二元相图的分析和使用
第二章 二元体系相图

共晶反应: l(E)
冷却 加热
E
sA(G) + sB(H)
A 水
xB→
盐 B
相图应用
1.盐的精制 ① 理解利用相图原理进 行盐类精制过程; ② 量的关系:
m(B 硫铵) SG m(l 母液) SZ
G
Z
2. 水-盐冷冻液
在化工生产和科学研究中常要用到低温浴,配制合 适的水-盐体系,可以得到不同的低温冷冻液。另外, 冬天里汽车水箱等防冰冻也用这种方法。饱和盐水系统 低共熔温度如下:
编号 1 2 符号 A 温度 0 -5 液相组成 0 7.9 平衡固相 ice ice
3
4 5 6 7 8 9 10 11 Q E
-10
-15 -21.1 -15 -10 -5 0.15 10 20
14.0
18.9 23.3 24.2 24.0 25.6 26.3 26.3 26.4
ice
ice Ice+ NaCl.2H2O NaCl.2H2O NaCl.2H2O NaCl.2H2O NaCl.2H2O+NaCl NaCl NaCl
33.0
40.5 42.3 50.5 54.6 62.3 64.6
ice
Ice+ Mn(NO3)2.6H2O Mn(NO3)2.6H2O Mn(NO3)2.6H2O Mn(NO3)2.6H2O Mn(NO3)2.6H2O Mn(NO3)2.6H2O+ Mn(NO3)2.3H2O Mn(NO3)2.3H2O Mn(NO3)2.3H2O
说明: 水盐体系是凝聚体系,可以不考虑压力的变化,水盐体 系的固液平衡可以在没有水蒸气的情况下实现,所以气 相没有计入相数P中,水盐体系也不研究气相的组成
第六章二元相图

2、多相平衡的公切线原理
若G = mAxA+ mBxB,且mi与i 组元含量有关,则可导出:在任意一相的 G - x曲线上,每一点的切线,其两端分别与纵坐标相截,与每一组元的 截距表示该组元在固溶体成分为切点成分时的化学势
说明:
冷却速度越慢,越接近平衡条件,测量结果越准确 纯金属在恒温下结晶,冷却曲线应有一段水平线
其它测定相图的方法:
热膨胀法:利用材料在发生转变时伴随有体积变化的特性,通
过测量试样长度随温度的变化得到临界点,从而作出相图
电阻法:利用材料电阻率随温度的变化来建立相图的 这两种方法适用于测定材料在固态下发生的转变
自由能 ~ 成分关系
(假设A、B组元原子半径相同,晶体结构相同,且无限互溶,则两组元混合前后体积不变; 只考虑最近邻原子间的键能;只考虑两组元不同排列方式的混合熵,不考虑振动熵) xA、xB — A、B组元的摩尔分数,
— 相互作用参数, N A z e AB
x A xB 1
i n i T , P ,r
G
(代表体系内物质传输的驱动力; 等温、等压及其它组元数量不变 的情况下,每增加单位摩尔i 组 元,体系自由能的变化)
组元i 的化学势: (偏摩尔自由能)
ji
如果某组元在各相中的化学势相同,就没有物质的传输,体系处于平衡状态
若体系包含有a,b,……相,对每个相自由能的微分式可写成:
材料组成的层次
组元
加一点盐 完全溶解
二元系相图基本类型介绍及分析(自己整理)

图 4 二元连续固溶体相同的两种特殊情况(a)具有最高熔点的二元连续固溶体相 图; (b)具有最低熔点的二元连续固溶体相图
②形成不连续固溶体的二元系统相图
溶质只能以一定的限量溶入溶剂,超过限度便会出现第二相,这种固溶体称 为不连续(也称部分互溶或有限互溶)固溶体。在 A,B 两组元形成有限固溶体 系统中,以 SA(B)表示 B 组元溶解在 A 晶体中所形成的固溶体,SB(A)表示 A 组元 溶解在 B 晶体中所形成的固溶体。根据无变量点性质的不同,这类相图又可以 分为具有“低共熔点”和具有“转熔点”两种类型。 1)具有“低共熔点”的有限固溶体的二元系统相图(共晶体系)
LE S A(B) (C) SB(A) (D)
