a +2b =(a +2b)(1a +1b )=3+2b a+ab ⩾3+2√2,当且仅当a =2b 时等号成立,C 正确; 对于D ,ab 2+ba 2=a 3+b 3a 2b 2=(a+b)(a 2+b 2−ab)a 2b 2=b a +ab −1⩾2−1=1,当且仅当a =b =2时等号成立,D 正确;故选:ACD11、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在[0,1]上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD填空题12、若不等式kx2+2kx+2<0的解集为空集,则实数k的取值范围是_____.答案:{k|0≤k≤2}分析:分k=0和k>0两种情况讨论,当k>0时需满足Δ≤0,即可得到不等式,解得即可;解:当k=0时,2<0不等式无解,满足题意;当k>0时,Δ=4k2−8k≤0,解得0<k≤2;综上,实数k的取值范围是{k|0≤k≤2}.所以答案是:{k|0≤k≤2}13、已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤b+ma+m >ba.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题___________. 答案:①③推出⑤(答案不唯一还可以①⑤推出③等)解析:选择两个条件根据不等式性质推出第三个条件即可,答案不唯一.已知a,b,a+m均为大于0的实数,选择①③推出⑤.①a>b,③m>0,则b+ma+m −ba=ab+am−ab−bma(a+m)=am−bma(a+m)=(a−b)ma(a+m)>0,所以b+ma+m >ba.所以答案是:①③推出⑤小提示:此题考查根据不等式的性质比较大小,在已知条件中选择两个条件推出第三个条件,属于开放性试题,对思维能力要求比较高.14、已知不等式ax2+bx+c>0的解集为(2,4),则不等式cx2+bx+a<0的解集为___________.答案:{x|x>12或x<14}分析:先由不等式ax2+bx+c>0的解集为(2,4),判断出b=-6a,c=8a,把cx2+bx+a<0化为8x2−6x+ 1>0,即可解得.因为不等式ax2+bx+c>0的解集为(2,4),所以a<0且2和4是ax2+bx+c=0的两根.所以{2+4=−ba2×4=ca可得:{b=−6ac=8a,所以cx2+bx+a<0可化为:8ax2−6ax+a<0,因为a<0,所以8ax2−6ax+a<0可化为8x2−6x+1>0,即(2x−1)(4x−1)>0,解得:x>12或x<14,所以不等式cx2+bx+a<0的解集为{x|x>12或x<14}.所以答案是:{x|x>12或x<14}.解答题15、回答下列问题:(1)若a>b,且c>d,能否判断a−c与b−d的大小?举例说明.(2)若a>b,且c<d,能否判断a+c与b+d的大小?举例说明.(3)若a>b,且c>d,能否判断ac与bd的大小?举例说明.(4)若a>b,c<d,且c≠0,d≠0,能否判断ac 与bd的大小?举例说明.答案:(1)不能判断,举例见解析(2)不能判断,举例见解析(3)不能判断,举例见解析(4)不能判断,举例见解析分析:因为a,b,c,d的正负不确定,因此可举例说明每个小题中的两式的大小关系不定. (1)不能判断a−c与b−d的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时a−c>b−d;取a=5,b=4,c=3,d=0,满足条件a>b,且c>d,此时a−c<b−d;取a=5,b=4,c=3,d=2,满足条件a>b,且c>d,此时a−c=b−d;(2)不能判断a+c与b+d的大小,举例:取a=5,b=3,c=0,d=1,满足条件a>b,且c<d,此时a+c>b+d;取a=5,b=3,c=2,d=6,满足条件a>b,且c<d,此时a+c<b+d.取a=5,b=3,c=4,d=6,满足条件a>b,且c<d,此时a+c=b+d;(3)不能判断ac与bd的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时ac>bd;取a=5,b=3,c=−3,d=−5,满足条件a>b,且c>d,此时ac=bd;取a=5,b=−3,c=1,d=−2,满足条件a>b,且c>d,此时ac<bd;(4)不能判断ac 与bd的大小举例:取a=6,b=3,c=1,d=2,满足条件a>b,且c<d,此时ac >bd;取a=2,b=1,c=−1,d=2,满足条件a>b,且c<d,此时ac <bd;取a=6,b=3,c=−2,d=−1,满足条件a>b,且c<d,此时ac =bd;。
