材料力学 第四章 扭转

合集下载

材料力学 第四章 扭转

材料力学 第四章  扭转
W = Me 2 n
60 外力偶每秒所做的功即为输入的功率
P 1000= Me 2 n
60
明德行远 交通天下
材料力学
P─kW
M e 9549
P n
n─r/min
M e ─N m

P─PS(马力)
Me
7024
P
n
n─r/min M e ─N m
明德行远 交通天下
材料力学
二、扭矩及扭矩图
D
2 d
2
2
2
d
32
(D4
d
4)
D4 (1 4 ) 0.1D4 (1 4 )
32
d
( Dd )
O
D
明德行远 交通天下
材料力学
④ 应力分布
(实心截面)
(空心截面)
工程上采用空心截面构件:提高强度,节约材料,重量轻,
结构轻便,应用广泛。
明德行远 交通天下
材料力学
⑤ 确定最大剪应力:

Ip—极惯性矩,纯几何量,无物理意义。
Ip A 2dA
单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,只是Ip值不同。
明德行远 交通天下
材料力学
对实心圆截面:
D
I p A 2dA
2 2 2 d
0
D4 0.1D4
32
d
O
D
对于空心圆截面:
d
I p A 2dA
A
B
M1 =9.55 103
P1 n
9.55
103
500 300
N
m=15.9kN
m
M 2 =M3 =9.55103

第四章 扭转(张新占主编 材料力学)

第四章 扭转(张新占主编 材料力学)

2M A M e M B 0 (2)
联立式(1)与式(2),得
Me MB 3
MA MB Me 3
26
4.6 等直圆轴扭转时的应变能
圆轴在外力偶作用下发生扭转变形,轴内将积蓄应变能。这种 应变能在数值上等于外力所做的功。
T1 在位移 d1上所做的功为 dW T1d1
PB M eB M eC 9549 n 796(N m) PA M eA 9549 1910(N m) n PD M eD 9549 318(N m) n
5
(2)求扭矩(扭矩按正方向假设) 1-1 截面
M M M
x
0
T1 M eB 0
T1 M eB 796N m
d1 85.3 mm
取 d1 85.3 mm。 BC段:同理,由扭转强度条件得 d2 67.4 mm ,由扭转刚度条件得
d 2 74.4 mm
取 d 2 74.4 mm。
23
(2)将轴改为空心圆轴后,根据强度条件和刚度条件确定轴的 外径D。 由强度条件得 D 96.3 mm 由刚度条件得 D 97.3 mm 取 D 97.3 mm ,则内径为
T Me
M e RdA RRd 2R 2
A 0
2
Me 2 2R
8
二、切应力互等定理
M
z
0
(dy)dx ( dx)dy
得到

切应力互等定理:在单元体在相互垂直的一对平面上,切应力 同时存在,数值相等,且都垂直于两个平面的交线,方向共同 指向或共同背离这一交线。 纯剪应力状态:单元体上四个侧面上只有切应力,而无正应力 作用

材料力学第四章 扭转

材料力学第四章 扭转
则上式改写为
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m

材料力学第4章扭转

材料力学第4章扭转

(2)计算扭矩
从受力情况看,在轴的AB,BC,CD三段内,各横截面上的扭矩是不相等的。
现在用截面法,根据平衡方程计算各段内的扭矩。 在AB段,用截面1—1截取,取左段为研究对象,并假设该截面上的扭矩T1为 正,如图4.5(c)所示。由平衡方程 MA+T1=0 于是有 T1=-MA=-1 910 N²m ,得
相反的切应力′,于是组成力偶矩为(′dxdz)dy的力偶。根据平衡方 程 ,得 ′dxdz)dy
( dydz)dx=( 于是
如图4.7(a)所示的单元体在其两对相互垂直的平面上只有切应力而无正应力 。这种应力状态称为纯剪切应力状态。显然,薄壁圆筒发生扭转时处于纯剪
切应力状态。由于这种单元体的前、后两平面上无任何应力,所以可将其改
图4.3 根据平衡方程 ,即
T-Me=0
得 T=Me
显然,若截取后取右段为研究对象,则在同一横截面上可求得扭矩的数值大
小相等而方向相反。为使同一横截面上的扭矩正、负号一致,对扭矩的符号 规定如下:按右手螺旋法则确定扭矩矢量T,当T的指向与横截面的外法线方
向一致时,扭矩为正(见图4.4(a)),反之,为负(见图4.4(b))。
依据上述分析,可知薄壁圆筒的扭转时,横截面上各处的切应力值均相等, 其方向与圆周相切。由于横截面上的扭矩都是该截面上的应力与横面积dA之 乘积的合成,如图4.6(d)所示,可得
所以
(2)切应力互等定理 在承受扭转的薄壁圆筒上,用两个横截面、两个径向截面和两个圆柱面截取 出边长分别为dx,dy,dz的单元体,并放大为图4.7(a)所示。单元体的左、 右两侧面是圆筒横截面的一部分,所以有切应力。切应力值根据公式(4.2) 计算,数值相等但图4.7方向相反,于是组成一个力偶矩为( dydz)dx的力偶 。为保持平衡,单元体的上、下两个面必须有切应力,并组成力偶以与力偶 ( dydz)dx相平衡。由 可知,上、下两个面上存在大小相等、方向