aCF 是不同温度下,B 在 A 中的溶解度曲线,bDG 是不同温度下,A 在 B 中的溶解度曲线。C 点表示了组元 B 在组元 A 中的最大固溶度,D 点则表示了 组元 A 在组元 B 中的最大固溶度。相图中的六个相区里有三个单相区和三个二 相区。 将熔体 M 冷却到 T1 温度,液相对固溶体 SB(A)饱和,并从 L1 液相中析出组 成为 S1 的溶体 SB(A)。继续冷却,液相点沿着液相线向 E 点移动,固相点沿着固 相线从 S1 向 D 点移动。 当到达低共熔温度 TE 时,进行“低共熔过程”,从液相 LE 中“同时”析出 组成为 C 的固溶体 SA(B)和组成为 D 的固溶体 SB(A),系统进入三相平衡状态, P=3。根据二元相图中的相律 F=3-P 可知,此时 F=0,系统的自由度(组分,温 度,压力等)为零,体系没有可变因素,即温度不能变,液相的组分也不能变。 而现在系统中有相的数目为 3 个(液相 LE,固相 SA(B),和固相 SB(A)) 。因
图 1 形成连续固溶体的二元系统相图
材料科学基础-6二元相图

2
Ω=0,>0,G-x曲线也有一最小值;
Ω>0, G-x曲线也有2个最小值,拐点内<0。
6.3.2 多相平衡的公切线原理
6.3.3 混合物的自由能和杠杆法则
6.3.4 从自由能—成分曲线推测相图
6.3.5 二元相图的几何规律
★相图中所有的相界线代表相变的温度和平衡相 成分,即平衡相成分沿着相界线随温度变化而变 化; ★两单相区之间必定有这两相的两相区-相区接 触法则; ★二元相图的三相平衡区为一水平线,其与三个 单相区的交点确定平衡相的浓度; ★两相区与单相区的分界线与三相等温线相交, 分界线的延长线进入另一两相区。
(1)单相区:3个, L、 α 、β (2)两相区: 3个, L+α 、L+β 、α +β 相区:1个, L+α+β (3)三
5.与匀晶和共晶相图的区别
(1)相同处
PDC线以上区域; PDC线以下、DF以右区域的
分析方法以及结晶过程与匀晶相同;
BPDF以内区域,与共晶线MEN线以下区域相同,
按照固ห้องสมุดไป่ตู้度线分析。 (2)不同处 包晶线PDC及包晶反应:L+α→β
6.10 铁碳合金相图 6.11 二元合金的凝固理论
第6章 二元合金相图及合金凝固
由一种元素或化合物构成的晶体称为单组元晶体或纯晶体,
该体系称为单元系。两个组元的为二元系,n个组元都是独立
的体系称为n元系。对于纯晶体材料而言,随着温度和压力的 变化,材料的组成相会发生变化。
从一种相到另一种相的转变称为相变。由不同固相之间的
2.非平衡共晶组织
a
非平衡共晶组织(成分位于a点稍左)一般分布在初晶α 的相界上,或者在枝晶间。可以通过扩散退火来消除,最终得
二元相图ppt

当组分固定时,相图中的液相线、固相线位置固定,各相区范围也相对固定。
06
二元相图的未来发展
提高测定精度
采用更精确的测定技术
例如,X射线衍射、中子散射等,以提高二元相图测定精度。
完善实验方案
采用多种实验技术结合,消除误差,提高测定数据的可靠性 和准确性。
探索新的二元相图类型
研究非金属二元体系
液态二元相图通常采用双变量坐标系,其中横坐标表示温度 ,纵坐标表示压力,以表示不同温度和压力下两种液体的平 衡状态。
固态二元相图
固态二元相图表现的是固体两相间平衡关系,通常用于描 述两种固体间的相互溶解度、结晶和分离过程。
固态二元相图通常采用双变量坐标系,其中横坐标表示温 度,纵坐标表示压力,以表示不同温度和压力下两种固体 的平衡状态。
实验测定流程
样品制备
选择合适的原材料,按照一定比例混合、 球磨、干燥等流程制备样品。
数据处理
对实验检测得到的数据进行处理和分析, 提取有用的信息。
样品检测
根据实验目的,选择合适的检测仪器对样 品进行检测。
结果总结
根据数据处理结果,撰写实验报告,总结 实验结果和结论。
实验测定数据的处理
数据整理
整理实验数据,排除异常值和误差 ,确保数据准确性。
温度降低
相图中的液相线、固相线位置会向低温方向移动,各相区范 围也会发生变化。
