材料力学作业4(扭转)
材料力学 第四章 扭转

60 外力偶每秒所做的功即为输入的功率
P 1000= Me 2 n
60
明德行远 交通天下
材料力学
P─kW
M e 9549
P n
n─r/min
M e ─N m
或
P─PS(马力)
Me
7024
P
n
n─r/min M e ─N m
明德行远 交通天下
材料力学
二、扭矩及扭矩图
D
2 d
2
2
2
d
32
(D4
d
4)
D4 (1 4 ) 0.1D4 (1 4 )
32
d
( Dd )
O
D
明德行远 交通天下
材料力学
④ 应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻,
结构轻便,应用广泛。
明德行远 交通天下
材料力学
⑤ 确定最大剪应力:
由
Ip—极惯性矩,纯几何量,无物理意义。
Ip A 2dA
单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,只是Ip值不同。
明德行远 交通天下
材料力学
对实心圆截面:
D
I p A 2dA
2 2 2 d
0
D4 0.1D4
32
d
O
D
对于空心圆截面:
d
I p A 2dA
A
B
M1 =9.55 103
P1 n
9.55
103
500 300
N
m=15.9kN
m
M 2 =M3 =9.55103
第四章 扭转(张新占主编 材料力学)

2M A M e M B 0 (2)
联立式(1)与式(2),得
Me MB 3
MA MB Me 3
26
4.6 等直圆轴扭转时的应变能
圆轴在外力偶作用下发生扭转变形,轴内将积蓄应变能。这种 应变能在数值上等于外力所做的功。
T1 在位移 d1上所做的功为 dW T1d1
PB M eB M eC 9549 n 796(N m) PA M eA 9549 1910(N m) n PD M eD 9549 318(N m) n
5
(2)求扭矩(扭矩按正方向假设) 1-1 截面
M M M
x
0
T1 M eB 0
T1 M eB 796N m
d1 85.3 mm
取 d1 85.3 mm。 BC段:同理,由扭转强度条件得 d2 67.4 mm ,由扭转刚度条件得
d 2 74.4 mm
取 d 2 74.4 mm。
23
(2)将轴改为空心圆轴后,根据强度条件和刚度条件确定轴的 外径D。 由强度条件得 D 96.3 mm 由刚度条件得 D 97.3 mm 取 D 97.3 mm ,则内径为
T Me
M e RdA RRd 2R 2
A 0
2
Me 2 2R
8
二、切应力互等定理
M
z
0
(dy)dx ( dx)dy
得到
切应力互等定理:在单元体在相互垂直的一对平面上,切应力 同时存在,数值相等,且都垂直于两个平面的交线,方向共同 指向或共同背离这一交线。 纯剪应力状态:单元体上四个侧面上只有切应力,而无正应力 作用
材料力学4.

'dxdz dy dydzdx 0
得: '
图4-1
2. 剪切虎克定律 在弹性范围内应有:
G G ——剪切弹性模量
图4-2
3.E、G、μ μ μ 的关系
G
E
21
低碳钢:
E 2 105 MPa
Mnmax 4.5KN m
max
M nmax Wn
Wn
D3
16
M nmax
解得: D 66mm
(三)由刚度条件设计 D 。
max
M nmax GI p
180
D4
32
Ip
M nmax
G
180
解得: D 102mm
从以上计算可知,该轴直径应由刚度条件确定,选用 D=102mm 。
六、矩形截面杆的自由扭转
1. 矩形截面杆的剪应力及扭转角计算
最大剪应力发生在长边中点处:
max
Mn
hb2
4
9
单位长度的扭转角为:
Mn
G hb3
4 10
剪应力分布图 图4-10
材料力学
第四章 扭转
一、扭转时的内力及扭矩图
扭转时横截面上的内力以 Mn 表示,称为扭矩。杆件 上各截面上的扭矩如果以图来表示,该图就是扭矩图。
下面结合实例来加以说明。
例1 传动轴受力如图示,试求各段内力并绘扭矩图。 例1图
材料力学第四章 扭转

max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m
材料力学 第4章_扭转

d x d z d y d y d z d x 0
返回
4. 切应力互等定理
切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。
纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T
dA
横截面上分布内力系对 圆心的矩等于扭矩T。
T d A A d d 2 G d A G d A A dx dx A
《材料力学》扭转习题解

