材料力学第三章_扭转

合集下载

材料力学 第03章 扭转

材料力学 第03章 扭转

sin 2 , cos 2
由此可知:
sin 2 , cos 2
(1) 单元体的四个侧面( = 0°和 = 90°)上切 应力的绝对值最大; (2) =-45°和 =+45°截面上切应力为零,而 正应力的绝对值最大;
[例5-1]图示传动轴,主动轮A输入功率NA=50 马力,从 动轮B、C、D输出功率分别为 NB=NC=15马力 ,ND=20马 力,轴的转速为n=300转/分。作轴的扭矩图。
解:
NA 50 M A 7024 7024 1170 N m n 300 NB 15 M B M C 7024 7024 351 m N n 300 NC 20 M D 7024 7024 468N m n 300
第3章


§3.1
一、定义 二、工程实例 三、两个名词


一、定义
Me Me


扭转变形 ——在一对大小相等、转向相反的外力偶矩
作用下,杆的各横截面产生相对转动的
变形形式,简称扭转。
二、工程实例
1、螺丝刀杆工作时受扭。
Me
主动力偶
阻抗力偶
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
公式的使用条件:
1、等直的圆轴, 2、弹性范围内工作。
圆截面的极惯性矩 Ip 和抗扭截面系数Wp
实心圆截面:
2 A
I p d A (2π d )
2
d 2 0
O
2 π(

4
d /2
4
)
0
πd 4 32
d
d A 2π d

材料力学第三章 扭转

材料力学第三章 扭转

n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2

材料力学:第三章扭转强度

材料力学:第三章扭转强度

解:
A
TA
Ip
1000 0.015 0.044 (1 0.54 )
63.66MPa32max来自T Wt1000
0.043 (1 0.54 )
84.88MPa
16
min
max
10 20
42.44 MPa
例:一直径为D1的实心轴,另一内外径之 比α=d2/D2=0.8的空心轴,若两轴横截面上 的扭矩相同,且最大剪应力相等。求两轴外直
NA=50 马力,从动轮B、C、D输出功率分 别为 NB=NC=15马力 ,ND=20马力,轴的 转速为n=300转/分。作轴的扭矩图。
解:
mA
7024
NA n
7024 50 300
1170 N m
mB
mC
7024
NB n
7024 15 300
351 N m
mD
7024 NC n
/m
例:实心圆轴受扭,若将轴的直径减小一半
时,横截面的最大剪应力是原来的 8 倍?
圆轴的扭转角是原来的 16 倍?
max
T Wt
T
d3
16
Tl Tl
GIp
d4
G
32
例:图示铸铁圆轴受扭时,在_45_ 螺_旋_ 面上 发生断裂,其破坏是由 最大拉 应力引起的。 在图上画出破坏的截面。
例:内外径分别为20mm和40mm的空心圆截 面轴,受扭矩T=1kN·m作用,计算横截面上A 点的切应力及横截面上的最大和最小切应力。
7024 20 468 N m 300
N A 50 PS N B N C 15 PS N D 20 PS n = 300 rpm
mA 1170 N m mB mC 351 N m mD 468 N m

材料力学-第三章扭转

材料力学-第三章扭转

3、物理方程 mA a mA a AC 2GI p GI p
BC
2 mB a GI p
4 解得: m A 7 T 3 mB T 7
AB AC BC 0
例:由实心杆 1 和空心杆 2 组成的组合轴,受扭矩 T, 两者之间无相对滑动,求各点切应力。 T 解: 设实心杆和空心杆承担的扭矩分别为 G 2 Ip 2 M n 1 、 M n2 。 R2
二 刚度条件
M 180 刚度 n 0.50~1.0 / m 一般轴 l G Ip 条件

0.25~0.5 / m 精密轴
1.0 ~3.0 / m 粗糙轴
例 传动主轴设计,已知:n = 300r/m,P1 = 500kW,P2=200kW P3=300kW,G=80GPa [ ] 40MPa , [] 0.3 求:轴的直径d 解:1、外力分析




圆轴扭转的强度条件
max
Mn D Mn I p 2 Wp
Wp
2I p D
Mn
D 3 D 3 Wp 1 4 抗扭截面系数Wp : W p 16 16


强度条件:
Mn max Wp
例 已知汽车传动主轴D = 90 mm, d = 85 mm [ ] 60MPa, T = 1.5 kNm
Mn d
3
圆形优于矩形
Aa
= 0.208
3
a
3