高中数学 第二章 等式与不等式 2.2.3 一元二次不等式的解法课后提升训练(含解析)新人教B版必修
第二章等式与不等式2.2 不等式2.2.3一元二次不等式的解法课后篇巩固提升基础达标练1.设全集U={x ∈N |x ≥2},集合A={x ∈N |x 2≥5},则∁U A=() A.⌀B.{2}C.{5}D.{2,5}A={x ∈N |x ≥√5},则∁U A={x ∈N |2≤x<√5}={2},故选B .2.不等式x +61-x ≥0的解集为() A.{x|-6≤x ≤1} B.{x|x ≥1或x ≤-6} C.{x|-6≤x<1} D.{x|x>1或x ≤-6}解析不等式x +61-x ≥0等价于{(x +6)(1-x )≥0,1-x ≠0,解得-6≤x<1.故不等式x +61-x ≥0的解集为{x|-6≤x<1}.3.(多选题)下列各项可以作为不等式1x -1>x+1的解集的子集的是() A .{x|x<-3} B .{x|x>5} C .{x|x<-√2}D .{x|1<x<√2}x+1-1x -1<0,即(x +1)(x -1)-1x -1<0,即x 2-2x -1<0,即(x +√2)(x -√2)x -1<0,等价于(x+√2)(x-√2)(x-1)<0,令(x+√2)(x-√2)(x-1)=0得x 1=-√2,x 2=1,x 3=√2,如图,∴原不等式的解集为{x|x<-√2或1<x<√2},则ACD 是其子集.4.不等式-x 2+23x+13≤0的解集是() A.{x |-13≤x ≤1} B.{x |x ≥1或x ≤-13} C.{x |x ≥13或x ≤-13} D.{x |-1≤x ≤13}解析∵-x 2+23x+13≤0,∴x 2-23x-13≥0,即(x-1)x+13≥0,解得x ≤-13或x ≥1,故选B .5.已知不等式x 2+ax+4<0的解集为空集,则实数a 的取值X 围是() A.{a|a ≤-4或a ≥4}B.{a|-4≤a ≤4}C.{a|a<-4或a>4}D.{a|-4<a<4}x 2+ax+4<0的解集为空集,所以方程x 2+ax+4=0根的判别式Δ≤0,因此a 2-16≤0⇒a 2≤16⇒-4≤a ≤4.6.已知集合A={x|x 2+x-2≤0},B={x |x +1x -2≥0},则A ∩(∁R B )=.x 2+x-2≤0,得-2≤x ≤1.∴A={x|x 2+x-2≤0}=[-2,1],由x +1x -2≥0,得x ≤-1或x>2.∴B=(-∞,-1]∪(2,+∞).则∁R B=(-1,2],∴A∩(∁R B)=(-1,1].-1,1]7.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7 000万元,则x的最小值是.,3860+500+[500(1+x%)+500(1+x%)2]×2≥7000,化简得(x%)2+3·x%-0.64≥0,解得x%≥0.2或x%≤-3.2(舍去).所以x≥20,即x的最小值为20.8.某单位在对一个长800 m、宽600 m的草坪进行绿化时,是这样想的:中间为矩形绿草坪,四周是等宽的花坛,如图所示,若要保证绿草坪的面积不小于总面积的二分之一,试确定花坛宽度的取值X 围.x m,则草坪的长为(800-2x)m,宽为(600-2x)m,×800×600,根据题意得(800-2x)·(600-2x)≥12整理得x2-700x+60000≥0,解不等式得x≥600(舍去)或x≤100,由题意知x>0,所以0<x≤100.当x在(0,100]之间取值时,绿草坪的面积不小于总面积的二分之一.能力提升练1.使不等式x2-x-6<0成立的一个充分不必要条件是()A.-2<x<0B.-3<x<2C.-2<x<3D.-2<x<4x 2-x-6<0得(x+2)(x-3)<0,得-2<x<3,若使不等式x 2-x-6<0成立的一个充分不必要条件,则对应X 围是(-2,3)的一个真子集,即-2<x<0,满足条件,故选A .2.