压力的影响
压力升高
相图中的液相线、固相线位置会向高压方向移动,各相区范围也会发生变化 。
压力降低
相图中的液相线、固相线位置会向低压方向移动,各相区范围也会发生变化 。
组分的影响
组分变化
相图中的液相线、固相线位置会随着组分的变化而移动,各相区范围也会发生变 化。
二元合金相图及其应用

以使原子充分扩散、成分均匀,消除枝晶偏析,这种热处
理工艺称作扩散退火。
Cu-Ni合金的平衡组织与枝晶偏析组织
➢ 随温度下降, 和 相的成分分别沿CF线和DG线变化, Ⅱ
的重量增加。
➢ 室温下α、Ⅱ的相对重量百分比为:
w
4G FG
➢
由于二次相析出温度较低,一般十分细小。w
F4 FG
Ⅰ合金室温组织为
➢ + Ⅱ 。
A C
F
B ➢ 成分大于 D点合金结晶过程
E
D
与Ⅰ合金相似,室温组织为
+ Ⅱ。
G
② 共晶合金(Ⅱ合金)的结晶过程 ➢ 液态合金冷却到E 点时同时被Pb和Sn饱和, 发生共晶反
二元合金相图及其应用
第三章 二元合金相图及其应用
3.1 合金的相结构 纯金属的局限 合金 3.1.1 基本概念 ➢ 合金:两种或两种以上的金属与金属,或金属与非金属经
一定方法合成的具有金属特性的物质。
➢ 组元:组成合金最基本、能够独立存在的物质。可以是元 素,也可以是稳定化合物。(如二元、三元合金〕
• 相图中,结晶开始点的连线叫液相线。结晶终了点的连线 叫固相线。
3.2.2 二元匀晶相图 • 两组元在液态和固态下均
无限互溶时所构成的相图
称二元匀晶相图, • 结晶时只结晶出单相固溶
体组织, • 以Cu-Ni合金为例进行分析。
(1)相图分析
• 相图由两条线构成,上 面是液相线,下面是固 相线。
二元合金相图的绘制与应用

实验 二元合金相图的绘制与应用一、目的要求1、理解步冷曲线,学会用热分析方法测绘Sn-Bi 二元合金相图2、学会铂电阻的测温技术,尝试用金属相图测量装置测量温度的方法3、掌握微电脑控制器的使用方法4、理解产生过冷现象的原因及避免产生过冷现象的方法二、基本原理相图是用几何图形来表示多相平衡体系中有哪些相、各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图。
对蒸气压较小的二组分凝聚体系,常以温度-组成图来描述。
热分析方法与步冷曲线热分析方法是绘制相图常用的基本方法之一。
将两种金属按一定比例配成并把它加热成均匀的液相体系,然后让它在一定的环境中自行冷却,并每隔一定的时间(例如0.5min 或1min )记录一次温度,以温度T 为纵坐标,以时间t 为横坐标,做出温度-时间(T-t )曲线,称为步冷曲线。
若体系均匀冷却时,冷却过程不发生相变化,则体系的温度随时间的变化是均匀的,则步冷曲线不出现转折或平台,而是一条直线,冷却速度快。
若冷却过程中发生了相变化,由于相变化过程中伴随有热效应,发生相变热,所以体系温度随时间的变化速度将发生改变,体系的冷却速度减缓,步冷曲线就出现转折或平台。
测定一系列组成不同的样品的步冷曲线,从曲线上找出各相对应体系发生相变的温度,就可以绘制出被测系统的相图。
这就是用热分析法绘制液固相图的概要.如图所示:Bi-Cd 合金冷却曲线曲线1、5是纯物质的步冷曲线。
当系统从高温冷却时,开始没有发生相变化,温度下降比较快,步冷曲线较陡;冷却到A 的熔点时,固体A 开始析出,系统出现两相平衡(固体A 和溶液平衡共存),根据相律,此时f= k-Ø+1=1-2+1=0,系统温度维持不变,步冷曲线出现bc 的水平线段;直到液相完全凝固后,温度又继续下T /℃t降。
曲线2、4是A与B组成的混合物的步冷曲线。
与纯物质的步冷曲线不同。
系统从高温冷却到温度b’时,开始有固体A不断析出,这时体系呈两相,溶液中含A的量随之减少,由于不断放出凝固热,所以温度下降速度变慢,曲线的斜率变小(b’c’段)。
第四章:二元相图

2.杠杆定律: 问题提出: ①当二元合金(成分已知)由两相组成时两相的相对重量是多少?