材料力学 第4章_扭转

材料力学     第4章_扭转
z


d x d z d y d y d z d x 0

返回
4. 切应力互等定理

切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。


纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T

dA
横截面上分布内力系对 圆心的矩等于扭矩T。

T d A A d d 2 G d A G d A A dx dx A

材料力学-第4章圆轴扭转时的强度与刚度计算

材料力学-第4章圆轴扭转时的强度与刚度计算
B
I
C
A
II
D
III
I
II
III
M
x
0
确定各段圆轴内的扭 矩。
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
3 . 建立 Mx - x 坐 标系,画出扭矩图 建 立 Mx - x 坐 标 系,其中x轴平行于 圆轴的轴线,Mx轴垂 直于圆轴的轴线。将 所求得的各段的扭矩 值,标在 Mx - x 坐标 系中,得到相应的点 ,过这些点作x轴的 平行线,即得到所需 要的扭矩图。
P M e 9549 [N m] n
其中P为功率,单位为千瓦(kW);n为轴的转速,单位为转/ 分(r/min)。 如果功率P的单位用马力(1马力=735.5 N•m/s),则
P[马力] M e 7024 [N m] n[r / min]
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴 外加扭力矩、扭矩与扭矩图 剪应力互等定理 剪切胡克定律
圆轴扭转时横截面上的剪应力分析 与强度设计 圆杆扭转时的变形及刚度条件 结论与讨论
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
第4章 圆轴扭转时的强度与刚度计算
绘出扭矩图:
第4章 圆轴扭转时的强度与刚度计算
B C
I
外加扭力矩、扭矩与扭矩图 A III D II
I 扭矩Mn-图
II
III
159.2
(+)
(-)
63.7 159.2
M n,max 159.2( N m)
(在CA段和AD段)

材料力学 第4章扭转变形

材料力学 第4章扭转变形

1、T为横截面上的扭矩
max
2、Ip为截面参数,取决于截面形状 与尺寸 3、ρ为所求点距圆心距离。
d 2
max

最大切应力
r
max
d
T Tr T I p I p / r Wp
Wp Ip r
称为抗扭截 面系数
最大扭转切应力 发生在圆轴表面
同样适用于空心圆截面杆受扭的情形
T3
3 3
MD D x
(2)2-2截面上的应力计算
由扭矩图得知T2=-9.56kNm T IP 9560 40 10 3 26.6MPa 4 12 π 110 10 / 32 (2) 强度计算 危险横截面在AC段,Tmax=9.56kNm
τ max Tmax 9560 36.6MPa 3 9 WP π 110 10 / 16
T1 2M
M
A
C
T

M
x

2M
§4-3 圆轴扭转横截面上的应力
问题分析与研究思路
M
1
2
T M
M
问题:横截面应力大小、方向、分布均未知,仅知合成扭矩T。 连续体的静不定问题 。 分析方法:静力学、几何、物理三方面。 关键是几何方面:建立单变量的变形协调条件 几何方面:实观观测 合理假设
连续体的变形协调条件(数学公式)
D3
IP
D4
32
, WP
D3
16
4-4 圆轴扭转强度条件与合理设计
一、扭转失效 低碳钢扭转破坏
塑性材料扭转失效时,先发生屈服,最终沿横截面 断裂。
铸铁扭转破坏
脆性材料扭转失效时,变形很小,最终沿与轴线成 45°螺旋面断裂。