如果对于实数x ,规定[x ]表示不大于x 的最大整数,那么使不等式4[x ]2-36[x ]+45<0成立的x 的取值X 围是() A .(32,152) B .[2,8] C .[2,8)D .[2,7]4[x ]2-36[x ]+45<0,得32<[x ]<152.又[x ]表示不大于x 的最大整数,得2≤x<8.3.(多选题)已知不等式ax 2+bx+c>0的解集为-12,2,则下列结论正确的是()A.a>0B.b>0C.c>0D.a+b+c>0解析因为不等式ax 2+bx+c>0的解集为-12,2,故相应的二次函数f (x )=ax 2+bx+c 的图像开口向下,所以a<0,故A 错误;易知2和-12是方程ax 2+bx+c=0的两个根,则有x x =-1<0,-x x =32>0,又a<0,故b>0,c>0,故BC 正确; 由二次函数的图像可知f (1)=a+b+c>0,f (-1)=a-b+c<0,故D 正确.4.若关于x 的不等式x 2-2ax-8a 2<0(a>0)的解集为(x 1,x 2),且x 2-x 1=15,则a=.x 2-2ax-8a 2<0,得(x+2a )(x-4a )<0, 因为a>0,则4a>-2a ,所以不等式的解集为(-2a ,4a ), 即x 2=4a ,x 1=-2a , 由x 2-x 1=15,得4a-(-2a )=15,解得a=52.5.若关于x 的不等式ax 2-6x+a 2<0的解集为(1,m ),则实数a 的值为,m 的值为.ax 2-6x+a 2=0可化为a (x-1)(x-m )<0的形式且a>0,所以{x >0,1+x =6x ,1×x =x ,解得m=2,所以a=2.6.解下列不等式: (1)x 4-x 2-2≥0; (2)2x-√x >1.由题意,可得不等式x 4-x 2-2=(x 2-2)(x 2+1)≥0,解得x 2≥2,解得x ≤-√2或x ≥√2,即不等式的解集为{x|x ≤-√2或x ≥√2}; (2)设t=√x ≥0,则不等式2x-√x >1,可化为2t 2-t-1>0,解得t>1或t<-12(舍去),即√x >1,解得x>1,即不等式的解集为{x|x>1}.7.已知a ∈R ,设集合A={x|x 2-(6a+1)x+9a 2+3a-2<0},B={x|1-|x+a|≥0}. (1)当a=1时,求集合B ;(2)问:a ≥12是A ∩B=⌀的什么条件.(充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件)并证明你的结论.由1-|x+1|≥0,得|x+1|≤1,即-1≤x+1≤1,-2≤x ≤0,所以B=[-2,0].(2)充分不必要条件,证明如下,由题意A=(3a-1,3a+2),B=[-a-1,-a+1],若A ∩B=⌀,则3a+2≤-a-1或3a-1≥-a+1,解得a ≤-34或a ≥12.∴a ≥12是A ∩B=⌀的充分不必要条件.8.已知不等式ax 2-3x+6>4的解集为{x|x<1或x>b }. (1)求a ,b 的值;(2)解不等式ax 2-(ac+b )x+bc<0.因为不等式ax 2-3x+6>4的解集为{x|x<1或x>b },所以x 1=1与x 2=b 是方程ax 2-3x+2=0的两个实数根,b>1且a>0.由根与系数的关系,得{1+x =3x ,1×x =2x ,解得{x =1,x =2.(2)由(1)知不等式ax 2-(ac+b )x+bc<0可化为x 2-(2+c )x+2c<0,即(x-2)(x-c )<0. 当c>2时,不等式(x-2)(x-c )<0的解集为{x|2<x<c }; 当c<2时,不等式(x-2)(x-c )<0的解集为{x|c<x<2}; 当c=2时,不等式(x-2)(x-c )<0的解集为⌀.素养培优练已知关于x 的不等式(k 2-2k-3)x 2+(k+1)x+1>0(k ∈R )的解集为M. (1)若M=R ,求k 的取值X 围;(2)若存在两个不相等负实数a ,b ,使得M=(-∞,a )∪(b ,+∞),某某数k 的取值X 围;(3)是否存在实数k ,满足:“对于任意正整数n ,都有n ∈M ,对于任意的负整数m ,都有m ∉M ”,若存在,求出k 的值,若不存在,说明理由.