七年级数学下册第一次月考试卷(附答案)
最新七年级下学期数学第一次月考试卷(含答案)

七年级下学期数学第一次月考试卷满分:150分 考试用时:120分钟范围:第一章《二元一次方程组》~第二章《整式的乘法》班级 姓名 得分第Ⅰ卷一、选择题(本大题共10小题,共40.0分)1. 用加减法解方程组{2x −3y =53x +2y =−4时,下列变形正确的是( )A. {6x −9y =56x +4y =−4 B. {4x −6y =109x +6y =−12 C. {6x −3y =156x +2y =−12D. {2x −6y =103x +6y =−122. 下面运算结果为a 6的是( )A. a 3+a 3B. a 8÷a 2C. a 2⋅a 3D. (−a 2)33. 已知二元一次方程组{x −3y =4(1)y =2x −1(2),把(2)代入(1),整理,得( )A. x −2x +1=4B. x −2x −1=4C. x −6x −3=6D. x −6x +3=44. 现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是( )A. 50B. 60C. 70D. 805. 在下列的计算中,正确的是( )A. m 3+m 2=m 5B. m 5÷m 2=m 3C. (2m)3=6m 3D. (m +1)2=m 2+16. 下列整式的运算可以运用平方差公式计算的有( )①(2m +n)(n −2m);②(a 2−4b)(4b −a 2);③(x +y)(−x −y); ④(3a +b)(−3a +b)A. 1个B. 2个C. 3个D. 4个7. 学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A. 3种B. 4种C. 5种D. 6种8. 若代数式M ⋅(3x −y 2)=y 4−9x 2,那么代数式M 为( )A. −3x −y 2B. −3x +y 2C. 3x +y 2D. 3x −y 29. 方程(m −2016)x |m|−2015+(n +4)y |n|−3=2018是关于x 、y 的二元一次方程,则( )A. m =±2016;n =±4B. m =2016,n =4C. m =−2016,n =−4D. m =−2016,n =410. 若(x 2+px +q)(x −2)展开后不含x 的一次项,则p 与q 的关系是( )A. p =2qB. q =2pC. p +2q =0D. q +2p =0第Ⅱ卷二、填空题(本大题共8小题,共32.0分)11. 若关于x ,y 的二元一次方程组{x −y =4kx +y =2k的解也是二元一次方程2x −y =−7的解;则k 的值是______.12. (−0.5)2013×(−2)2014=______.13. 在等式y =kx +b 中,当x =3时,y =−2;当x =−1时,y =4,则k +b 的值为______.14. 若x +y =4,xy =3,则x 2+y 2= ______ .15. 已知二元一次方程2x +3y =18的解为正整数,则满足条件的解共有______对. 16. 计算:2(1+12)(1+122)(1+124)(1+128)+1214=______. 17. 如图,长方形ABCD 中放置9个形状、大小都相同的小长方形,相关数据如图中所示,则图中阴影部分的面积为__________(平方单位).18. 我们知道下面的结论,若a m =a n (a >0,且a ≠1),则m =n ,利用这个结论解决下列问题:设2m =3,2n =6,2p =12,现给出m 、n 、p 三者之间的三个关系式:①m +p =2n ,②m +n =2p −3,③m 2−mp =1,其中正确的是________.(填编号) 三、解答题(本大题共7小题,共78.0分)19. (10分)计算下列各式:(1)(3a −2)(4a −1);(2)3a(−a −4)+(3a −1)(a +3).20. (10分)已知,关于x ,y 的方程组{x −y =4a −3x +2y =−5a 的解为x 、y .(1)x =______,y =______(用含a 的代数式表示); (2)若x 、y 互为相反数,求a 的值;21. (10分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人? (2)若学生都去参观历史博物馆,则能节省票款多少元?22.(10分)如图1,有A型、B型正方形卡片和C型长方形卡片各若干张.(1)用1张A型卡片,1张B型卡片,2张C型卡片拼成一个正方形,如图2,用两种方法计算这个正方形面积,可以得到一个等式,请你写出这个等式;(2)选取1张A型卡片,10张C型卡片,______张B型卡片,可以拼成一个正方形,这个正方形的边长用含a,b的代数式表示为______;(3)如图3,两个正方形边长分别为m、n,m+n=10,mn=19,求阴影部分的面积.23.(12分)先阅读后解答:根据几何图形的面积关系可以说明一些等式.例如:(2a+b)(a+b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(1)根据图②写出一个等式:__________________________.(2)已知等式(x+1)(x+3)=x2+4x+3,请你画出一个相应的几何图形加以说明(仿照图①或图②画出图形即可).24.(12分)随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元(1)求A、B两种型号的汽车每辆进价分别为多少万元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,哪种方案获利最大?最大利润是多少元?25.(14分)某地葡萄丰收,准备将已经采摘下来的11400公斤葡萄运送杭州,现有甲、乙、丙三种车型共选择,每辆车运载能力和运费如表表示(假设每辆车均满载)(1)若全部葡萄都用甲、乙两种车型来运,需运费8700元,则需甲、乙两种车型各几辆?(2)为了节省运费,现打算用甲、乙、丙三种车型都参与运送,已知它们的总辆数为15辆,你能分别求出这三种车型的辆数吗?怎样安排运费最省?答案1.B2.B3.D4.B5.B6.B7.B8.A9.D10.B11.−112.−213.114.1015.216.417.1818.①②19.解:(1)(3a−2)(4a−1)=12a2−3a−8a+2=12a2−11a+2.(2)3a(−a−4)+(3a−1)(a+3)=−3a2−12a+3a2+9a−a−3 =−4a−3.20.解:(1)a−2−3a+1(2)由题意得,a−2+(−3a+1)=0,解得,a=−1.221.解:(1)设参观历史博物馆的有x 人,参观民俗展览馆的有y 人,依题意,得{x +y =15010x +20y =2000, 解得{x =100y =50.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人. (2)2000−150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.22.解:(1)方法1:大正方形的面积为(a +b)2, 方法2:图2中四部分的面积和为:a 2+2ab +b 2, 因此有(a +b)2=a 2+2ab +b 2,(2)由面积拼图可知a 2+10ab +25b 2=(a +5b)2, 故答案为:25,(a +5b), (3)由图形面积之间的关系可得,S 阴影=12m 2−12n(m −n)=1m 2−1mn +1n 2 =12[(m +n)2−3mn] =12(102−3×19) =432.23.解:(1)(2a +b)(a +2b)=2a 2+5ab +2b 2;(2)由题意,可画出几何图形如下:其中一条边可看做x +1,另一条边可看做x +3,四个区域面积的和即为计算结果.24.解:(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,依题意,得:{2x +3y =803x +2y =95解得:{x =25y =10,答:A 型汽车每辆的进价为25万元,B 型汽车每辆的进价为10万元; (2)设购进A 型汽车m 辆,购进B 型汽车n 辆, 依题意,得:25m +10n =200, 解得:m =8−25n , ∵m ,n 均为正整数,∴{m 1=6n 1=5,{m 2=4n 2=10,{m 3=2n 3=15,∴共3种购买方案:方案一:购进A 型车6辆,B 型车5辆; 方案二:购进A 型车4辆,B 型车10辆; 方案三:购进A 型车2辆,B 型车15辆;(3)方案一获得利润:8000×6+5000×5=73000(元); 方案二获得利润:8000×4+5000×10=82000(元); 方案三获得利润:8000×2+5000×15=91000(元). ∵73000<82000<91000,∴购进A 型车2辆,B 型车15辆获利最大,最大利润是91000元.25.解:(1)设需要甲车x 辆,乙车y 辆,根据题意可得{600x +800y =11400500x +600y =8700解得{x =3y =12;(2)设需要甲车x 辆,乙车y 辆,根据题意得 600x +800y +900(15−x −y)=11400, 整理得3x +y =21, ∵x ,y 都是正整数,x +y <15 x =4,5,6 ,方案一:甲车4辆,乙车9辆,丙车2辆,运费8800元 方案二:甲车5辆,乙车6辆,丙车4辆,运费8900元方案三:甲车6辆,乙车3辆,丙车6辆,运费9000元∵8800<8900<9000∴方案一运费最省,运费是8800元.。
七年级下学期第一次月考数学试卷(含答案)