第三章扭转习题解[习题3-1] 一传动轴作匀速转动, 转速n = 200r/min ,轴上装有五个轮子,主动轮 II 输入 的功率为60 kW ,从动轮,I ,山,IV ,V 依次输出18 kW ,12 kW ,22 kW 和8kW 。
试 作轴的扭图。
解:(1)计算各轮的力偶矩(外力偶矩)T e = 9.55 血n外力偶矩计算(kW 换算成kN.m )题目编号 轮子编号轮子作用功率(kW )转速r/mi nTe (kN.m ) 习题3-1I 从动轮 18 200 0.859II主动轮 60 200 2.865III从动轮 12 200 0.573IV从动轮 22 200 1.051V从动轮82000.382(2)作扭矩图。
用 595[习题3-2] —钻探机的功率为l0kW ,转速n = 180r/min 。
钻杆钻入土层的深度I = 40m 。
如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度 图。
资料个人收集整理,勿做商业用途 解:(1)求分布力偶的集度= 9.549x® =0.5305(kN m)180M e 0.5305 m = --- = ------l 40= 0.0133(kN /m)设钻杆轴为x 轴, 则:Z M x =0ml =Me1 4325A1 2 0055 1m 3.5 mLSC.3SZm ,并作钻杆的扭矩M e =9.549 丛n L7S mT 图(kN.m)(2)作钻杆的扭矩图T(x) = —mx =—牛X =-0.0133x 。
x<^[0,40] T(0) =0 ;T(40) = M e = —0.5 305kN m) 扭矩图如图所示。
[习题3-3]圆轴的直径d =50mm ,转速为120r/min 。
若该轴横截面上的最大切应力等于 60 MPa ,试问所传递的功率为多大? 资料个人收集整理,勿做商业用途 解:(1)计算圆形截面的抗扭截面模量: 1 3 W p =—血3 P16(2 )计算扭矩1 3 3 = 16®4159 倔=24544(mm ) 2= 60N / mm23T =60N/mm x 24544mm =1472640N ・mm = 1.473(kN ・m)(3)计算所传递的功率T = M e =9.549山=1.473(kN -m)n N k =1.473x120/9.549 =18.5(kW)[习题3-4]空心钢轴的外径 D = 100mm ,内径d =50mm 。
材料力学 第4章扭转变形

1、T为横截面上的扭矩
max
2、Ip为截面参数,取决于截面形状 与尺寸 3、ρ为所求点距圆心距离。
d 2
max
最大切应力
r
max
d
T Tr T I p I p / r Wp
Wp Ip r
称为抗扭截 面系数
最大扭转切应力 发生在圆轴表面
同样适用于空心圆截面杆受扭的情形
T3
3 3
MD D x
(2)2-2截面上的应力计算
由扭矩图得知T2=-9.56kNm T IP 9560 40 10 3 26.6MPa 4 12 π 110 10 / 32 (2) 强度计算 危险横截面在AC段,Tmax=9.56kNm
τ max Tmax 9560 36.6MPa 3 9 WP π 110 10 / 16
T1 2M
M
A
C
T
M
x
2M
§4-3 圆轴扭转横截面上的应力
问题分析与研究思路
M
1
2
T M
M
问题:横截面应力大小、方向、分布均未知,仅知合成扭矩T。 连续体的静不定问题 。 分析方法:静力学、几何、物理三方面。 关键是几何方面:建立单变量的变形协调条件 几何方面:实观观测 合理假设
连续体的变形协调条件(数学公式)
D3
IP
D4
32
, WP
D3
16
4-4 圆轴扭转强度条件与合理设计
一、扭转失效 低碳钢扭转破坏
塑性材料扭转失效时,先发生屈服,最终沿横截面 断裂。
铸铁扭转破坏
脆性材料扭转失效时,变形很小,最终沿与轴线成 45°螺旋面断裂。
材料力学-第4章 扭转 ppt课件