当k 2-2k-3=0时,k=-1或k=3,当k=-1时,1>0恒成立,当k=3时,4x+1>0⇒x>-14不恒成立,舍去,当k 2-2k-3≠0时,{x 2-2x -3>0,(x +1)2-4(x 2-2x -3)<0,解得k>133或k<-1. 综上可知k ≤-1或k>133. 即k 的取值X 围为(-∞,-1]∪133,+∞.(2)根据不等式解集的形式可知k 2-2k-3>0⇒x>3或x<-1,∵不等式解集的两个端点就是对应方程的实数根,即(k 2-2k-3)x 2+(k+1)x+1=0(k ∈R )有两个不相等的负根, 即{(x +1)2-4(x 2-2x -3)>0,x 1+x 2=-x +1x 2-2x -3<0,x 1x 2=1x 2-2x -3>0,解得3<k<133.综上可知3<k<133.即k 的取值X 围是3,133.(3)存在.根据题意可知,得出解集M=(t ,+∞),t ∈[-1,1), 当k 2-2k-3=0时,解得k=3或k=-1, 当k=-1时,1>0恒成立,不满足条件,当k=3时,不等式的解集是-14,+∞,满足条件;当k 2-2k-3>0时,此时一元二次不等式的解集形式不是(t ,+∞)的形式,不满足条件;当k2-2k-3<0时,此时一元二次不等式的解集形式不是(t,+∞)的形式,不满足条件.综上,满足条件的k的值为3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.3 一元二次不等式的解法最新课程标准:从函数观点看一元二次不等式.①经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集.②借助一元二次函数的图像,了解一元二次不等式与相应函数、方程的联系.知识点二次函数与一元二次方程、不等式的解的对应关系Δ>0Δ=0Δ<0y=ax2+bx+c(a>0)的图像ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}{x|x≠-b2a}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅状元随笔一元二次不等式的解法:(1)图像法:一般地,当a>0时,解形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)的一元二次不等式,一般可分为三步:①确定对应方程ax2+bx+c=0的解;②画出对应函数y=ax2+bx+c的图像简图;③由图像得出不等式的解集.对于a<0的一元二次不等式,可以直接采取类似a>0时的解题步骤求解;也可以先把它化成二次项系数为正的一元二次不等式,再求解.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解,当p<q时,若(x-p)(x-q)>0,则x>q或x<p;若(x-p)(x-q)<0,则p<x<q.有口诀如下“大于取两边,小于取中间”.[基础自测]1.下列不等式中是一元二次不等式的是( )A.a2x2+2≥0 B.1x2<3C.-x2+x-m≤0 D.x3-2x+1>0解析:选项A中,a2=0时不符合;选项B是分式不等式;选项D中,最高次数为三次;只有选项C符合.答案:C2.不等式x(x+1)≤0的解集为( )A.[-1,+∞) B.[-1,0)C.(-∞,-1] D.[-1,0]解析:解不等式得-1≤x≤0,故选D.答案:D3.函数y=17-6x-x2的定义域为( )A.[-7,1]B.(-7,1)C.(-∞,-7]∪[1,+∞)D.(-∞,-7)∪(1,+∞)解析:由7-6x-x2>0,得x2+6x-7<0,即(x+7)(x-1)<0,所以-7<x<1,故选B. 答案:B4.不等式1+2x+x2≤0的解集为________.解析:不等式1+2x+x2≤0化为(x+1)2≤0,解得x=-1.答案:{-1}题型一解不含参数的一元二次不等式[教材P65例1 P66例3、例4]例1 (1)求不等式x2-x-2>0的解集.(2)求不等式x2-6x-1≤0的解集.(3)求不等式-x2+2x-1<0的解集.【解析】(1)因为x2-x-2=(x+1)(x-2),所以原不等式等价于(x+1)(x-2)>0,因此所求解集为(-∞,-1)∪(2,+∞).(2)因为x2-6x-1=x2-6x+9-9-1=(x-3)2-10,所以原不等式可化为(x-3)2-10≤0,即(x-3)2≤10,两边开平方得|x-3|≤10,从而可知-10≤x-3≤10,因此3-10≤x≤3+10,所以不等式的解集为[3-10,3+10].