七年级下学期第一次月考数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第二章《相交线与平行线》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.计算6m6÷(−2m2)3的结果为()A. −mB. −1C. 34D. −342.如果(3x2y−2xy2)÷m=−3x+2y,则单项式m为()A. xyB. −xyC. xD. −y3.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角4.如图,如果∠AOB=∠COD=90∘,那么∠1=∠2,这是根据()A. 直角都相等B. 等角的余角相等C. 同角的余角相等D. 同角的补角相等5.计算下列各式①(a3)2÷a5=1;②(−x4)2÷x4=x4;③(x−3)0=1(x≠3);④(−a3b)5÷12a5b2=2a4b,正确的有()A. 4个B. 3个C. 2个D. 1个6.要使(x2+ax+1)⋅(−6x3)的展开式中不含x4项,则a应等于()A. 6B. −1C. 16D. 07.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧8.在平面中,如图,两条直线最多只有1个交点,三条直线最多有3个交点……若n条直线最多有55个交点,则n的值为()A. 9B. 10C. 11D. 129.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个长方形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A. (a+b)2=a2+2ab+b2B. (a−b)2=a2−2ab+b2C. (a+2b)(a−b)=a2+ab−2b2D. a2−b2=(a+b)(a−b)10.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离是().A. 2cmB. 4cmC. 5cmD. 不超过2cm二、填空题(本大题共5小题,共20.0分)11.若(2x3y2)⋅(−3x m y3)⋅(5x2y n)=−30x7y6,则m+n=.12.天平的左边挂重为(2m+3)(2m−3)+12m,右边挂重为(2m+3)2,请你猜一猜,天平倾斜.(填“会”或“不会”)13.已知:OA⊥OC,∠AOB:∠AOC=2:3.则∠BOC的度数为__.14.如下图,直线AB,CD相交于点O,∠AOC=70°,∠BOC=2∠EOB,则∠AOE的度数为________.15.如图,直线AB,CD相交于点O,OE平分∠BOD,且∠AOE=140°,则∠AOC的度数为________________.三、解答题(本大题共10小题,共100.0分)16.(8分)计算:(1)2x⋅(3x2−x−5);ab2−4a2b)⋅(−4ab).(2)(1217.(10分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=70°,∠COF=90°,求:(1)∠BOD的度数;(2)写出图中互余的角;(3)∠EOF的度数.18.(10分)如果两个角的差的绝对值等于60°,就称这两个角互为友好角,例如:∠1=100°,∠2=40°,|∠1−∠2|=60°,则∠1和∠2互为友好角(本题中所有角都指大于0°且小于180°的角),将两块直角三角板如图1摆放在直线EF上,其中∠AOB=∠COD=60°,保持三角板ODC不动,将三角板AOB绕O点以每秒2°的速度顺时针旋转,旋转时间为t秒.(1)如图2,当AO在直线CO左侧时,①与∠BOE互为友好角的是____,与∠BOC互为友好角的是____,②当t=____时,∠BOE与∠AOD互为友好角;(2)若在三角板AOB开始旋转的同时,另一块三角板COD也绕点O以每秒3°的速度逆时针旋转,当OC旋转至射线OE上时两三角板同时停止,当t为何值时,∠BOC 与∠DOF互为友好角(自行画图分析).19.(10分)【注重实践探究】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出图2所表示的数学等式:;写出图3所表示的数学等式:;(2)利用上述结论,解决下列问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.20.(10分)爱动脑筋的丽丽和娜娜在做数学小游戏,两个人各报一个整式,丽丽报的整式A作被除式,娜娜报的整式B作除式,要求商式必须为4xy(即A÷B=4xy).(1)若丽丽报的是x3y−6xy2,则娜娜应该报什么整式?(2)若娜娜也报x3y−6xy2,则丽丽应该报什么整式?21.(8分)一个棱长为103的正方体,在某种物体的作用下,其棱长以每秒扩大到原来的102倍的速度增长,求3秒后该正方体的棱长.22.(10分)已知x2−4x−1=0,求代数式(2x−3)2−(x+y)(x−y)−y2的值.23.(10分)如下图,直线AB,CD相交于点O.(1)若∠AOD比∠AOC大40°,求∠BOD的度数;(2)若∠AOD:∠AOC=3:2,求∠BOD的度数.24.(12分)在∠AOB和∠COD中,(1)如图1,已知∠AOB=∠COD=90°,当∠BOD=40°时,求∠AOC的度数;(2)如图2,已知∠AOB=82°,∠COD=110°,且∠AOC=2∠BOD时,请直接写出∠BOD的度数;(3)如图3,当∠AOB=α,∠COD=β,且∠AOC=n∠BOD(n>1)时,请直接用含有α,β,n的代数式表示∠BOD的值.25.(12分)如图,,平分,反向延长射线至.(1)和是否互补?说明理由;射线是的平分线吗?说明理由;反向延长射线至点,射线将分成了的两个角,求.答案1.D2.B3.B4.C5.C6.D7.D8.C9.D10.D11.312.会13.30°或150°14.125°15.80°16.解:(1)原式=6x3−2x2−10x(2)原式=−2a2b3+16a3b2.17.解:(1)∵∠AOC=70°∴∠BOD=∠AOC=70°;(2)∠AOC和∠BOF,∠BOD和∠BOF,∠EOF和∠EOD,∠BOE和∠EOF;(3)因为OE平分∠BOD,∠BOD=70°所以∠BOE=35°,因为∠COF=90°,且A、O、B三点在一条直线AB上,所以∠BOF=180°−70°−90°=20°,所以∠EOF=∠BOE+∠BOF=35°+20°=55°.18.解:(1)①∠AOE;∠BOD或∠AOC;②15s.(2)由题意可知:三角板旋转40秒停止,∠DOF=3t①当OB在OC左侧时,∠BOC=120°−5t|∠BOC−∠DOF|=60°,表示为|120°−5t−3t|=60°即|120°−8t|=60°去绝对值得120°−8t=60°(如图1)或8t−120°=60°(如图2)∴t=7.5或t=22.5②当OB在OC右侧时,∠BOC=5t−120°|∠BOC−∠DOF|=60°,表示为|5t−120°−3t|=60°即|2t−120°|=60°去绝对值得2t−120°=60°或120°−2t=60°(如图3)∴t=90(不符合题意,应舍去)或t=30综合①②,故当t为7.5s、22.5s、30s时,∠BOC与∠DOF互为友好角.19.解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(a−b−c)2=a2+b2+c2+2bc−2ab−2ac;(2)由(1)可得a2+b2+c2=(a+b+c)2−(2ab+2bc+2ac)=(a+b+c)2−2(ab+bc+ac)=112−2×38=45.20.解:(1)∵A=x3y−6xy2,∴B=(x3y−6xy2)÷4xy=14x2−32y,∴娜娜应该报的整式为14x2−32y;(2)A=(x3y−6xy2)×4xy=4x4y2−24x2y3;21.解:3秒后该正方体的棱长为109.22.解:(2x−3)2−(x+y)(x−y)−y2=4x2−12x+9−x2+y2−y2=3x2−12x+9.因为x2−4x−1=0,所以x2−4x=1.所以原式=3(x2−4x)+9=3+9=12.23.解:(1)设∠AOC=x,则∠AOD=x+40°,∴x+x+40°=180°,∴∠BOD=x=70°.(2)设∠AOD=3x,∠AOC=2x,∴3x+2x=180°,x=36°,∴∠BOD=∠AOC=72°.24.解:(1)如图1,∵∠AOB=∠COD=90°,∠BOD=40°,∴∠AOC=∠AOB+∠COD−∠BOD=90°+90°−40°=140°,答:∠AOC的度数为140°;(2)如图2,∵∠AOB=82°,∠COD=110°,∴∠AOC=∠AOB+∠COD−∠BOD=82°+110°−∠BOD,又∵∠AOC=2∠BOD,∴2∠BOD=82°+110°−∠BOD,∴∠BOD=82°+110°=64°,3答:∠BOD的度数为64°;(3)如图3,∵∠AOB=α,∠COD=β,∴∠AOC=∠AOB+∠COD−∠BOD=α+β−∠BOD,又∵∠AOC=n∠BOD,∴n∠BOD=α+β−∠BOD,∴∠BOD=α+β,n+1答:∠BOD=α+β.n+125.解:(1)互补.理由:因为∠AOD+∠BOC=360°−∠AOB−∠DOC=360°−90°−90°=180°,所以∠AOD和∠BOC互补.(2)OF是∠BOC的平分线.理由:因为OE平分∠AOD,所以∠AOE=∠DOE,因为∠COF=180°−∠DOC−∠DOE=90°−∠DOE,∠BOF=180°−∠AOB−∠AOE=90°−∠AOE,所以∠COF=∠BOF,即OF是∠BOC的平分线.(3)因为OG将∠COF分成了4:3的两个部分,所以∠COG:∠GOF=4:3或者∠COG:∠GOF=3:4.①当∠COG:∠GOF=4:3时,设∠COG=4x°,∠GOF=3x°,由(2)得:∠BOF=∠COF=7x°因为∠AOB+∠BOF+∠FOG=180,所以90+7x+3x=180,解方程得:x=9,所以∠AOD=180−∠BOC=180−14x=54.②当∠COG:∠GOF=3:4时,设∠COG=3x°,∠GOF=4x°,同理可列出方程:90+7x+4x=180,,解得:x=9011所以∠AOD=180−∠BOC=180−14x=720.11)°.综上所述,∠AOD的度数是54°或(72011。
人教版数学七年级下册第一次月考试卷含答案解析