例:45钢(含C=0.45%),铁素体(F)和Fe3C两相各占多少? ②当二元合金两相相对重量已知时,合金成分是多少?
例:金相观察:F:95%; Fe3C:5%;求钢的含碳量? 杠杆定律可以解决此类问题。
纯金属结晶:在负的温度梯度下---------树枝晶。 在正的温度梯度下------平滑界面(平面长大)
固溶体合金,即使在正的温度梯度下,也会形成树枝晶-------是由于 成分过冷造成的。 (1)成分过冷概念:固溶体合金结晶时,由于液固界面前沿存在溶质 浓度梯度而改变了过冷情况,称为成分过冷。
(2) 产生原因: 以K0<1为例(图示说明) 过冷度:界面前沿液相实际温度<液相平衡结晶温 度 (3) 产生成分过冷的条件: (讨论成分过冷的影响)
④具有共晶转变的二元合金: Pb-Sn Pb-Sb Fe-C(C>2.11%) Al-Si Al-Cu Ag-Cu
第四章:二元相图
4.2.2共晶相图
1.相图分析
以Pb-Sn二元合金相图为例:
三个单相区:L、α、β α:Sn溶入Pb中固溶体 β: Pb溶入Sn中固溶体
AEB-液相线 E点:共晶合金 AMNB-固相线 ME之间:亚共晶 ; EN之间:过共晶合金 MF-Sn在Pb中溶解度曲线,随T↓,溶解度↓ NG- Pb在Sn中溶解度曲线
第四章:二元相图
4.2.2共晶相图
2.典型合金平衡结晶及组织
(2)共晶合金结晶过程(61.9%Sn) 在183℃,由61.9%Sn的液相,同时结 晶出α(19%Sn)和β(97.5%Sn)两 种固溶体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六节 铁碳合金相图
4 平衡结晶过程及其组织
(1)典型合金(7种)的平衡结晶过程、组织变化、室温组织及 其相对量计算。
共析钢结晶过程
P(+Fe3C)
Smith W F. Foundations of Materials
Science and Engineering.