(3)原不等式可化为x2-2x+1>0,又因为x2-2x+1=(x-1)2,所以上述不等式可化为(x-1)2>0.注意到只要x≠1,上述不等式就成立,所以不等式的解集为(-∞,1)∪(1,+∞).教材反思我们以求解可化成ax2+bx+c>0(a>0)形式的不等式为例,用框图表示其求解过程.跟踪训练1 解下列不等式: (1)x 2-7x +12>0; (2)-x 2-2x +3≥0; (3)x 2-2x +1<0; (4)-2x 2+3x -2<0.解析:(1)因为Δ=1>0,所以方程x 2-7x +12=0有两个不等实根x 1=3,x 2=4.再根据函数y =x 2-7x +12的图像开口向上,可得不等式x 2-7x +12>0的解集是{x |x <3或x >4}.(2)不等式两边同乘-1,原不等式可化为x 2+2x -3≤0.因为Δ=16>0,所以方程x 2+2x -3=0有两个不等实根x 1=-3,x 2=1.再根据函数y =x 2+2x -3的图像开口向上,可得不等式-x 2-2x +3≥0的解集是{x |-3≤x ≤1}.(3)因为Δ=0,所以方程x 2-2x +1=0有两个相等的实根x 1=x 2=1.再根据函数y =x 2-2x +1的图像开口向上,可得不等式x 2-2x +1<0的解集为∅.(4)原不等式可化为2x 2-3x +2>0,因此Δ=9-4×2×2=-7<0,所以方程2x 2-3x +2=0无实根,又二次函数y =2x 2-3x +2的图像开口向上,所以原不等式的解集为R .状元随笔化二次项系数为正―→计算相应方程的判别式Δ及两根x 1,x 2――→函数图像结果题型二 三个“二次”之间的关系[经典例题]例2 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.【解析】 方法一 由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知,a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系可知b a =-5,c a =6.由a <0知c <0,b c =-56,故不等式cx 2+bx +a <0,即x 2+b c x +a c >0,即x 2-56x +16>0,解得x <13或x >12,所以不等式cx2+bx +a <0的解集为⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞. 方法二 由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知,a <0,且2和3是方程ax 2+bx +c =0的两根,所以ax 2+bx +c =a (x -2)(x -3)=ax 2-5ax +6a ⇒b =-5a ,c =6a ,故不等式cx 2+bx +a <0,即6ax 2-5ax +a <0⇒6a ⎝ ⎛⎭⎪⎫x -13⎝ ⎛⎭⎪⎫x -12<0,故原不等式的解集为⎝⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞. 状元随笔由给定不等式的解集形式→确定a<0及关于a ,b ,c 的方程组→ 用a 表示b ,c →代入所求不等式→求解cx 2+bx +a<0的解集 方法归纳一元二次不等式与其对应的函数与方程之间存在着密切的联系,在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.(1)若一元二次不等式的解集为区间的形式,则区间的端点值恰是对应一元二次方程的根,要注意解集的形式与二次项系数的联系.(2)若一元二次不等式的解集为R 或∅,则问题可转化为恒成立问题,此时可以根据二次函数图像与x 轴的交点情况确定判别式的符号,进而求出参数的X 围.跟踪训练2 已知一元二次不等式x 2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,求不等式qx 2+px +1>0的解集.