七年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7二、填空题(每小题3分,共30分)11.4是的算术平方根.12.的相反数是.13.已知,则.14.若x,y为实数,且+|y+2|=0,则xy的值为.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=度.19.如图,若AB∥CD,那么∥3=∥4,依据是.20.已知的整数部分是a,小数部分是b,则ab的值为.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF∥AB∥CD.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.甘肃省定西市安定区公园路中学七年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.的绝对值是()A.3B.﹣3C.D.﹣【考点】实数的性质.【分析】首先利用立方根的定义化简,然后利用绝对值的定义即可求解.【解答】解:=|﹣3|=3.故选A.2.如图,将左图中的福娃“欢欢”通过平移可得到的图为()A.B.C.D.【考点】生活中的平移现象.【分析】根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移即可得到答案.【解答】解:根据平移的定义可得左图中的福娃“欢欢”通过平移可得到的图为C,故选:C.3.如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是()A.∥3=∥4B.∥B=∥DCE C.∥1=∥2D.∥D+∥DAB=180°【考点】平行线的判定.【分析】根据平行线的判定定理逐一判断,排除错误答案.【解答】解:∥∥3=∥4,∥AD∥BC,故A错误;∥∥B=∥DCE,∥AB∥CD;故B正确;∥∥1=∥2,∥AB∥CD,故C正确;∥∥D+∥DAB=180°,∥AB∥CD,故D正确;故选A.4.下列各数是4的平方根的是()A.±2B.2C.﹣2D.【考点】平方根.【分析】一个正数的平方根有两个,它们互为相反数,据此求出4的平方根是多少即可.【解答】解:∥±=±2,∥是4的平方根的是±2.故选:A.A.两直线平行,同位角相等B.直线AB垂直于CD吗?C.若|a|=|b|,则a2=b2D.同角的补角相等故选B.6.如图,直线a、b相交于点O,若∥1等于40°,则∥2等于()A.50°B.60°C.140°D.160°【考点】对顶角、邻补角.【分析】因∥1和∥2是邻补角,且∥1=40°,由邻补角的定义可得∥2=180°﹣∥1=180°﹣40°=140°.【解答】解:∥∥1+∥2=180°又∥1=40°∥∥2=140°.故选C.7.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c.A.1个B.2个C.3个D.4个【考点】平行公理及推论;相交线;垂线.【分析】根据平行公理,垂线的定义,相交线的性质对各小题分析判断即可得解.【解答】解:①同位角相等,错误,只有两直线平行,才有同位角相等;②应为:在同一平面内,过一点有且只有一条直线与已知直线垂直,故本小题错误;③应为:过直线外一点有且只有一条直线与已知直线平行,故本小题错误;④三条直线两两相交,总有一个交点或三个交点,故本小题错误;⑤若a∥b,b∥c,则a∥c,正确.综上所述,正确的只有⑤共1个.故选A.8.实数,π2,,,,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数,由此即可判定选择项.【解答】解:实数,π2,,,中,无理数有:π2,共2个.故选B.9.如图,直线AB、CD被直线EF所截,∥1=50°,下列说法错误的是()A.如果∥5=50°,那么AB∥CD B.如果∥4=130°,那么AB∥CDC.如果∥3=130°,那么AB∥CD D.如果∥2=50°,那么AB∥CD【考点】平行线的判定.【分析】根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∥∥1=∥2=50°,∥若∥5=50°,则AB∥CD,故本选项正确;B、∥∥1=∥2=50°,∥若∥4=180°﹣50°=130°,则AB∥CD,故本选项正确;C、∥∥3=∥4=130°,∥若∥3=130°,则AB∥CD,故本选项正确;D、∥∥1=∥2=50°是确定的,∥若∥2=150°则不能判定AB∥CD,故本选项错误.故选D.10.计算8的立方根与的平方根之和是()A.5B.11C.5或﹣1D.11或﹣7【考点】实数的运算.【分析】利用平方根,立方根定义计算即可得到结果.【解答】解:根据题意得:8的立方根是2,=9,9的平方根是±3,则8的立方根与的平方根之和为5或﹣1,故选C二、填空题(每小题3分,共30分)11.4是16的算术平方根.【考点】算术平方根.【分析】如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.【解答】解:∥42=16,∥4是16的算术平方根.故答案为:16.12.的相反数是.【考点】实数的性质.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:的相反数是﹣=.故答案为:.13.已知,则 1.01.【考点】算术平方根.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:∥,∥ 1.01;故答案为:1.01.14.若x,y为实数,且+|y+2|=0,则xy的值为﹣2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质可求出x、y的值,进而可求出xy的值.【解答】解:由题意,得:x﹣1=0,y+2=0;即x=1,y=﹣2;因此xy=1×(﹣2)=﹣2,故答案为:﹣2.15.如图,∥ACB=90°,CD∥AB,垂足为D,则CD<CA,理由是垂线段最短.【考点】垂线段最短.【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.据此作答即可.【解答】解:∥CD∥AB,∥CD<CA(垂线段最短),故答案为:垂线段最短.16.对于任意不相等的两个数a,b,定义一种运算∥如下:a∥b=,如3∥2==,那么12∥4=4.【考点】实数的运算.【分析】原式利用已知的新定义化简,计算即可得到结果.【解答】解:根据题中的新定义得:12∥4===4,故答案为:4【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.18.如图,直线AB.CD相交于点O,OE∥AB,O为垂足,如果∥EOD=38°,则∥AOC=52度.【考点】垂线;对顶角、邻补角.【分析】根据垂线的定义,可得∥AOE=90°,根据角的和差,可得∥AOD的度数,根据邻补角的定义,可得答案.【解答】解:∥OE∥AB,∥∥AOE=90°,∥∥AOD=∥AOE+∥EOD=90°+38°=128°,∥∥AOC=180°﹣∥AOD=180°﹣128°=52°,故答案为:52.19.如图,若AB∥CD,那么∥3=∥4,依据是两直线平行,内错角相等.【考点】平行线的性质.【分析】根据题意利用平行线的性质定理进而得出答案.【解答】解:两直线平行,内错角相等,故答案为:两直线平行,内错角相等.20.已知的整数部分是a,小数部分是b,则ab的值为.【考点】估算无理数的大小.【分析】只需首先对估算出大小,从而求出其整数部分a,再进一步表示出其小数部分即可解决问题.【解答】解:∥<<,∥2<<3;所以a=2,b=﹣2;故ab=2×(﹣2)=2﹣4.故答案为:2﹣4.三、解答题(本大题共60分)21.计算:(1)+(2)|﹣|+2.【考点】实数的运算.【分析】(1)原式利用算术平方根、立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.【解答】解:(1)原式=+=1;(2)原式=﹣+2=+.22.求下列各式中x的值.(1)x2﹣4=0(2)27x3=﹣125.【考点】立方根;平方根.【分析】(1)先移项,系数化为1,再开平方法进行解答;(2)先系数化为1,再开立方法进行解答.【解答】解:(1)x2=4,x=±2 ;(2)x3=﹣,x=﹣.23.如一个数的两个平方根分别是a+3和2a﹣15,试求这个数.【考点】平方根.【分析】根据一个数的平方根互为相反数,可得这个数的平方根,再根据互为相反数的和等于0,可得平方根,再根据平方,可得这个数.【解答】解:∥一个数的两个平方根分别是3a+2和a+14,∥(a+3)+(2a﹣15)=0,a=4,a+3=4+37.7的平方是49.∥这个数是49.24.如图所示,已知∥1=72°,∥2=108°,∥3=69°,求∥4的度数.【考点】平行线的判定与性质.【分析】此题要首先根据∥1和∥2的特殊的位置关系以及数量关系证明c∥d,再根据平行线的性质求得∥4即可.【解答】解:∥∥1=72°,∥2=108°,∥∥1+∥2=72°+108°=180°;∥c∥d(同旁内角互补,两直线平行),∥∥4=∥3(两直线平行,内错角相等),∥∥3=69°,∥∥4=69°.25.如图,已知∥BED=∥B+∥D,试说明AB与CD的关系.解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF内错角相等,两直线平行∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF内错角相等,两直线平行∥AB∥CD平行公理的推论.【考点】平行线的判定与性质.【分析】根据平行线的判定与性质进行填空即可.【解答】解:AB∥CD,理由如下:过点E作∥BEF=∥B∥AB∥EF(内错角相等,两直线平行)∥∥BED=∥B+∥D∥∥FED=∥D∥CD∥EF(内错角相等,两直线平行)∥AB∥CD(平行公理的推论).故答案为:内错角相等,两直线平行;内错角相等,两直线平行;平行公理的推论.26.如图,EF∥AD,∥1=∥2.求证:DG∥AB.【考点】平行线的判定与性质.【分析】根据平行线的性质得出∥2=∥3,求出∥1=∥3,根据平行线的判定得出即可.【解答】证明:∥EF∥AD,∥∥2=∥3,∥∥1=∥2,∥∥1=∥3,∥DG∥AB.第11页共11页。
人教版七年级下册数学第一次月考试题附答案

【分析】根据线段、垂线段的公理、平行线的性质以及补角的性质判断即可.