dA
T
O
dA
23
材料力学-第4章 扭转
圆轴扭转横截面上的应力
A dA T
代入:
G
G
d dx
得到:
G d 2dA T dx A
记: IP -2dA称为圆截面的极惯性矩
A
则:圆轴扭转角的变化率 d T
dx GIP
圆截面切应力
采用右手螺旋法则,如果用四指表示扭矩的转向, 拇指的指向与截面的外法线n的方向相同时,该扭矩为 正;反之,规定扭矩为负
正扭矩
负扭矩
——保证了无论从哪一段计算,扭矩的大小和符号 都相同
12
材料力学-第4章 扭转
扭力偶矩计算与扭矩
讨论:如图受扭圆轴,m-m截面上扭矩为多少?
Me
m
2M e
m m
T Me
17
材料力学-第4章 扭转
圆轴扭转横截面上的应力
几何变形:
1. 横截面绕圆轴的轴线转动
?
主要
2. 圆轴中段的横截面缩小 几何变形特征
有剪切应变 rz 次要
3. 圆轴的长度略有增长
有轴向应变 z 次要
– 变形后,横截面仍保持为平面,其形状和大小均不
改变,半径仍为直线
– 变形后,相邻横截面的间距保持不变,相邻横截面 绕圆轴轴线转动一定的角度
外力偶矩的计算
• 工程中的传动轴,通常给出传动轴所传递的功率和转 速,而不直接给出外力偶矩的数值
• 设外力偶矩为Me,传动轴的功率为P,角速度为w,则
有(理论力学)
Me
P
w
外力偶矩Me 单位:N·m (牛顿·米) 功率为P 单位:J (焦耳)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
C
D
5.实心圆轴扭转时,横截面上的最小切应力( ) 。 A.一定为零 B.一定不为零 C.可能为零,也可能不为零 6.空心圆轴扭转时,横截面上的最小切应力( ) 。 A.一定为零 B.一定不为零 C.可能为零,也可能不为零
第四章扭转
班级(
)学号(
)姓名(
)
三、计算题 1 一传动轴匀速转动,转速 n=200r/min,轴上装有五个 轮子。主动轮Ⅱ输入功率为 60kW,从动轮Ⅰ、Ⅲ、Ⅳ Ⅴ依次输出 18 kW,12kW,22 kW 和 8 kW。试做轴的 扭矩图。
6、一密圈螺旋弹簧,承受轴向载荷 F=1kN 作用。设弹簧的平均直径 D=40mm,弹簧丝的直 径 d=7mm,许用应力〔τ〕=480MPa,校核弹簧的强度。
第四章扭转
班级(
)学号(
)姓名(
)
7、图示两端固定圆截面轴,承受扭力矩作用。求支反力偶距。扭转刚度为已知常数。
8、 图示二轴, 用突缘和螺栓连接。 各螺栓的材料、 直径相通, 并均匀地排列在直径为 D=100mm 的圆轴上,突缘厚度 δ=10mm。设扭力矩 M=5kN·m,螺栓的许用切应力[τ]=100MPa,许用 挤压应力[σbs]=300MPa,试确定螺栓直径 d。
τ1/τ2 和单位扭转角 1 / 2 分别为
。
A 1/4,1/16 B 1/8,1/16 C 1/8,1/64 D 8,16 3.下列结论中正确的是( ) 。 A.圆轴扭转时,横截面上有正应力,其大小与截面直径无关 B.圆轴扭转时,截面上有正应力,也有切应力,其大小均与截面直径无关 C.圆轴扭转时,横截面上只有切应力,其大小与到圆心的距离成正比 4.如图所示,圆轴扭转时,下列切应力分布图正确的是( ) 。
2、图示圆截面空心轴,外径 D=40mm,内径 d=20mm,扭矩 T=1kN·m。试计算ρ=15mm 的 A 点处的扭转切应力τA 及横截面上的最大和最小扭转切 应力。
第四章扭转
班级(
)学号(
)姓名(
)
3、如图所示,截面积相等、材料相同的两轴,用牙嵌式离合器连接。左端为空心轴,外径 d1=50mm,内径 d2=30mm,轴材料的〔τ〕=65MPa,工作时所受力偶矩 M=1000N·m,试 校核左、右两端轴的强度。如果强度不够,轴径应增加到多少?
4、如图所示,圆轴 AB 与套管 CD 用刚性突缘 E 焊接成一体,并承受扭力矩 M 作用。圆轴 直径 d=56mm,许用切应力[τ1]=80MPa,套管外径 D=56mm,壁厚 δ=6mm,许用切应力[τ 2]=40MPa,试求扭力矩 M 的许用值。
第四章扭转
班级(
)学号(
)姓名(
)
5、 已知实心圆轴的转速 n=300r/min, 传递的功率 P=330kW, 轴材料的许用应力[τ]=60MPa, 切变模量 G=80GPa,若要求 2m 长度的相对扭转角不超过 1º,设计该轴直径。
第四章扭转
班级(
)学号(
)姓名(
)
第四章
扭转
) )
一、是非题 1 在单元体两个相互垂直的截面上,切应力的大小可以相等,也可以不等。 ( 2 扭转切应力公式
T 可以适用于任意截面形状的切应力只出现在横截面上。 ( ) 4 圆轴扭转时,横截面上既有正应力,又有切应力。 ( ) 5 矩形截面杆扭转时,最大切应力发生于矩形长边的中点。 ( ) 二、选择或填空 1、 .图示的圆轴,用截面法求扭矩,无论取哪一段作为研究对象,其同一截面的扭矩大小与 符号( ) 。 a.完全相同 b.正好相反 c.不能确定 2、两根圆轴,材料相同,受力相同,而直径不同,当 d1=2d2 时,则两轴的最大切应力之比