解析:因为x2+px +q <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <13,所以x 1=-12与x 2=13是方程x 2+px +q =0的两个实数根,由根与系数的关系得⎩⎪⎨⎪⎧13-12=-p ,13×⎝ ⎛⎭⎪⎫-12=q ,解得⎩⎪⎨⎪⎧p =16,q =-16.所以不等式qx 2+px +1>0即为-16x 2+16x +1>0,整理得x 2-x -6<0,解得-2<x <3.即不等式qx 2+px +1>0的解集为{x |-2<x <3}. 状元随笔观察给定不等式的解集形式→由根与系数的关系得p ,q 的方程组→确定p ,q 的值→求不等式qx 2+px +1>0的解集题型三 含参数的一元二次不等式的解法[经典例题] 例3 解关于x 的不等式2x 2+ax +2>0.【解析】 对于方程2x 2+ax +2=0,其判别式Δ=a 2-16=(a +4)(a -4).①当a >4或a <-4时,Δ>0,方程2x 2+ax +2=0的两根为x 1=14(-a -a 2-16),x 2=14(-a +a 2-16).∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <14(-a -a 2-16)或x >14(-a +a 2-16). ②当a =4时,Δ=0,方程有两个相等实根,x 1=x 2=-1, ∴原不等式的解集为{x |x ≠-1}.③当a =-4时,Δ=0,方程有两个相等实根,x 1=x 2=1, ∴原不等式的解集为{x |x ≠1}.④当-4<a <4时,Δ<0,方程无实根,∴原不等式的解集为R .状元随笔 二次项系数为2,Δ=a 2-16不是一个完全平方式,故不能确定根的个数,因此需对判别式Δ的符号进行讨论,确定根的个数.方法归纳含参数一元二次不等式求解步骤(1)讨论二次项系数的符号,即相应二次函数图像的开口方向; (2)讨论判别式的符号,即相应二次函数图像与x 轴交点的个数; (3)当Δ>0时,讨论相应一元二次方程两根的大小;(4)最后按照系数中的参数取值X 围,写出一元二次不等式的解集. 跟踪训练3 解关于x 的不等式x 2-(a +a 2)x +a 3>0.解析:原不等式可变形为(x -a )·(x -a 2)>0,则方程(x -a )(x -a 2)=0的两个根为x 1=a ,x 2=a 2,(1)当a <0时,有a <a 2,∴x <a 或x >a 2,此时原不等式的解集为{x |x <a 或x >a 2}; (2)当0<a <1时,有a >a 2,即x <a 2或x >a ,此时原不等式的解集为{x |x <a 2或x >a }; (3)当a >1时,有a 2>a ,即x <a 或x >a 2,此时原不等式的解集为{x |x <a 或x >a 2}; (4)当a =0时,有x ≠0;∴原不等式的解集为{x |x ∈R 且x ≠0}; (5)当a =1时,有x ≠1,此时原不等式的解集为{x |x ∈R 且x ≠1}; 综上可知:当a <0或a >1时,原不等式的解集为{x |x <a 或x >a 2}; 当0<a <1时,原不等式的解集为{x |x <a 2或x >a }; 当a =0时,原不等式的解集为{x |x ∈R 且x ≠0}; 当a =1时,原不等式的解集为{x |x ∈R 且x ≠1}.状元随笔不等式左边分解因式→讨论a 的X 围→ 比较a 与a 2的大小→写出不等式的解集题型四 一元二次不等式的实际应用[经典例题]例4 某工厂的固定成本为3万元,该工厂每生产100台某产品的生产成本为1万元,设生产该产品x (百台),其总成本为g (x )万元(总成本=固定成本+生产成本),并且销售收入r (x )满足r (x )=⎩⎪⎨⎪⎧-0.5x 2+7x -10.5,0≤x ≤7,13.5,x >7.假定该产品产销平衡,根据上述统计规律求: (1)要使工厂有盈利,产品数量x 应控制在什么X 围?(2)工厂生产多少台产品时盈利最大?【解析】 (1)依题意得g (x )=x +3,设利润函数为f (x ),则f (x )=r (x )-g (x ),所以f (x )=⎩⎪⎨⎪⎧-0.5x 2+6x -13.5,0≤x ≤7,10.5-x ,x >7,要使工厂有盈利,则有f (x )>0,因为f (x )>0⇒⎩⎪⎨⎪⎧0≤x ≤7,-0.5x 2+6x -13.5>0或⎩⎪⎨⎪⎧x >7,10.5-x >0⇒⎩⎪⎨⎪⎧0≤x ≤7,x 2-12x +27<0或⎩⎪⎨⎪⎧x >7,10.5-x >0⇒⎩⎪⎨⎪⎧0≤x ≤7,3<x <9或⎩⎪⎨⎪⎧x >7,x <10.5.