【解答】解:A、两点之间,线段最短,是真命题;
B、两直线平行,同旁内角互补,原命题是假命题;
C、等角的补角相等,是真命题;
D、垂线段最短,是真命题;
故选:B.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.
6.(3分)下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
【分析】根据对顶角的定义作出判断即可.
【解答】解:根据对顶角的定义可知:只有选项C中的是对顶角,其它都不是.
故选:C.
【点评】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
12(3分).如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移长方形An-1Bn-1Cn-1Dn-1沿An-1Bn-1的方向向右平移5个单位长度,得到长方形AnBnCnDn(n>2),若ABn的长度为2 026,则n的值为().
2022年七年级下册第一次月考
数 学试 题
满 分:120分时间:120分钟
亲爱的同学:沉着应试,认真书写,祝你取得满意成绩!
一.选择题(共12小题,满分36分,每小题3分)
1.(3分)49的算术平方根是( )
A.±7B.7C.± D.
七年级下册数学试卷第一次月考

1、下列哪个数既是2的倍数又是5的倍数?A. 10B. 15C. 20D. 25解析:一个数如果是2和5的倍数,那它必须是10的倍数。
选项中只有10和20满足这个条件,但10是更小的那个数,也是最基本的同时为2和5的倍数的数。
(答案:A)2、若一个角的余角是36°,则这个角是:A. 18°B. 36°C. 54°D. 90° - 36° = 54°解析:两个角的和为90°时,它们互为余角。
已知一个角的余角是36°,则这个角为90°- 36° = 54°。
(答案:D)3、下列哪个选项不是方程2x + 5 = 15的解?A. x = 2B. x = 5C. x = -5/2D. x = 10/2解析:将选项代入方程2x + 5 = 15中检验。
A项:2×2 + 5 = 9 ≠ 15;B项:2×5 + 5 = 15;C项:2×(-5/2) + 5 = 0 + 5 = 5 ≠ 15,但C项计算后实际为-5 + 5 = 0,也不等于15,不过此处直接通过排除法可知A、C均不是解,重点在于验证D项;D项:2×(10/2) + 5 = 10 + 5 = 15。
因此,不是解的选项是A。
(答案:A)4、在数轴上,点A表示的数是-3,点B表示的数是5,则点A与点B之间的距离是:A. 2B. 5C. 8D. 15解析:数轴上两点间的距离等于它们所表示的数之差的绝对值。
因此,点A与点B之间的距离为|5 - (-3)| = |5 + 3| = 8。
(答案:C)5、下列哪个图形不是轴对称图形?A. 等腰三角形B. 正方形C. 平行四边形D. 圆解析:轴对称图形是指沿一条直线折叠后,两边可以完全重合的图形。
等腰三角形、正方形和圆都至少有一条对称轴,而平行四边形(非特殊平行四边形如矩形、菱形)不一定有对称轴,因此它可能不是轴对称图形。
七年级数学下册第一次月考试题及答案

七年级数学第一次月考试题一、选择题(每小题2分:共28分) 1. 计算32x x ⋅的结果是( )A .9xB .8xC .6xD .5x 2. 计算423(3)a b -的结果是( ) A.1269a b -B.7527a b - C.1269a bD.12627a b -3. 若01x <<:则2x :x1x这四个数中( ) A .1x最大:2x 最小B .x 最大:1x最小C .2x最小 D .x 最大:2x 最小4. 下列语句中:正确的是( )A 、无理数都是无限小数B 、无限小数都是无理数C 、带根号的数都是无理数D 、不带根号的数都是无理数 5. 立方根等于它本身的数有( )(A )-1:0:1 (B )0:1 (C )0 (D )1 6. 下列计算正确的是( ) A .(ab 2)2=ab 4 B .(3xy )3=9x 3y 3 C .(-2a 2)2=-4a 4 D .(-3a 2bc 2)2=9a 4b 2c 47. 计算20072007532135⎛⎫⎛⎫-⨯ ⎪⎪⎝⎭⎝⎭结果等于( ).A .1-B .1C .0D .2007 8. 在 1.414-::227:3π:3.142:2- 2.121121112…中:无理数的个数是( )A.1 B.2 C.3 D.4 9. 若实数m 满足0m m -=:则m 的取值范围是( ) A.0m ≥ B.0m > C.0m ≤ D.0m <10. 的平方根是[ ]A 0.4B 0.04C ±0.4D ±11. 若4:则估计m 的值所在的范围是 ( )<m <<m <<m <<m <512. 已知不等①、②、③的解集在数轴上的表示如图所示:则它们的公共部分的解集是( )A.13x -<≤ B.13x <≤ C.11x -<≤ D.无解13. 已知a <b :则下列不等式中不正确的是( ). A.4a <4b B.a +4<b +4 C.-4a <-4b D.a -4<b -414. 下列不等式:是一元一次不等式的是( ) A .2(1)42y y y -+<+B .2210x x --<C .111236+= D .2x y x +<+二、填空题(每小题2分:共20分)15. 若,0ac bc c ><:则a______b .16. 不等式2x -1<3的正整数解是_____________________.17. 5m -3是非负数:用不等式表示为___________________.18. 925的平方根为 :算术平方根为 .19. 若264x =:则x 的立方根为 .20. 用大小完全相同的100块正方形方砖铺一间面积为25米2的卧室地面:则每块方砖的边长为 .的平方根是 .22. 如果3415x -<:那么3154x <+:其根据是 :如果33a b ->-ππ:则a b <:其根据是 . 23. 若2(1)160x --=:则x = .24.化简:11--= .三、计算题25. (12分)求下列各式的值。
2021-2022学年人教版七年级(下)第一次月考数学试卷(含答案)
七年级(下)第一次月考数学试卷一、选择题1.(3分)在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列各式中,正确的是()A.=±3B.=﹣0.4C.=﹣3D.=﹣3.(3分)下列4对数值中是方程2x﹣y=1的解的是()A.B.C.D.4.(3分)在平面直角坐标系中,将三角形各顶点的纵坐标都减去5,横坐标保持不变,所得图形与原图形相比()A.向上平移了5个单位B.向下平移了5个单位C.向左平移了5个单位D.向右平移了5个单位5.(3分)点A(﹣3,0),以A为圆心,5为半径画圆交x轴负半轴的坐标是()A.(8,0)B.(0,﹣8)C.(0,8)D.(﹣8,0)6.(3分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.7.(3分)已知y=1,则2x+3y的平方根为()A.2B.﹣2C.±2D.8.(3分)已知点O(0,0),点A(1,2),点B在x轴上,三角形OAB的面积为2,则点B的坐标为()A.(﹣2,0)或(2,0)B.(﹣1,0)或(2,0)C.(﹣2,0)D.(2,0)9.(3分)如图,数轴上表示1、的对应点分别为点A、点B.若点A是BC的中点,则点C所表示的数为()A.B.1﹣C.D.2﹣10.(3分)小成心里想了两个数字a,b,满足下列三个方程,那么不满足的那个方程是()A.a﹣b=3B.2a+3b=1C.3a﹣b=7D.2a+b=5二、填空题11.(3分)剧院里5排2号可以用(5,2)表示,那么3排7号可以用表示.12.(3分)在实数3.1415927,,2﹣,,中,无理数的个数是个.13.(3分)由方程3x﹣2y﹣12=0可得到用x表示y的式子是.14.(3分)已知方程(a﹣3)x|a﹣2|+3y=1是关于x、y的二元一次方程,则a=.15.(3分)如果=2.872,=0.2872,则x=.16.(3分)已知线段MN=5,MN∥y轴,若点M坐标为(﹣1,2),则点N的坐标为.17.(3分)用彩色和单色的两种地砖铺地,彩色地砖14元/块,单色地砖12元/块,若单色地砖的数量比彩色地砖的数量的2倍少15块,买两种地砖共用了1340元,设购买彩色地砖x块,单色地砖y块,则根据题意可列方程组为.18.(3分)甲、乙、丙三种物品,若购甲3个、乙5个、丙1个共付15.5元;若购甲4个、乙7个、丙1个共付19.5元,则甲、乙、丙各买3个共需元.三、解答题19.计算:(1)|﹣2|(2)已知(x﹣1)2﹣1=63,求x的值.20.解方程组:(1)(2)21.三角形ABC(记作△ABC)在方格中,顶点都在格点,位置如图所示,已知A(﹣3,2)、B(﹣4,﹣1).(1)请你在方格中建立直角坐标系,点C的坐标是;(2)把△ABC向上平移1个单位长度,再向左平移2个单位长度,请你画出平移后的三角形.22.