材料力学第四章 扭转

材料力学第四章 扭转

扭转轴的内力偶矩称为扭矩
3、扭矩利用截面法、并建立平衡方程得到
m
m
x
m
Mn
MX 0 Mnm0
Mn m
8
§3-2 外力偶矩、扭矩和扭矩图
4 扭矩的符号规定—右手螺旋法则
mI


符 号 规
Mn I
离M开n截 面
定 :
mI
I
m
Mn
I
I
m
Mn
Mn I
指向M 截n 面
I
右手定则:右手四指内屈,与扭矩转向相同,则拇指的
m
转速:n (转/分)
1分钟输入功: 1分钟m 作功:
W W '
W 6 N 0 10 60 0 N 0 000
W m m 2 n 1 2 nm
m955N0 Nm 单位
n
7
§3-2 外力偶矩、扭矩和扭矩图
2、扭矩的概念
扭转变形的杆往往称之为扭转轴
Mn
Mn
(r )
A
B
(r )
C
C
D d
D
b
x
d
d


d
dx
d
dx
dx
d
称为单位长度相对扭转角
dx
对于同一截面,
d 常量 dx
上式表明:圆轴扭转时,其横截面上任意点处的剪应变与该点至截 面中心之间的距离成正比。上式即为圆轴扭转时的变形协调方程。
32
§3-4 等值圆杆扭转时的应力强度条件
dAsin
d d A cA s o i s d n sA i c n o 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t
1 10
r0
(r0:为平均半径)
1.实验前:
①绘纵向线,圆周线;
2.实验后:
①圆周线不变;
②施加一对外力偶 m。
②纵向线变成斜直线。
3.结论:①横截面和纵截面上没有正应力。 ②横截面上只有切应力,因为壁厚t很小,近似认为沿壁厚均匀分布 。
§4-3薄壁圆筒的扭转
二、切应力互等定理: mz 0
t dxdy t dxdy
D3
W p 16
1 4
强度 条件
max
T Wp
例4-4-1 已知汽车传动主轴D = 90 mm, d = 85 mm
[ ] 60MPa,M= 1.5 kNm
max
T Wp
求:(1)校核轴的强度;
(2)改用实心轴,确定轴的直径;
(3)比较实心轴和空心轴的重量。 M
M
解:(1)T = M = 1.5 kNm ,

上式称为切应力互等定理。
a
d
y
´
c
z
d
x
´
b
d t
该定理表明:在单元体相互垂直的两个平面上,剪应力必然成对
出现,且数值相等,两者都垂直于两平面的交线,其方向则共同指向 或共同背离该交线。
单元体的四个侧面上只有剪应力而无正应力作用,这种应力状态称 为“纯剪切应力状态”。
§4-3薄壁圆筒的扭转
三、剪切胡克定律
二、外力偶矩的计算
按输入功率和转速计算
已知
轴转速-n 转/分钟 输出功率-P 千瓦 求:力偶矩Me
电机每秒输入功:W P 1000(N.m)
外力偶作功完成:
W
Me
2
n 60
外力偶矩为:
Me
1000P
2 n
9549 P n
60
式中,P为输入功率kW(千瓦);n为轴的转速(r/min);
M e为外力偶矩 N m (牛顿.米)
d D 0.944
D3
Wp 16
1 4
29 106 m3
max
(2) W p
D 3
16
T
max
D 53mm
T Wp
51.7MPa<
强度安全。
(3)
Q Q
A A
D2 D2 d 2
3.2
空心优于实心
§4-4 圆轴扭转时的应力和强度条件
强度 条件
max
T
Wp
低碳钢:横截面 切应力破坏
l
当定律”;G为比例系数称为材料的切变模量,
单位是pa,并对各向同性材料存在:
G
E 2(1
)
§4-4 圆轴扭转时的应力和强度条件
M
T= M
刚性平截面变形规律:
(1)横截面保持平面;
(2)直径保持直线。
l
D
(1)变形几何方程 表面 l R 内部 ( )l
[ ] 80MPa
即该轴满足强度条件。
例4-4-3 图示圆柱形密圈弹簧,沿弹簧轴线承受拉力F作用,设弹簧 平均直径为D,弹簧丝直径为d,试分析弹簧的应力并建立相应的强度 条件。
所谓密圈螺旋弹簧,是指螺旋角 很小,弹簧丝的直径比弹簧圈直径小得多的弹簧。这 样可以略去弹簧丝曲率的影响,将它作为扭转的直杆来处理。
解:横截面上的内力
由Q引起的剪应力 由T引起的最大剪应力