4
3
d 0.886 d
2
Mn
a
2

Mn 0.208 0.886 d
b
6.913

材料力学第3章扭转

材料力学第3章扭转

试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。

材料力学第3章扭转

材料力学第3章扭转

τ ρ = Gγ ρ
=G
ρdϕ
dx
22
C)静力平衡关系 C)静力平衡关系
T = ∫ A dA ⋅ τ ρ ⋅ ρ
2 dϕ = ∫ A Gρ dA dx
τ ρ = Gγ ρ
=G
dA
ρdϕ
dx
ρ
O
=G
dϕ ∫ A ρ 2dA dx

dϕ T = GI p dx
dϕ T = dx GIp
I p = ∫ A ρ 2dA
由公式
Pk/n
11
§3-2、外力偶矩 扭矩和扭矩图
(2)计算扭矩 (2)计算扭矩
(3) 扭矩图
12
§3-3、纯剪切
1、薄壁圆筒扭转:壁厚 、薄壁圆筒扭转:
t≤
1 r0 10
为平均半径) (r0:为平均半径)
A)观察实验: )观察实验:
实验前: 实验前: ①绘纵向线,圆周线; 绘纵向线,圆周线; ②施加一对外力偶 m。 。
16
纯剪切的概念: 纯剪切的概念:
当单元体的侧面上只有剪应力而无正应力时, 当单元体的侧面上只有剪应力而无正应力时, 就称为纯剪切。 就称为纯剪切。
3、剪应变与扭转角
设轴长为L,半径为R 设轴长为L 半径为R Φ称为扭转角,是用来表示轴变形的量; 称为扭转角,是用来表示轴变形的量; 且的剪应变 γ Φ的关系如下: 与 的关系如下:
∑ mz = 0
a dy
γ τ´
dx
τ´
b
τ ⋅ t ⋅ dxdy = τ ′ ⋅ t ⋅ dxdy

τ
c z
τ
d t
τ =τ′
上式称为剪应力互等定理。 上式称为剪应力互等定理。 为剪应力互等定理

第三章扭转

第三章扭转

T=Fs×r
材料力学
0
Fs=2 r
0
扭转/圆轴扭转时的应力
一.圆轴扭转时的应力分布规律
T
T
材料力学
扭转/圆轴扭转时的应力
1. 单元格的变化
A
B
C
A B
C
D
D
现象一: 方格的左右两边发生相对错动
横截面上存在切应力
方格的左右两边距离没有发生改变 现象二:
材料力学
横截面上没有正应力
2. 半径的变化
材料力学
扭转/纯剪切
§3.3 纯剪切
材料力学
相关概念
纯剪切:单元体各个面上只承受切应力而没有正应力。
单元体:是指围绕受力物体内一点截取一边长为无限小 的正立方体,以表示几何上的一点。


材料力学
扭转/纯剪切
一.薄壁圆筒扭转时的切应力
纯剪切的变形规律通过薄壁圆筒的纯扭转进 行研究。 受扭前,在薄壁圆筒的表面上用圆周线和 纵向线画成方格。
扭转/圆轴扭转时的变形
两横截面间相对扭转角的计算:
=TL/GIP
T:扭矩;
L:两横截面间的距离; G:切变模量; IP:极惯性矩。
材料力学
扭转/圆轴扭转时的变形
=TL/GIP
GIP越大,则越小。 GIP称为抗扭刚度。
材料力学
扭转/圆轴扭转时的变形
`=/L
`:单位长度扭转角(rad/m)。
思路:
最大扭矩
最大切应力
max
校核强度
相等
强度相同,则两轴的最大切应力 求出实心轴直径
材料力学
两轴面积比即为重量比
扭转/圆轴扭转时的应力
计算Wt:
3 Wt=D

材料力学第3章扭转总结

材料力学第3章扭转总结

5 圆截面的极惯性矩Ip和扭转截面系数Wt
πd 4 实心圆截面: I P 32
πd 3 Wt 16
πD4 空心圆截面: I ( 4) 1 P 32
πd 3 Wt ( 4) 1 16
6. 强度条件
max [ ]
对于等直圆轴亦即
Tmax [ ] Wt
7. 刚度条件 等直圆杆在扭转时的刚度条件:
圆周扭转时切应力分布特点:
T
max
Tr r Ip
max
d
圆周扭转时切应力分布特点:在横截面的同一半径 r 的圆周上各点处的切应力r 均相同,其值 与r 成正比,
其方向垂直于半径。
横截面周边上各点处(r r)切应力最大。
即单元体的两个相互垂直的面上,与该两个面的交线 垂直的切应力 和 数值相等,且均指向(或背离)该两个 面的交线——切应力互等定理。
Tmax
180 [ ] GI p
l
Ti li *若为阶梯扭矩、阶梯截面 GI i 1 pi
总结
1 扭转外力特点:
垂直轴线的平面内受一对大小相等、转向相反 力偶作用
变形特点: 杆件的任意两个横截面围绕其轴线作相对转动
外力矩计算
{M e }Nm
{P}kw 9.55 10 {n} r
3
min
2 扭转时内力:扭矩
扭矩(torque)--其力偶作用面与横截面平行
Me
T(+) T
T(-)
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章