若方程组中的x与3y互为相反数,求k的值.23.2017年某企业按餐厨垃圾处理费25元/吨,建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费7300元,从2018年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2018年处理的这两种垃圾数量与2017年相比没有变化,但要支付垃圾处理费19000元,求该企业2017年处理的餐厨垃圾和建筑垃圾各多少吨?24.已知坐标平面内的三个点A(1,3)、B(3,1)、O(0,0).(1)求△ABO的面积;(2)平移△ABO至△A1B1O1,当点A1和点B重合时,点O1的坐标是;(3)平移△ABO至△A2B2O2,需要至少向下平移超过单位,并且至少向左平移个单位,才能使△A2B2O2位于第三象限.25.据统计资料,甲乙两种作物的单位面积产量的比是1:2,现要把一块长200m,宽100m 的长方形土地分为两块小长方形土地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作物的总产量的比是3:4?26.已知点P(a+2,b)到两个坐标轴的距离相等,将点P向左平移b+1个单位后得到的点到两个坐标轴的距离仍相等,求点P的坐标.27.在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|2a+b+1|+=0(1)求a、b的值;(2)在x轴的正半轴上存在一点N,使△CBN的面积=△ABC的面积,求出点N的坐标;(3)作直线CM∥AB交y轴于M,点P从点B出发以每秒2个单位的速度向左运动,点Q从点C出发以毎秒1个单位的速度向右运动,P、Q两点同时开始运动且运动时间为t,当以P、Q、M、A为顶点的四边形面积等于4时,求t的值.七年级(下)第一次月考数学试卷参考答案一、选择题1.B;2.D;3.B;4.B;5.D;6.D;7.C;8.A;9.D;10.D;二、填空题11.(3,7);12.2;13.y=x﹣6;14.1;15.0.0237;16.(﹣1,﹣3)或(﹣1,7);17.;18.22.5;三、解答题21.(0,﹣1);24.(2,﹣2);3;3;。
七年级下册第一次月考试卷-数学试卷含答案
七年级下册第一次月考试卷-数学选择题。
1.701班小明同学想利用木条为七年级数学组制作一个三角形的工具,那么下列哪组数据的三根木条的长度能符合他的要求?( )A .4,2,2B .3,6,6C .2,3,6D .7,13,6 2.下列事件中,必然事件的是( )A .通常情况下,当气温低于零摄氏度,水会结冰B .打开电视机,它正在播放广告C .黑暗中,我从我的一大串钥匙中随便选了一把,用它打开了门D .任意两个有理数的和是正有理数3.如图所示的四个图案中,既包含图形的旋转,又有图形的轴对称的是( )4.如右图,已知:D A ∠=∠,21∠=∠,下列条件中能使ΔABC ≌ΔDEF 的是( )A .B E ∠=∠ B .BC ED = C .EF AB = D .CD AF =5.同时抛掷两枚壹元硬币,其中正面同时朝上的概率是( )A .1B .21 C .31 D .416.如右图,图形旋转多少度后能与自身重合( )A. 45°B. 60°C. 72°D. 90°7.如右图,OP 平分∠MON,PA⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为( )A .1B. 2C. 3D. 48. 如图,正方形硬纸片ABCD 的边长是4cm , 点E 、F 分别是AB 、BC 的中点,若沿左图中 的虚线剪开,拼成右图的一栋“小别墅”,则图中阴影部分的面积和是( ).A剪拼BCDEF21FEDCBAA. 2 B. 4 C. 8 D. 109.已知下列条件:①三边对应相等; ②两边一角对应相等;③三角对应相等;④两角及其中一边对应相等。
能判定两个三角形全等的有()A、1个B、2个C、3个D、4个10.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()A. 2010 B. 2011 C. 2012 D. 2013二、填空题(每小题4分,共24分)11.如图,△BEF是由△ABC平移所得,点A、B、E在同一直线上,若∠C= 200,∠ABC= 680,则∠EBF = __ _____°.第11题第12题第13题12.如图,点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80º,则∠CGE=.13.如上图,已知AC=BD,要使△ABC≌△DCB,只需要增加的一个条件是 .(只要写出一种符合题意的条件即可)16.将一些半经相同的小圆按如图所示的规律摆放,第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……红黄绿蓝紫红黄绿黄绿蓝紫ABFECAB CDAB CDEFGB1……依此规律,第n 个图形有 个小圆(用n 的代数式来表示)。
人教版数学七年级下册第一次月考试卷及答案
人教版数学七年级下册第一次月考试题一、选择题(每小题3分,共30分)1.同一平面内如果两条直线不重合,那么他们( ) A .平行B .相交C .相交或垂直D .平行或相交2.两条直线被第三条直线所截,若∠1与∠2 是同旁内角,且∠1=70º,则 ( ) A. ∠2=70º B. ∠2=110ºC. ∠2=70º或∠2=110ºD.∠2的度数不能确定 3.如图AB ∥CD ,则∠1=( ) A .75° B .80° C .85° D .95°4.如图,△ABC 经过怎样的平移得到△DEF ( )A .把△ABC 向左平移4个单位,再向下平移2个单位B .把△ABC 向右平移4个单位,再向下平移2个单位 C .把△ABC 向右平移4个单位,再向上平移2个单位D .把△ABC 向左平移4个单位,再向上平移2个单位5.将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是( ) A .1B .2C .3D .46. 2)7.0(-的平方根是( )A. -0.7B. ±0.7C. 0.7D. 0.49 7.若3a -=387,则a 的值是( ) A.87 B. 87- C. 87± D. 512343- 8.如图,数轴上点P 表示的数可能是( )A.10 B 5 C 3 D 2 9.下列等式正确的是( )12341-PA.43169±= B.311971=- C.393-=- D.31)31(2=- 10.有下列说法:(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示. 其中正确说法的个数是( ) A. 1 B. 2 C. 3 D. 4 二、填空题(每小题3分,共24分)11.如果一个角的补角是150°,那么这个角的余角是 度.12.小明从点A 沿北偏东60°的方向到B 处,又从B 沿南偏西25°的方向到C 处,则小明两次行进路线的夹角为 .13.把“同角的余角相等”写成“如果…,那么…”的形式为 .14.把一张长方形纸条按图中那样折叠后,若得到∠AOB′=70°,则∠OGC= . 15. 9的平方根是_______16. 若1.1001.102= 1.0201=_______ . 17. 25-的相反数是_______ 18. 比较大小:35 6 ; 三、解答题(共66分)19.(8分)如图:已知∠B=∠BGD ,∠DGF=∠F ,求证:∠B+∠F=180°. 请你认真完成下面的填空. 证明:∵∠B=∠BGD ( 已知 ) ∴AB ∥CD ( ) ∵∠DGF=∠F ;( 已知 ) ∴CD ∥EF ( ) ∵AB ∥EF ( ) ∴∠B+∠F=180°( ).20.(8分)已知:如图,AC 平分∠DAB ,∠1=∠2 求证:AB ∥CD21. 计算(每小题5分,共10分)(1) 2243+ (2)32-+223-22. 求下列各式中的x .(每小题5分,共10分)(1) 2491690x -= (2) 3(0.7)0.027x -=-23.(10分)如图,直线AB ,CD ,EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD=28°,求∠BOE ,∠AOG 的度数.24.(10分)一个正数x 的两个平方根是2a-3与5-a ,求x 的值.25. (10分)完成下面的证明:已知,如图,AB ∥CD ∥GH ,EG 平分∠BEF ,FG 平分∠EFD求证:∠EGF=90°参考答案一、(30分)1-5,DDCCD 6-10,BBBDB 二、(24分)11题60 12题35度 13题如果两个角是同一个角的余角,那么它们相等。
重庆地区专用七年级(下)第一次月考数学试卷(含答案)
