第六章氧化还原滴定法2
合集下载
氧化还原滴定法

例1 计算1mol/LHCl溶液,cCe(IV)=1.00×10-2 mol/L, cCe(III)=1.00×10-3mol/L 时Ce(IV)/Ce(III) 电对的电极电位。 解:查附录,半反应Ce(IV)+e = Ce(III) 在1mol/LHCl介质中的条件电位=1.28V,则
E = 1.28V+0.059lg1.00×10-2/1.00×10-3
二、 条件电位
0.059 aOX EE lg n aRed
0.059 OX [OX] E lg n Red [Red]
如果考虑有副反应发生,还需引进相应的副反应系 数Ox,Red: Ox=cOx/[Ox] Red=cRed /[Red] 副反应系数是分布系数的倒数。
1mol/LH2SO4 中 , 以 0.1000mol/LCe(SO4)2 标 准溶液滴定20.00ml0.1000mol/LFe2+溶液。 Fe3++e = Fe2+ E0’ Fe3+/Fe2+=0.68V Ce4++e = Ce3+ E0’ Ce4+/Ce3+=1.44V 滴定反应: Ce4++Fe2+ = Ce3++Fe3+ 滴定过程中电位的变化可计算如下:
其反应过程可能是: Mn(Ⅶ)+Mn(Ⅱ)→Mn(Ⅵ)+Mn(Ⅲ) ↓Mn(Ⅱ) 2Mn(Ⅳ) ↓Mn(Ⅱ) 2Mn(Ⅲ)(中间产物) Mn(Ⅲ)与C2O42—反应生成一系列配合物, 如MnC2O4+(红)、Mn(C2O4)2-(黄)、Mn(C2O4)32- (红) 等。 随后,它们慢慢分解为Mn(Ⅱ)和CO2: MnC2O4+→ Mn2++ CO2↑+·COO- (自由基) Mn(Ⅲ)+·COO-→ Mn2++ CO2↑
第六章 氧化还原滴定法

lg
COx2 CRe d2
反应达平衡时:1 2
1
'
0.059 n1
lg
COx1 CRe d1
2 '
0.059 n2
lg
COx2 CRe d2
lg
K
'
lg
C n2 Re d1
C n2 Ox1
n1
COx2 n1 CRe d2
n(1 ' 2 ' )
0.059
n '
0.059
n:为两半反应电子得失数n1与n2的最小公
解:已知φθ’Fe3+/Fe2+=0.68V, φθ’Sn4+/Sn2+=0.14V
对于反应 2Fe3++Sn2+=2Fe2++Sn4+ 则,
lg K ' n1 n2 1 ' 2 ' 2 0.68 0.14 18.3
0.059
0.059
解:溶液的电极电位就是Cr2O72-/Cr3+电极电 位 。 其 半 反 应 为 : Cr2O72+14H++6e=2Cr3++7H2O 当0.100mol/LK2Cr2O7被还原至一半时:
cCr(VI)c=CC(0VrI().II/5IC)×=(III02) .×1010..030m35V0o0l/mL=ol0/.L0=500.01m00oml/Lol/L
HAsO2
[H ] Ka [H ]
HAsO2的Ka 5.11010
27
[H ] 5mol / L
HAsO2 1.0,H3AsO4 1.0
0.60V ' H3AsO4 HAsO2
水分析化学6 氧化还原滴定法

的大小由电对的氧化态和还原态的材料自身性质及温度 决定。当二者一定时, 为常数。
第六章 氧化还原滴定法
2、条件电极电位
以HCl溶液中Fe(Ⅲ)/Fe(Ⅱ)这一电对为例,在298.15K时,由能 斯特方程式可得:
在盐酸溶液中,Fe(Ⅲ)以Fe3+、FeOH2+、FeCl2+、FeCl63-等形 式存在;而Fe(Ⅱ)也以Fe2+、FeOH+、FeCl+、FeCl42-等形式 存在。那么,Fe(Ⅲ)与Fe(Ⅱ)的分析浓度与游离Fe3+和Fe2+的 平衡浓度之间的关系并不相等。
第六章 氧化还原滴定法
生成沉淀的影响
在氧化还原反应中,当加入一种可以与氧化态或者还原态生成 沉淀的沉淀剂时,会改变电对的电极电位。根据能斯特方程式, 若电对的氧化态生成沉淀,则电位降低;反之,还原态生成沉 淀则使电对的电位增高。 例如,碘量法测铜是基于以下反应:
从标准电极电位看,应该是I2氧化Cu+,但是由于Cu2+/ Cu+中 Cu+生成的了CuI沉淀使得电对的电位升高,超过了0.54V,从而 氧化还原反应的方向发生了转变。
第六章 氧化还原滴定法
第六章 氧化还原滴定法
主要内容:
氧化还原平衡
氧化还原反应的速度
氧化还原滴定过程及滴定曲线
氧化还原滴定的指示剂
氧化还原滴定法在水质分析中的应用
第六章 氧化还原滴定法
氧化还原滴定法:是以氧化还原反应为基础的滴定 方法。 氧化还原反应的特点:
是电子转移反应(反应机理复杂); 反应常分步进行; 反应速率慢,且多有副反应。
发生氧化还原反应的两个电对的条件电极电位相差 得越大,其K’越大,说明反应进行得越完全。还可 以根据两电对的 ' 以及各自转移的电子数n1、n2 推导出用于判别可否用于氧化还原滴定分析的通式。
氧化还原滴定法-2