则3<x ≤7或7<x <10.5,即3<x <10.5,所以要使工厂盈利,产品数量应控制在大于300台小于1 050台的X 围内.(2)当3<x ≤7时,f (x )=-0.5(x -6)2+4.5,故当x =6时,f (x )有最大值4.5,而当x >7时,f (x )<10.5-7=3.5,所以当工厂生产600台产品时盈利最大.(1)求利润函数f(x)⇒解不等式f(x)>0⇒回答实际问题. (2)根据第(1)题所求X 围,分类讨论求函数最值⇒回答实际问题. 方法归纳解不等式应用题的四步骤(1)审:认真审题,把握问题中的关键量,找准不等关系. (2)设:引进数学符号,用不等式表示不等关系. (3)求:解不等式. (4)答:回答实际问题.特别提醒:确定答案时应注意变量具有的“实际含义”.跟踪训练4 某农贸公司按每担200元收购某农产品,并按每100元纳税10元(又称征税率为10个百分点),计划可收购a 万担,政府为了鼓励收购公司多收购这种农产品,决定将征税率降低x (x ≠0)个百分点,预测收购量可增加2x 个百分点.(1)写出税收y (万元)与x 的函数关系式;(2)要使此项税收在税率调节后,不少于原计划税收的83.2%,试确定x 的取值X 围. 解析:(1)降低税率后的税率为(10-x )%,农产品的收购量为a (1+2x %)万担,收购总金额为200a (1+2x %)依题意得,y =200a (1+2x %)(10-x )% =150a (100+2x )(10-x )(0<x <10). (2)原计划税收为200a ·10%=20a (万元). 依题意得,150a (100+2x )(10-x )≥20a ×83.2%,化简得x 2+40x -84≤0, ∴-42≤x ≤2.又∵0<x <10,∴0<x ≤2. ∴x 的取值X 围是{x |0<x ≤2}.状元随笔 根据题意,列出各数量之间的关系表,如下:原计划 降税后 价格(元/担)200 200税率 10% (10-x)%(0<x<10)收购量(万担) a a(1+2x%) 收购总金额(万元) 200a 200·a(1+2x%) 税收y(万元)200a·10%200·a(1+2x%)(10-x)%课时作业 12一、选择题1.不等式3x 2-2x +1>0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <13 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <1C .∅D .R解析:因为Δ=(-2)2-4×3×1=-8<0,所以抛物线y =3x 2-2x +1开口向上,与x 轴无交点,故3x 2-2x +1>0恒成立,即不等式3x 2-2x +1>0的解集为R .答案:D2.设m +n >0,则关于x 的不等式(m -x )(n +x )>0的解集是( ) A .{x |x <-n 或x >m } B .{x |-n <x <m } C .{x |x <-m 或x >n } D .{x |-m <x <n }解析:不等式(m -x )(n +x )>0可化为(x -m )(x +n )<0,方程(x -m )(x +n )=0的两根为x 1=m ,x 2=-n .由m +n >0,得m >-n ,则不等式(x -m )(x +n )<0的解集是{x |-n <x <m },故选B.答案:B 3.不等式ax2+5x +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13<x <12,则a ,c 的值分别为( ) A .a =6,c =1 B .a =-6,c =-1 C .a =1,c =1 D .a =-1,c =-6解析:由题意知,方程ax 2+5x +c =0的两根为x 1=13,x 2=12,由根与系数的关系得x 1+x 2=13+12=-5a ,x 1·x 2=13×12=ca.解得a =-6,c =-1.答案:B4.若不等式x 2+mx +m2>0的解集为R ,则实数m 的取值X 围是( )A .(2,+∞) B.(-∞,2) C .(-∞,0)∪(2,+∞) D.