七年级(下)第一次月考数学试卷题号 一二三四总分得分一、选择题(本大题共 12 小题,共 48.0 分)1.在方程 3x-y=2 ,,x 2(), -2x-3=0 中一元一次方程的个数为A. 1个B. 2个C. 3 个D.4个2.nn)假如单项式 2x 2y2+2 与 -3y 2-x 2是同类项那么 n 等于(A. 0B.C. 1D. 23. 以下各对数中,知足方程组的是()A. B.C.D.4.假如 2x-7y=8,那么用含 y 的代数式表示x 正确的选项是()A. B.C.D.5.A 种饮料比B 种饮料单价少 1 元,小峰买了 2 瓶 A 种饮料和 3 瓶 B 种饮料,一共花了 13 元,假如设 B 种饮料单价为 x 元 / 瓶,那么下边所列方程正确的选项是()A.B.C.D.6.用白铁皮做罐头盒。
每张铁皮可制盒身 16 个,或制盒底 48 个,一个盒身与两个盒底配成一套罐头盒。
现有 15 张白铁皮, 用制盒身和盒底, 能够恰巧配多少套? ()A. 144 套B. 9套C.6套D.15套7. 某牧场,放养的鸵鸟和奶牛一共 70 只,已知鸵鸟和奶牛的腿数之和为196 条,则鸵鸟的头数比奶牛多()A.20只B. 14只C. 15只D.13只8. 察看以下算式的规律21=2, 22=4, 23=8,24=16, 25=32 , 26=64 , 2 7=128, 28 =256,依据上述的规律,你以为2204 的末位数字应当为()A. 2B. 4C. 6D. 89.二元一次方程 3x+2y=15 在自然数范围内的解的个数是()A. 1个B. 2 个C.3个D. 4 个10. 若方程组的解 x 和 y 互为相反数,则 k 的值为()A. 2B.C. 3D.11. 对于 x , y 的方程组的解是二元一次方程3x+2y=14 的一个解,那么 m的值是( )A. 1B.C. 2D.12. 第二十届电视剧飞天奖今年有a 部作品参赛, 比昨年增添了 40%还多 2 部.设昨年参赛的作品有 b 部,则 b 是( )A.B.C. D.二、填空题(本大题共6 小题,共 24.0 分)14.已知( 2x-4)2+|x+2y-8|=0,则( x-y)2004=______.15.以下图, 8 个同样的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是______.16. 某水池有甲进水管和乙出水管,已知单开甲注满水池需6h,单开乙管放完整池水需要 9h,当同时开放甲、乙两管时需要______h 水池水量达全池的.17.2mn是对于 x、y 的二元一次方程,则mn=______ .已知 3x -2y =118. 当 m=______时,方程组的解是正整数.三、计算题(本大题共 1 小题,共 8.0 分)19.解以下方程组:(1)(2)四、解答题(本大题共7 小题,共70.0 分)20.解以下方程:(1) 4x+3=2 ( x-1) +1(2)-=21.已知方程组与方程组的解同样,求a+b 的值.22. 已知方程组,因为甲看错了方程①中的 a 获得方程的解为,乙看错了方程②中的 b 获得方程组的解为,求 a+b 的值是多少?23.某天,一蔬菜经营户用 60 元钱从蔬菜批发市场批了西红柿和豆角共 40kg 到菜市场去卖,西红柿和豆角这日的批发价与零售价以下表所示:品名西红柿豆角批发价(单位:元 /kg)零售价(单位:元 /kg)问:他当日卖完这些西红柿和豆角能赚多少钱?A 、B两地相距20km,甲从A地向B地行进,同时乙从B地向A地行进,2h后二24.人在途中相遇,相遇后,甲返回 A 地,乙仍旧向 A 地行进,甲回到 A 地时,乙离 A 地还有 2km,求甲、乙二人的速度.25.某牛奶加工厂现有鲜奶9t,若在市场上直接销售鲜奶,每吨可获收益500 元,制成酸奶销售,每吨可获收益 1 200 元,制成奶片销售,每吨可赢利 2 000 元.该厂的生产能力是:如制成酸奶,每日可加工3t,制成奶片,每日可加工1t,受人员限制,两种加工方式不行同时进行,受气温限制,这批牛奶需在 4 天内所有销售或加工完毕,为此,该厂设计了两种方案:方案一:尽可能多的制成奶片,其他鲜奶直接销售;方案二:一部分制成奶片,其他制成酸奶销售,并恰巧 4 天达成.26.为奖赏在演讲竞赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔录本中选择.假如买 4 个笔录本和 2 支钢笔,则需86 元;假如买 3 个笔录本和 1 支钢笔,则需57 元.( 1)求购置每个笔录本和钢笔分别为多少元?( 2)售货员提示,买钢笔有优惠,详细方法是:假如买钢笔超出10 支,那么高出部分能够享受 8 折优惠,若买 x( x>0)支钢笔需要花 y 元,请你求出 y 与 x 的函数关系式;( 3)在( 2)的条件下,小明决定买同一种奖品,数目超出10 个,请帮小明判断买哪一种奖品省钱.答案和分析1.【答案】A【分析】解:① 3x-y=2 含有两个未知数,故不是一元一次方程;② 是分式方程;③ 切合一元一次方程的形式;④是一元二次方程.只有x=正确.应选:A.只含有一个未知数(元),而且未知数的指数是 1(次)的方程叫做一元一次方程,它的一般形式是 ax+b=0(a,b 是常数且 a≠0).本题主要考察了一元一次方程的一般形式,只含有一个未知数,未知数的指数是 1,一次项系数不是 0,这是这种题目考察的要点.2.【答案】A【分析】解:∵单项式 2x 2y2n+2与 -3y2-nx2是同类项,∴2n+2=2-n,解得 n=0,应选 A .两个单项式是同类项,依据同类项的定义,列方程 2n+2=2-n,解方程即可求得 n 的值.本题是对同类项定义的考察,同类项的定义是所含有的字母同样,而且同样字母的指数也同样的项叫同类项,因此只需判断所含有的字母能否同样,同样字母的指数能否同样即可.3.【答案】B【分析】解:,①+② ×2 得:7x=7,即x=1,将 x=1 代入②得:y=1,则方程组的解为.,应选:B.将各项中 x 与 y 的值代入方程组查验即可获得结果.本题考察了二元一次方程组的解,方程组的解即为能使方程组中双方程建立4.【答案】C【分析】解:移项,得2x=8+7y,系数化为 1,得x=.应选:C.第一移项,把含有 x 的项移到方程的左边,其他的项移到方程的右边,再进一步化系数为 1 即可.本题主要考察解方程的一些基本步骤:移项、系数化为 1.5.【答案】A【分析】解:设 B 种饮料单价为 x 元 /瓶,则 A 种饮料单价为(x-1)元,依据小峰买了 2瓶 A 种饮料和 3 瓶 B 种饮料,一共花了 13 元,可得方程为:2(x-1)+3x=13.应选:A.要列方程,第一要依据题意找出题中存在的等量关系,由题意可获得:买 A 饮料的钱+买 B 饮料的钱 =总印数 13元,明确了等量关系再列方程就不那么难了.列方程题的要点是找出题中存在的等量关系,此题的等量关系为买 A 中饮料的钱+买 B 中饮料的钱=一共花的钱 13 元.6.【答案】A【分析】解:设用制盒身的铁皮为 x 张,用制盒底的铁皮为 y 张,依据题意得:,解得:,∴16x=16 ×9=144.应选:A.设用制盒身的铁皮为 x 张,用制盒底的铁皮为 y 张,依据铁皮共 15 张且制作的盒底的数目为盒身数目的 2 倍,即可得出对于 x,y 的二元一次方程组,解之即可得出 x 的值,再将其代入 16x 中即可求出 结论 .本题考察了二元一次方程 组的应用,找准等量关系,正确列出二元一次方程组是解题的要点.7.【答案】 B【分析】解:设奶牛的头数为 x ,则鸵鸟的头数为 70-x ,故:4x+2(70-x )=196, 解得 x=28, 故 70-2x=14,应选:B .设出奶牛的 头数,表示出鸵鸟的头数,依据鸵鸟和奶牛的腿数之和 为 196 条,列出方程.本题考察了列一元一次方程的 应用,难度不大,在解方程的 时候简单出 错,要注意仔细解答.8.【答案】 C【分析】解:2n的个位数字是 2,4,8,6 四个一循 环,因此 204÷4=51,则 2204 的末位数字与 24 的同样是 6.应选:C .经过察看发现:2n的个位数字是 2,4,8,6 四个一循 环,因此依据 204÷4=1,得出 2204 的个位数字与 24 的个位数字同样,是 6,由此得出答案即可.本题考察学生剖析数据,总结、概括数据规律的能力,要修业生有必定的解题技巧.解题要点是知道个位数字 为 2,4,8,6 按序循环.9.【答案】 C【分析】解:二元一次方程 3x+2y=15 在自然数范 围内的解是:,即二元一次方程 3x+2y=15 在自然数范 围内的解的个数是 3 个.应选:C .依据二元一次方程3x+2y=15,可知在自然数范围内的解有哪几组,从而能够解答本题.本题考察二元一次方程的解,解题的要点是明确什么是自然数,能够依据题意找到二元一次方程3x+2y=15 在自然数范围内的解有哪几组.10.【答案】A【分析】解:依据题意增添方程 x+y=0 则 x=-y ,将此代入 4x+3y=1 得 y=-1,x=1 ,将 x,y 的值代入第二个方程得: 2kx+ (k-1)y=3,则 2k-(k-1)=3,解得k=2.应选:A.依据 x 和 y 互为相反数增添一个方程 x+y=0,由此三个方程分别求出 x,y,k的值.本题主要考察了二元一次方程组解的定义.第一理解题意获得第三个方程x+y=0 ,而后将此三个方程联立成方程组求解出 x,y,z 的值.11.【答案】C【分析】解:解方程组,得,把 x=3m,y=-m 代入 3x+2y=14 得:9m-2m=14,∴m=2.应选:C.先解方程组,求得用 m 表示的 x,y 式子,再代入 3x+2y=14,求得 m 的值.