其中
§4-5 圆轴扭转时的变形和静不定问题
一 扭转时的变形
由公式
d
dx
T GI p
知:长为 l一段杆两截面间相对扭转角 为
d
0l
T GI p
dx
Tl GI p
(若T 值不变)
二 单位长度扭转角 或
d
dx
T GI p
(rad/m)
d
dx
§4-2 扭矩 扭矩图
M
e
扭转内力 : 扭矩 T
Me
n
n’
Me
T
T
Me
正负号规定:扭矩矢量与截面外法线方向 一致时为正;反之为负。
例4-2-1 已知:PA = 40kW,PB =100kW,PC = 60kW, n = 955 rpm, 求:作图示传动轴的扭矩图。
解: MA = 9549 P/n=400 Nm
1-1
2-2
MB =1000 Nm
MC = 600 Nm
T1 = 400 Nm
T2 = -600 Nm
讨论:交换 AB 轮的位置扭矩 将如何变化?
T (Nm)
MA n
MA T1
T (Nm)
x
(+)
MB
MC
n
T2
400
MC
x
(-)
-1000
- 600
(-)
- 600
§4-3薄壁圆筒的扭转
一、薄壁圆筒:壁厚
max
G[ ]
③ 计算许可载荷:
T max GI p[ ]
有时,还可依据此条件进行选材。
各类轴的许用单位长度扭转角可在有关的机械设计手册中查得。 对精密机器的轴[]=(0.25~0.50)0/m; 一般传动轴[] =(0.5~1.0)0/m;
第四章 扭转
材料力学
长安大学理学院工程力学系
§4-1 概 述
一、扭转实例及特点
受力特点:
圆截面直杆受到一对大小相等、转向相反、作用面
垂直于杆的轴线的外力偶作用
Me
Me
变形特点:
1.圆杆各横截面绕杆的轴线作相对转动; 2.杆表面上的纵向线变成螺旋线。
实际构件工作时除发生扭转变形外,还常伴随有 弯曲、拉压等其他变形。
T GI p
180
(/m)
GIp反映了截面尺寸和材料性能抵抗扭转变形的能力,称为圆轴的抗扭 刚度。
三 刚度条件
max
T max
GI p
(rad/m)

max
T max
GI p
180
(/m)
[ ]称为许用单位长度扭转角。
刚度计算的三方面:
① 校核刚度:
② 设计截面尺寸:
max
T
Ip
() l
(2)物理方程 ( ) ( ) G 补充方程: ( ) G l
(3)平衡条件:T dT ()dA
G
T l Ip
T T
l GI p
Ip
极惯性矩
Ip
A 2dA
2
d
d
2
3d
D4 (1 4 )
32
T
Ip
max
T Ip
R
Mn Wp
抗扭截面系数
MA Ⅰ MB

MC
A
C
B
解: 1、求内力,作出轴的扭矩图
22
T图(kN·m) 14
2、计算轴横截面上的最大切应力并校核强度
AB段
1,max
T1 Wp1
22 106 N mm
π 120mm3
64.8MPa
16
BC段
2,max
T2 Wp 2
14 106 N mm
π 100mm3
16
71.3MPa
灰铸铁:45°斜截面 拉应力破坏
作业题 选择题 4.1.2 4.1.4
计算题 4.3.1 4.3.2 4.3.4
例4-4-2 图示阶梯状圆轴,AB段直径 d1=120mm,BC段直径 d2=100mm 。扭转力偶矩 MA=22 kN•m, MB=36 kN•m, MC=14 kN•m。
材料的许用切应力[ ] = 80MPa ,试校核该轴的强度。
相关文档
最新文档