McGRAW.HILL.3/E
16
第六节 铁碳合金相图
4 平衡结晶过程及其组织 过共析钢结晶过程(P+Fe3CⅡ,二次渗碳体最大量计算)
Smith W F. Foundations of Materials Science
17
and Engineering. McGRAW.HILL.3/E
第六节 铁碳合金相图
4 平衡结晶过程及其组织
20
第
四
第六节 铁碳合金相图
章 4 平衡结晶过程及其组织
相
图
(2)重要问题
Fe3CⅠ, Fe3CⅡ, Fe3CⅢ 的意义
第
及其最大含量计算。
五
Ld-Ld`转变。
节
二次杠杆的应用。
相
图
分 析
2h-12h,由学生写出7种合金室 温组织组成物和相组成物含量 表;分析亚共析钢、亚共晶铁
的凝固过程、渗碳体的最大含
共晶白口铁结晶过程 (Ld-Ld`转变)
Ld`(P+ Fe3CⅡ+ Fe3C共晶) Ld(+ Fe3C共晶)
18
第六节 铁碳合金相图
4 平衡结晶过程及其组织 亚共晶白口铁结晶过程 ( P+ Fe3CⅡ+ Ld` )
19
第六节 铁碳合金相图
4 平衡结晶过程及其组织 过共晶白口铁结晶过程 ( Fe3CⅠ+ Ld` )
第
五
节
相
图
2h-10h,由学生分析七种合金
分
的结晶过程,下次课重点分析。
析
布置课下列表计算相组成物和
组织组成物的相对含量。
12
第六节 铁碳合金相图
4 平衡结晶过程及其组织
(1)典型合金(7种)的平衡结晶过程、组织变化、室温组织及其 相对量计算。
工业纯铁结晶过程(+Fe3CⅢ,三次渗碳体最大量计算)
第五节 二元相图的分析和使用
一、 二元相图中的几何规律
①相邻相区的相数差1(点接触除外)-相区接触法则; ②三相区的形状是一条水平线,其上三点是平衡相的成分点; ③若两个三相区中有2个相同的相,则两水平线之间必是由这两相组 成的两相区; ④单相区边界线的延长线应进入相邻的两相区。
1
第五节 二元相图的分析和使用
区:5个单相区,7个两相区,3个三相区。 相图标注:相组成物标注的相图。 组织组成物标注的相图。
10
第六节 铁碳合金相图
3 合金分类 工业纯钛(C%<0.0218%) 碳钢(0.0218<C%<2.11%) 铸铁(C%>2.11%)
11
第
四
第六节 铁碳合金相图
章 4 平衡结晶过程及其组织
相
图
(1)典型合金(7种)的平衡结晶过程、组织变化、室 温组织及其相对量计算。
量计算、默写与修改相图。
21
第六节 铁碳合金相图
5 含碳量对平衡组织和性能的影响
(1)对平衡组织的影响(随C%提高)
组织:α+Fe3CⅢ
Ld`+Fe3CⅠ;
相:α减少,Fe3C增多;
Fe3C形态:Fe3CⅢ(薄网状、点状) 共析Fe3C(层片状)
Fe3CⅡ(网状) 共晶Fe3C(基体) Fe3CⅠ(粗大片状)。
二、 相图分析步骤
① 以稳定的化合物分割相图; ② 确定各点、线、区的意义; ③ 分析具体合金的结晶过程及其组织变化。 注:虚线、点划线的意义-尚未准确确定的数据、磁学转
变线、有序-无序转变线。
2
第五节 二元相图的分析和使用
三、相图与合金性能的关系 ① 根据相图判断材料的力学和物理性能
3
第五节 二元相图的分析和使用
28
第八节 铸锭组织及其控制
1 铸锭组织
(2)组织控制 受浇铸温度、冷却速度、 化学成分、变质处理、 机械振动与搅拌等因素 影响。
Smith W F. Foundations of Materials
Science and Engineering.
29
McGRAW.HILL.3/E
第八节 铸锭组织及其控制
7
第六节 铁碳合金相图
2 相图分析
点:14个。 线:两条磁性转变线;三条等温转变线;其余三条线:
GS,ES,PQ。 区:5个单相区,7个两相区,3个三相区。 相图标注:相组成物标注的相图; 组织组成物标注的相图。
8
第六节 铁碳合金相图
2 相图分析
点:14个。
9
第六节 铁碳合金相图
2 相图分析
线:两条磁性转变线;三条等温转变线;其余三条线: GS, ES, PQ。
24
第七节 相图的热力学基础
1 固溶体的自由能——成分曲线
G=xAA+ xBB +xAxB+RT(xAlnxA+xBlnxB)=f(xA,xB)
G0
ΔHm
-T ΔSm (式5-20)
其中: =NZ[VAB-(VAA+VBB)/2]
(为A,B原子间相互作用参数,与原子间结合能有
关;V –原子间的结合能。)
22
第六节 铁碳合金相图
5 含碳量对平衡组织和性能的影响 (2)对力学性能的影响
随C%提高, 强度、硬度相图
5 含碳量对平衡组织和性能的影响
(3)对工艺性能的影响 适合锻造:C%<2.11%,可得到单相组织。 适合铸造:C%~4.3%,流动性好。 适合冷塑变:C%<0.25%,变形阻力小。 适合热处理:0.0218-2.11,有固态相变。
2 铸锭缺陷
(1)微观偏析 (2)宏观偏析:整个铸锭范围内的成分不均匀现象.