(0,2)解析:由题意知原不等式对应方程的Δ<0,即m 2-4×1×m2<0,即m 2-2m <0,解得0<m <2,故答案为D.答案:D 二、填空题5.不等式(2x -5)(x +3)<0的解集为________.解析:方程(2x -5)(x +3)=0的两根为x 1=52,x 2=-3,函数y =(2x -5)(x +3)的图像与x 轴的交点坐标为(-3,0)和⎝ ⎛⎭⎪⎫52,0,所以不等式(2x -5)(x +3)<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-3<x <52.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -3<x <52 6.不等式2x -12x +1<0的解集为________. 解析:原不等式可以化为(2x -1)(2x +1)<0,即⎝ ⎛⎭⎪⎫x -12⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-12<0, 故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -12<x <12. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -12<x <12 7.用一根长为100 m 的绳子能围成一个面积大于600 m 2的矩形吗?若“能”,当长=________ m ,宽=________ m 时,所围成的矩形的面积最大.解析:设矩形一边的长为x m ,则另一边的长为(50-x )m,0<x <50.由题意,得x (50-x )>600,即x 2-50x +600<0,解得20<x <30.所以,当矩形一边的长在(20,30)的X 围内取值时,能围成一个面积大于600 m 2的矩形.用S 表示矩形的面积,则S =x (50-x )=-(x -25)2+625(0<x <50).当x =25时,S 取得最大值,此时50-x =25.即当矩形的长、宽都为25 m 时,所围成的矩形的面积最大.答案:25 25三、解答题8.解下列不等式:(1)x 2+2x -15>0;(2)x 2-3x +5>0;(3)4(2x 2-2x +1)>x (4-x ).解析:(1)x 2+2x -15>0⇔(x +5)(x -3)>0⇔x <-5或x >3,所以不等式的解集是{x |x <-5或x >3}.(2)因为Δ=(-3)2-4×1×5=-11<0,再根据函数y =x 2-3x +5图像的开口方向,所以原不等式的解集为R .(3)由原不等式得8x 2-8x +4>4x -x 2.∴原不等式等价于9x 2-12x +4>0.解方程9x 2-12x +4=0,得x 1=x 2=23.结合二次函数y =9x 2-12x +4的图像知,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠23. 9.若关于x的一元二次不等式ax 2+bx +c <0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <13或x >12,求关于x 的不等式cx 2-bx +a >0的解集.解析:由题意知⎩⎪⎨⎪⎧a <0,13+12=-b a ,13×12=c a ,所以⎩⎪⎨⎪⎧ a <0,b =-56a >0,c =16a <0, 代入不等式cx 2-bx +a >0中得16ax 2+56ax +a >0(a <0). 即16x 2+56x +1<0,化简得x 2+5x +6<0, 所以所求不等式的解集为{x |-3<x <-2}. [尖子生题库] 10.解关于x 的不等式x 2-ax -2a 2<0.解析:方程x 2-ax -2a 2=0的判断式Δ=a 2+8a 2=9a 2≥0,得方程两根x 1=2a ,x 2=-a .(1)若a >0,则-a <x <2a ,此时不等式的解集为{x |-a <x <2a };(2)若a <0,则2a <x <-a ,此时不等式的解集为{x |2a <x <-a };(3)若a =0,则原不等式即为x 2<0,此时解集为∅.综上所述,原不等式的解集为:当a >0时,{x |-a <x <2a };当a <0时,{x |2a <x <-a };当a =0时,∅.。