先用含 k 的代数式表示 x,y,即解对于 x,y 的方程组,再代入 3x+2y=14 中可得.12.【答案】C【分析】第8页,共 15页∴b=.应选:C.依据等量关系为:昨年作品数×(1+40%)+2=今年作品数,把有关数值代入,整理求得昨年作品数即可.本题主要考察了列代数式,获得昨年作品数与今年作品数的等量关系是解决本题的要点.13.【答案】-1【分析】解:把代入方程组中,得;解,得 m=-1,n=0.故 m+n=-1.第一依据方程组解的定义,将已知的方程组的解代入方程组中,可获得对于m、n 的二元一次方程组,即可得 m 和 n 的值,从而求出代数式的值.主要考察了方程组解的定义,假如是方程组的解,那么它们必知足方程组中的每一个方程.14.【答案】1【分析】解:由题意,得:,解得2004 2004;则(x-y ) =(2-3) =1.先依据非负数的性质列出方程组,求出 x、y 的值,而后将它们的值代入(x-y )2004中求解即可.本题考察了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.215.【答案】300cm【分析】解:设一个小长方形的长为 xcm,宽为 ycm,则可列方程组,解得.2答:每块小长方形地砖的面积是 300cm 2.故答案为:300cm 2.由题意可知本 题存在两个等量关系,即小 长方形的长+小长方形的宽 =40cm ,小长方形的长+小长方形宽的 3 倍=小长方形长的 2 倍,依据这两个等量关系可列出方程 组,从而求出小正方形的 长与宽,最后求得小正方形的面 积.考察了二元一次方程 组的应用,解答本题要点是弄清题意,看懂图示,找出适合的等量关系,列出方程 组.并弄清小长方形的长与宽的关系.16.【答案】 6【分析】解:设水池容积为 1,同时开放甲、乙两管时需要 xh 水池水量达全池的 ,依题意得:( - )x= ,解得 x=6,∴同时开放甲、乙两管时需要 6h 水池水量达全池的 .设 水池容 积为 则 时 注 满时 设 时 1, 甲每小 水池的 ,乙每小 放完水池的 , 同 开放甲、乙两管时需要 xh 水池水量达全池的,用(甲进水速度 -乙出水速度)x= ,列方程求解.本题考察了列方程解 应用题的能力,依据题意确立进、出水的速度,时间,剩余水量之 间的等量关系. 17.【答案】【分析】解:∵3x2m-2y n=1 是对于 x 、y 的二元一次方程,∴2m=1,n=1, ∴,∴mn=0.5 ×,故答案为:.依据二元一次方程的定 义得出 2m=1,n=1,求出 m ,再代入求出 mn 即可.本题考察了二元一次方程的定 义,能熟记二元一次方程的定 义的内容是解此题的要点.18.【答案】-4【分析】解:在中,∵x+4y=8,∴x=8-4y>0,∴y<2,∴y=1,x=4,此时 m=-4.故答案为:-4.本题可运用加减消元法,将 x、y 的值用 m 来取代,而后依据 y>0 得出 m 的范围,再依据 y 为整数可得出 m 的值.本题考察的是二元一次方程组和不等式的综合问题,经过把 x ,y 的值用 m 代,再依据 y 的取值判断 m 的值.19.【答案】解:(1)方程组整理得:,① ×3-② ×2 得: 5x=-20 ,即 x=-4 ,把 x=-4 代入①得: y=12 ,则方程组的解为;( 2)方程组整理得:,① ×7-②得: 48y=288 ,即 y=6,把 y=6 代入①得: x=18,则方程组的解为.【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【答案】解:(1)4x+3=2(x-1)+1,4x+3=2 x-2+1 ,4x-2x=-2+1-3 ,2x=-4 ,x=-2;( 2)去分母得:2( x-1) -( x+2 )=3( 4-x),去括号得: 2x-2- x-2=12-3 x,移项得: 2x-x+3x=12+2+2 ,4x=14 ,.【分析】(1)去括号,移项,归并同类项,系数化成 1 即可;(2)去分母,去括号,移项,归并同类项,系数化成 1 即可.本题考察认识一元一次方程,能正确依据等式的性质进行变形是解此题的关键.21. 与方程组的解同样,【答案】解:∵方程组∴方程组的解与方程组的解也同样.解方程组得:,把代入方程组,得,因为 2a+2b=-4 ,因此 a+b=-2.【分析】依据两个方程组的解同样,可重组一个只含 x、y 的方程组,求出它们的解,再把解代入含 a、b 的方程,得方程组并求出 a、b 的值.本题考察了二元一次方程组的解法,解决本题的要点是重组方程组求出 x、y 的值.22. ,【答案】解:∵甲看错了方程①中的 a 获得方程的解为∴把解代入②,得 -52+b=-2 ,解得 b=50 ;∵乙看错了方程②中的 b 获得方程组的解为,∴把解代入①,得 5a+20=15 ,解得 a=-1 .∴a+b=50-1=49 .【分析】别看错了组中的一个方程获得不一样的解,把解分别代入他们没有看甲、乙分错的方程,得新的方程组,求出 a、b.本题考察了方程组的解喜悦义和一元一次方程的解法,理解题意得新方程组是解决本题的要点.23.【答案】解:设西红柿的重量是xkg,豆角的重量是ykg,依题意有,解得,40×() =52 (元),答:他当日卖完这些西红柿和豆角能赚52 元.【分析】经过理解题意可知本题的两个等量关系,西红柿的重量 +豆角的重量 =40,1.2 ×西红柿的重量 +1.5 ×豆角的重量 =60,依据这两个等量关系可列出方程组.本题主要考察了二元一次方程组的应用,要点是正确理解题意,找出题目中的等量关系,栽设出未知数,列出方程组.24.【答案】解:如图,设甲的速度为x 千米 /小时,乙的速度为y 千米 /小时,由题意得,,解得:,答:甲的速度为 5.5 千米 /小时,乙的速度为 4.5 千米 /小时.【分析】设甲的速度为 x 千米 /小时,乙的速度为 y 千米 / 小时,依据甲乙二人相向而行2 小时相遇(甲乙两人走的行程之和是 AB 的全程),依据题意还可知相遇后,甲 2 小时走的行程 -乙 2 小时走的行程 =2km,据此列方程组求解.本题考察了二元一次方程组的应用,解答本题的要点是读懂题意,设出未知数,找出等量关系,列方程组求解.25.【答案】解:方案一:4×2000+5×500=10500(元)方案二:设xt 制成奶片, yt 制成酸奶,则,因此,收益为 1.5 ××1200=12000 > 10500,因此选择方案二赢利最多.【分析】方案一是尽可能多的制奶片,也就是四天都制奶片,每日加工一吨,可加工 4 吨,剩下的 5 吨鲜奶直接销售;方案二制奶片,也制酸奶.那么包括两个等量关系:制奶片的吨数 +制酸奶的吨数 =9,制奶片的吨数÷1+制酸奶的吨数÷3=4.学生在看到题目字多时候,第一感觉是惧怕,我必定不会做.因此,要有耐心与仔细找到关键话,理解清它的意思,找到打破点,等量关系.比如本题中方案一,方案二的含义.26.【答案】解:(1)设每个笔录本 x 元,每支钢笔 y 元.( 1 分)(2 分)解得答:每个笔录本14 元,每支钢笔15 元.( 5 分)且是整数(2)且是整数(3)当 14x< 12x+30 时, x<15;当 14x=12x+30 时, x=15;当 14x> 12x+30 时, x>15.( 8 分)综上,当买超出 10 件但少于 15 件商品时,买笔录本省钱;当买 15 件奖品时,买笔录本和钢笔同样;当买奖品超出15 件时,买钢笔省钱.(10 分)【分析】(1)分别设每个笔录本 x 元,每支钢笔 y 元列出方程组可得.(2)依题意可列出不等式.(3)分三种状况列出不等式求解.解题要点是要读懂题目的意思,找准要点的描绘语,理清适合的等量关系,列出方程组和不等式,再求解.第14 页,共 15页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册第一次月考试卷(附答案)
一.单选题。
(共40分)
1.计算a 2•a 3=( )
A.a 8
B.a 6
C.a 5
D.a 9
2.一个数是0.0 000 016,这个数用科学记数法表示的是( )
A.1.6×10﹣6
B.1.6×10﹣7
C.1.6×107
D.1.6×10﹣8
3.下列计算结果是a 6的是( )
A.a 7-a
B.a 2•a 3
C.(a 4)2
D.a 8÷a 2
4.下列是负数的( )
A.|﹣5|
B.(﹣1)2023
C.﹣(﹣3)
D.(﹣1)0
5.下列计算正确的是( )
A.a 5+a 5=a 10
B.(ab 4)4=ab 8
C.(a 3)3=a 9
D.a 6÷a 3=a 2
6.下列能用平方差公式计算的是( )
A.(a -b )(a -b )
B.(a -b )(﹣a -b )
C.(a+b )(﹣a -b )
D.(﹣a+b )(a -b )
7.若多项式x 2+mx+4是完全平方式,则m 的值为( )
A.2
B.﹣2
C.±2
D.±4
8.(2x+a )(x -2)的结果中不含x 的一次项,则a 为( )
A.2
B.﹣2
C.4
D.﹣4
9.下列计算:①(﹣1)0=﹣1;②(﹣1)﹣1=﹣1;③2×2﹣2=12;④3a ﹣2=1
3a 2;⑤(﹣a 2)m =(﹣a m )2,正确有( ).