正偏析: k0<1的合金铸锭中心溶质含量较高的现象. 反偏析: ……. 密度偏析:由于初生相与剩余液体密度差异而导致铸锭上下部分成分
不均匀的现象.
30
第八节 铸锭组织及其控制
2 铸锭缺陷
(3)夹杂与气孔 夹杂:外来夹杂和内生夹杂。 气孔:析出型和反应型。
25
第七节 相图的热力学基础
2 化学位与相平衡条件
(1)化学位:偏摩尔吉布斯自由能。用 表示。
化学位的确定:在自由能—成分曲线上,过成分点的切线与两纵 轴的交点。
(2)相平衡的条件:两组元在各相中的化学位分别相等。
A= A=……
在自由能—成分曲线上,表现为各曲线间有公切线。
26
第七节 相图的热力学基础
2 已知某铁碳合金的组成物为铁素体和渗碳体,铁素体占82%,求合金的含 碳量和组织组成物的相对量。
32
本章小结与习题讨论课
3 根据相律指出下列相图中的错误之处。
33
知识回顾 Knowledge Review
(4)缩孔和疏松 形成:凝固时体积缩小-补缩不足-形成缩孔。 分类:集中缩孔(缩孔、缩管)和分散缩孔(疏松,枝晶骨架相 遇,封闭液体,造成补缩困难形成。)
31
本章小结与习题讨论课
1 分析下列说法是否正确及其原因。 (1) 铁素体与奥氏体的主要区别是含碳量不同。 (2) 正温度梯度下,纯金属与固溶体合金凝固时都以平面状生长。 (3) 在二元相图中,杠杆定律不仅适用于两相区,而且也能用于计算三 相平衡时相的含量。 (4) 绑扎物件一般用高碳钢丝,而起重机吊重物用铁丝。 (5) 1050℃时含碳0.4%的钢可进行锻造,而含碳4%的白口铸铁难以锻造。
3 二元系自由能曲线与相图的关系
27
第八节 铸锭组织及其控制
1 铸锭组织 (1)铸锭三区
表层细晶区(强过冷,非均匀形核) 柱状晶区(纯金属:过冷度减小,形核困难,沿散热方向生长;
合金:成分过冷,一次轴发达,沿散热方向生长. ) 中心等轴晶区(均匀散热、液相区成
分过冷、熔体对流导 致细晶漂移或枝晶破 碎。)
8h 5
第六节 铁碳合金相图
Smith W F. Foundations of Materials Science and Engineering. McGRAW.HILL.3/E
6
第六节 铁碳合金相图
1 组元和相 (1)组元: 铁-石墨相图:Fe,C; 铁-渗碳体相图:Fe-Fe3C。 (2)相:L, δ, A(γ), F(α), Fe3C(K)。 (其定义)
三、相图与合金性能的关系
②根据相图判断材料的工艺性能 铸造性能:根据液固相线之间的距离X X越大,成分偏析越严重(因为液固相成分差别大); X越大,流动性越差(因为枝晶发达); X越大,热裂倾向越大(因为液固两相共存的温区大)。
4
第五节 二元相图的分析和使用
三、 相图与合金性能的关系 塑性加工性能:选择具有单相固溶体区的合金。 热处理性能:选择具有固态相变或固溶度变化的合金。
14
第六节 铁碳合金相图
4 平衡结晶过程及其组织 亚共析钢结晶过程 (+P)(Fe3C?)
Smith W F. Foundations of Materials
Science and Engineering.
15
McGRAW.HILL.3/E
第六节 铁碳合金相图
4 平衡结晶过程及其组织 亚共析钢结晶过程 (+P)