第三章 扭
§3–1 扭转的概念

§3–2 扭转的内力—扭矩与扭矩图 §3–3 薄壁筒扭转 §3–4 圆截面杆扭转的应力及强度条件 §3–5 圆截面杆扭转的变形及刚度条件 §3–6 矩形截面杆自由扭转 §3–7 薄壁杆扭转
§3–1 扭转的概念
×
扭转: 直杆在外力偶作用下,且力偶的作用面与直杆的轴线
垂直,则杆件发生的变形为扭转变形。
B
A
O
A m

O B m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§3–2 扭转的内力—扭矩与扭矩图
一、扭矩
圆杆扭转横截面的内力合成 结果为一合力偶,合力偶的力偶

矩称为截面的扭矩,用T 表示之。 m
扭矩的正负号按右手螺旋法 则来确定,即右手握住杆的轴线,
max
令: Wt

max
IP
T max IP
,
Wt 称为抗扭截面模量,单位:m3
max
T Wt
实心圆截面 空心圆截面
3 D 16 Wt 4 d D 3 (1 4 ) D 16
×
例4
已知空心圆截面的扭矩T =1kN.m,D =40mm,
×
三、外力偶矩换算 扭矩是根据外力偶矩来计算,对于传动轴,外力偶矩可 通过传递功率和转数来换算。 若传动轴的传递功率为P,每分钟转数为n ,则每分钟 功率作功: W 60 P 力偶作功:
W m 2n
60 P m 2n
P m 9550 (N m) n
其中:P — 功率,千瓦(kW) n — 转速,转/分(r/min)
×
例1 画图示杆的扭矩图 3kN.m 1 5kN.m 2 2kN.m
解: AC段:
A C 1 3kN.m 2 B 2kN.m T2 扭矩图 3kN.m ⊕ 2kN.m
○ -
m 0 m 0
T1 3 0; T1 3kN.m
BC段:
T1
T2 2 0; T2 2kN.m
假设。
②各纵向线长度不变,但均倾斜了同一微小角度 。 ③所有矩形网格均歪斜成同样大小的平行四边形。
×
二、薄壁筒切应力 薄壁筒扭转时,因长度不变,故横截面上没有正应力, 只有切应力。因筒壁很薄,切应力沿壁厚分布可视作均匀的, 切应力沿圆周切线,方向与扭矩转向一致。
A dA r0 T r0 AdA r0 2 r0 t T T T 2 2 r0 t 2 A0 t

m
卷曲四指表示扭矩的转向,若拇
指沿截面外法线指向,扭矩为正, m 反之为负。
T
x
×
m
T
x
扭矩的大小由平衡方程求得。
m
二、扭矩图
x
0; T m 0,
T m
各截面的扭矩随荷载而变化,是截面坐标的函数,表示 各截面扭矩的图象称为扭矩图。 扭矩图的画法步骤与轴力图基本相同,具体如下:
×
扭矩图的画法步骤: ⒈ 画一条与杆的轴线平行且与杆等长的直线作基线; ⒉ 将杆分段,凡集中力偶作用点处均应取作分段点; ⒊ 用截面法,通过平衡方程求出每段杆的扭矩;画受 力图时,截面的扭矩一定要按正的规定来画。 ⒋ 按大小比例和正负号,将各段杆的扭矩画在基线两 侧,并在图上表出数值和正负号。
×
例2 已知:一传动轴转数 n =300r/min,主动轮输入功率 P1=500kW,从动轮输出功率 P2=150kW,P3=150kW,
P4=200kW,试绘制扭矩图。
解:①计算外力偶矩
m2
m3
m1 n
m4
P 500 1 9.55 n 300 A B C 15.9(kN m) P2 150 m2 m3 9.55 9.55 4.78 (kN m) n 300 P4 200 m4 9.55 9.55 6.37 (kN m) n 300 m1 9.55
×
mC
mA
mB
max 1 1.71 / m
此轴不满足刚度条件。
C
l2
A l1 B
0.6kN.m