A.5个
B.4个
C.3个
D.2个
10.利用图①所示的长为a ,宽为b 的长方形卡4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )
A.(a-b)2+4ab=(a+b)2
B.(a+b)(a-b)=a2-b2
C.(a+b)2=a2+2ab+b2
D.(a-b)2=a2-2ab+b2
二.填空题。
(共24分)
11.计算:2x•(﹣3x)= .
12.若N是一个单项式,且N•(﹣2x2y)=﹣3ax2y2,则N等于.
13.已知2m=3,2n=2,则22m+n等于.
14.若a=2023,b=1
,则代数式a2023•b2023的值是.
2023
15.若x-y=3,xy=10,则x2+y2的值为.
16.有两个正方形A,B,将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙,若图甲和图乙阴影部分的面积分别为1和12,则正方形A、B的面积之和为.
三.解答题。
17.(9分)计算:
)﹣1+(﹣1)2022(2)(π-3.14)0+(﹣1)3 (3)105×104÷10﹣3
(1)(1
2
18.(9分)化简.
(1)(a3)2•a3(2)2y(x-2y)-2xy (3)(2xy2-8x2)÷(2x)
19.(16分)化简与计算.
(1)a3•a5+(﹣a2)4-3a8(2)(a+2b)(a-2b)-(2a+b)2
(3)20230+(﹣1)2020+(12)﹣2 (4)|﹣2|-(2-π)0+(﹣13)﹣1
20(8分).先化简,再求值:(x+1)2-(x+2)(x -2),其中x=﹣3.
21.(8分)请用简便方法计算。
(1)1022 (2)1232-124×122
22.(8分)如图,在一块正方形钢板中挖去两个边长分别为a 、b 的小正方形.
(1)求剩余钢板的面积.
(2)若原钢板的周长是40,且a=3,求剩余钢板的面积.
23.(8分)若(x+1)2+|y +2|=0,求代数式[(x -y )2+(x+y )(x -y )]÷2x 的值.
24.(10分)如图,边长为a 的正方形中有一个边长为b (b <a )的小正方形,如图2是由图1的阴影部分拼成的一个长方形.
(1)设图1的阴影部分面积为S 1,图2的阴影部分面积为S 2,请直接用含a 、b 的式子表示S 1= ;S 2= .
(2)直接应用,利用这个公式计算:(﹣12x -y )(y -12x ).
25、(12分)如图1,有A 型、B 型、C 型三种不同形状的纸板,A 型是边长为a 的正方形,B 型是边长为b 的正方形,C 型是长为b ,宽为a 的长方形,现有A 型纸板一张,B 型纸板一张,C 型纸板两张拼成如图2的大正方形。
(1)观察图2,请你用两种方式表示图2的总面积。
方法1: ;方法2: ;
请利用图2的面积表示方法,写出一个关于a 、b 的等式: ;
(2)已知图2的总面积为25,一张A 型纸板和一张B 型纸板的面积之和为13,求ab 的值;
(3)用一张A 型纸板和一张B 型纸板,拼成图3所示的图形,若a+b=9,ab=18,求图3中阴影部分的面积;
参考答案
一.单选题。
1.C
2.A
3.D
4.B
5.C
6.B
7.D
8.C
9.D
10.A
二.填空题。
(共24分)
11.计算:2x•(﹣3x)= ﹣6x2.
ay .
12.若N是一个单项式,且N•(﹣2x2y)=﹣3ax2y2,则N等于3
2
13.已知2m=3,2n=2,则22m+n等于18 .
,则代数式a2023•b2023的值是 1 .
14.若a=2023,b=1
2023
15.若x-y=3,xy=10,则x2+y2的值为29 .
16.有两个正方形A,B,将B放在A的内部得图甲,将A、B并列放置后构造新的正方形得图乙,若图甲和图乙阴影部分的面积分别为1和12,则正方形A、B的面积之和为13 .
三.解答题。
17.(9分)计算:
(1)(1
)﹣1+(﹣1)2022(2)(π-3.14)0+(﹣1)3 (3)105×104÷10﹣3
2
=2+1 =1-1 =109÷10﹣3
=3 =0 =1012
18.(9分)化简.
(1)(a 3)2•a 3 (2)2y (x -2y )-2xy (3)(2xy 2-8x 2)÷(2x ) =a 6•a 3 =2xy -4y 2-2xy =y 2-4x
=a 9 =-4y 2
19.(16分)化简与计算.
(1)a 3•a 5+(﹣a 2)4-3a 8 (2)(a+2b )(a -2b )-(2a+b )2
=a 8+a 8-3a 8 =a 2-4b 2-4a 2-4ab -b 2
=﹣a 8 =-5b 2-3a 2-4ab
(3)20230+(﹣1)2020+(12)﹣2 (4)|﹣2|-(2-π)0+(﹣13)﹣1
=1+1+4 =2-1-3
=6 =﹣2
20(8分)先化简,再求值:(x+1)2-(x+2)(x -2),其中x=﹣3.
解原式=x 2+2x+1-x 2+4
=2x+5
将x=﹣3代入原式=2×(﹣3)+5=﹣1
21.(8分)请用简便方法计算。
(1)1022 (2)1232-124×122
=(100+2)2 =1232-(123+1)(123-1)
=10404 =1
22.(1)(a+b )2-a 2-b 2
=a 2+2ab+b 2-a 2-b 2
=2ab
(2)4(a+b )=40 a=3
b=7
2×3×7=42
23.(8分)若(x+1)2+|y +2|=0,求代数式[(x -y )2+(x+y )(x -y )]÷2x 的值.
解原式=(2x 2-2xy )÷2x
=x -y
若(x+1)2+|y +2|=0
则x=﹣1,y=﹣2
将x=﹣1,y=﹣2代入得﹣1-(﹣2)=1
24.(1)a 2-b 2 (a+b )(a -b )
(2)原式=(﹣12x )2-(y )2
=14x 2-y 2
25、如图1,有A 型、B 型、C 型三种不同形状的纸板,A 型是边长为a 的正方形,B 型是边长为b 的正方形,C 型是长为b ,宽为a 的长方形,现有A 型纸板一张,B 型纸板一张,C 型纸板两张拼成如图2的大正方形。
(1)观察图2,请你用两种方式表示图2的总面积。
方法1: (a+b )2 ;方法2: a 2+2ab+b 2 ;
请利用图2的面积表示方法,写出一个关于a 、b 的等式: (a+b )2=a 2+2ab+b 2 ;
(2)已知图2的总面积为25,一张A 型纸板和一张B 型纸板的面积之和为13,求ab 的值;
(3)用一张A 型纸板和一张B 型纸板,拼成图3所示的图形,若a+b=9,ab=18,求图3中阴影部分的面积;
(2)(a+b )2=25,a 2+b 2=13
(a+b )2=a 2+2ab+b 2
25=13+2ab
ab=6
(3)(a+b )2=a 2+2ab+b 2
81=a 2+36+b 2
a 2+
b 2=45
a 2+
b 2-12b 2-12a (a+b ) =12a 2+12b 2-12ab
=12×45-9
=13.5。