0.8kN.m
CB
T2l2 T1l1 2 1 GI P 2 GI P1 32 T2l2 T1l1 ( 4 4) G d 2 d1
CB
×
③绘制扭矩图
m2
m3
m1 n
m4
A
扭矩图
B
C
6.37kN.m
D

4.78kN.m

9.56kN.m
T max 9.56 kN m, BC段为危险截面。
×
例3画图示杆的扭矩图。
4kN .m 6kN .m 8kN .m 6kN .m
2m
4kN .m
2m
1m
3m
6kN .m
扭矩图


_ ○
×
d D
环形截面: I P

32
(D4 d 4 )
同一截面,扭矩T ,极惯性矩IP 为常量,因此各点切应 力 的大小与该点到圆心的距离 成正比,方向垂直于圆的
半径,且与扭矩的转向一致。

max
T

max
T
实心圆截面切应力分布图 最大切应力在外圆处。
空心圆截面切应力分布图
×
⒌ 最大切应力
×
剪切弹性模量G 、与弹性模量E 和泊松比 一样,都是 表征材料力学性质的材料常数。对于各向同性材料,这三
个材料常数并不是独立的,它们存在如下关系。
E G 2(1 )
根据该式,在三个材料常数中,只要知道任意两个, 就可求出第三个来。
×
§3–4 圆截面杆扭转的应力及强度条件
×
一、等直圆杆扭转实验观察
1. 横截面变形后仍为平面,满足平面假设; 2. 轴向无伸缩,横截面上没有正应力; 3. 纵向线变形后仍为平行。
×
二、等直圆杆扭转横截面上的切应力
o1
o2
a
A
D
B
o1
C’
o2
b
B’
A
D
dB
C B’
b’ c d c’
C
dx ⒈ 变形的几何条件
dx C’
bb ' d 横截面上b 点的切应变: dx dx d 其中 为单位长度杆两端面相对扭转角,称单位扭转角
d=20mm,求最大、最小切应力。 解: max
T T d 4 max Wt 3 D (1 4 ) 16 D 161000 4 43[1 ( 1 ) ] 2 84.9MPa
T
min
d 1 max 84.9 42.45 MPa D 2
2kN .m
×
§3–3 薄壁筒扭转
薄壁圆筒:壁厚 t 1 r0 (r0:为平均半径) 10
一、实验: 1.实验前: ①绘纵向线,圆周线; ②两端施加一对外力偶 m。
×
2.实验后: ①圆周线不变;
②纵向线变成螺旋线。
3.结果: ①圆筒表面的各圆周线的形状、大小和间距均未改 变, 只是绕轴线作了相对转动。圆周线实际代表一个横截面,此 结果表明横截面仍保持平面,且大小、形状不变,满足平面
D
×
m2
1
m3
2
m1
3
m4
A
1
B
2
C
n 3 D
②求扭矩(扭矩按正方向假设)
m 0 , m 0; m 0 ,
T1 m2 0,
T1 m2 4.78kN m
T2 m1 m2 0
T3 m4 0, T3 m4 6.37kN m
T2 m2 m3 (4.78 4.78) 9.56kN m
0.6kN.m
T1 16mB 1 Wt1 d13 16 600 47.7 MPa 3 4

○ 0.8kN.m
×
mC
mA
mB
C
l2
A l1 B
0.6kN.m
T2 16mC 2 3 Wt 2 d 2 16 800 11.9 MPa 3 7
32 800 0.4 600 0.2 1 180 ( ) 12 9 4 4 8010 70 40 10 0.245
×
[例4—6]长为 l =2m 的圆杆受均布力偶 m=20Nm/m 的作用, 如图,若杆的内外径之比为 =0.8 ,G=80GPa ,许用切 应力 []=30MPa,试设计杆的外径;[]=2º /m ,试校核此 杆的刚度,并求右端面转角。 解:①设计杆的外径

T

A0为平均半径所作圆的面积。
×
三、切应力互等定理:
a
dy
´
dx
´
b

c

d t
m
z
z
0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面 上,切应力必然成对出现,且数值相等,两者都垂直于两平 面的交线,其方向或共同指向交线,或共同背离交线。
满足强度条件。180 32 600 180 1 1.71 / m 9 4 12 GI P1 8010 40 10 T2 180 32 800 180 2 0.24 / m 9 4 12 GI P 2 8010 70 10
Tl GI P
相关文档
最新文档