0.5355V
测定对象:还原性物质
θ
θ
I2 /2 I
滴定条件:酸性、中性或弱碱性溶液
若pH>9 3I2 +6OH-
5I- + IO3+3H2O
4
例:Vc含量的测定
CH2OH HC OH
O O
HO
OH
+ I2
CH2OH HC OH
O O
O
O
+ 2HI
滴定剂:I2 测定条件:稀HAc介质
指示剂: 淀粉(无色蓝色)
返滴定 置换滴定
强氧化性物质 非氧化还原性
CrO42-、S2O82-、ClO3-、 BrO3-、 IO3-、MnO4-、MnO2、PbO2等
Ca2+
加入C2O42-
试样 Ca2+
CaC2O4
洗涤,过滤, H2SO4溶解
C2O42-
KMnO184
例6-9:过氧化氢的测定 滴定反应:
2MnO4-+5H2O2+6H+
终点时: NO2-+ I- + H+
I2+ NO↑ + H2O
• 内指示剂 橙黄IV-亚甲蓝、中性红等。
• 永停滴定法(药典)
24
三、亚硝酸钠法的标准溶液
• 配制 • 标定
间接法 加 入 Na2CO3 作 稳 定 剂 (pH≈10) 棕色瓶贮存
对氨基苯磺酸
H2N
SO3H + NaNO2 + HCl
三、标准溶液
(一)碘标准溶液 (二)硫代硫酸钠标准溶液
间接法配制
12
(一)碘标准溶液(碘液)
• 配制 间接法 加入KI,加入HCl
棕色瓶贮存 稳定后标定
氧化还原滴定 (2)

① 确定有机物与KMnO4的定量关系 甲酸与KMnO4为1∶2,甲醇与KMnO4为1∶6
② 在碱性及酸性中KMnO4起的作用不同, 碱性是酸性的1/5
HCOOH
5 2
(c1V1
c3V3
1 5
c2V2
)M HCOOH
ms
HCOOH
1 2 (5c1V1
5c3V3 c2V2 )MHCOOH ms
二、 重铬酸钾法
滴定度为100.1%:
φ = φ 1+0.059 lg(0.1/100)=1.44-0.059×3=1.26V
通式:
φ
1.001=
φ
1
-
0.059×3/n1
滴定度为200%: E = = E1 =1.44V
突跃范围
2
'
0.059 n2
3
1
'
0.059 n1
3
Δ φ T=Δ φ - 0.059×3(1/n1 + 1/n2)
AgCl + e- ═ Ag + Cl-
= + 0. 059lg(1/[Cl-])
二、条件电势
1.条件电势φ
将副反应等实际情况考虑后, φ → φ
离子强度
活度系数γ
副反应
副反应系数
在HCl介质中: Fe3+ + e ═ Fe2+
0.059 lg aFe3 0.059 lg Fe3 [Fe3+]
提供强酸性; 络合Fe3+→Fe(HPO4)2-,消除颜色干扰; 降低Fe3+/Fe2+条件电势,拉长突跃范围, 以包括指示剂E',减小误差。
三、 碘量法
第六章氧化还原滴定法

§6.2 氧化还原反应进行的程度
§6.2.1 条件平衡常数 n2Ox1 + n1Red2 n2Red1 + n1Ox2
氧化还原反应进行的程度,可用什么来衡量? 氧化还原反应进行的程度,可用什么来衡量?
Ox1 + n1eOx2 + n2eRed1 Red2
Ε1 = Ε
O' 1
c Ox1 0 . 059 + lg c Red1 n1 c 0 . 059 lg Ox2 n2 c Red2
4+ 3+ θ′
(1mol·L-1 H2SO4) ϕ (Fe /Fe )=0.68 V
3+ 2+
θ′
滴定反应: 滴定反应: Ce4+ + Fe2+ = Ce3+ + Fe3+ 对于滴定的每一点,达平衡时有: 对于滴定的每一点,达平衡时有:
ϕ(Fe3+/Fe2+)=ϕ(C 4+/C 3+) e e
分析 滴定前, 未知, 滴定前,Fe3+未知,不好计算
第六章 氧化还原滴定法
§6.1 氧化还原反应平衡 §6.2 氧化还原反应进行的程度 §6.3 氧化还原反应的速率与影响因素 §6.4 氧化还原滴定曲线及终点的确定 §6.5 氧化还原滴定法中的预处理 §6.6 高锰酸钾法 §6.7 重铬酸钾法 §6.8 碘量法 §6.9 其它氧化还原滴定法 §6.10 氧化还原滴定结果的计算
HClO4 0.75
HCl 0.70
ϕθ'(Fe3+ /Fe2+)
与Fe3+的络合作用增强
氧化态形成的络合物更稳定, 氧化态形成的络合物更稳定,结果是电位降低 计算pH pH为 NaF浓度为 浓度为0.2 mol/l时 P136 例2 计算pH为3.0, NaF浓度为0.2 mol/l时, Fe3+/ Fe 的条件电位。在此条件下,用碘量法测 Fe2+的条件电位 在此条件下, 的条件电位。 Fe 铜时,会不会干扰测定? pH改为 改为1.0 铜时,会不会干扰测定?若pH改为1.0 时,结果又 如何? 如何?
第六章 氧化还原滴定法

条件电位
条件电位是校正了各种外界因素影响后得到的电对电 位,反映了离子强度及各种副反应影响的总结果。
当缺乏相同条件下的值时,可采用条件相近的值。在 无 φө′ 值时,可根据有关常数估算值,以便判断反应 进行的可能性及反应进行方向和程度。
五、电极电位的应用
1、判断氧化还原反应的方向
电对1 :Ox1 + ne = Red1 电对2:Red2 - ne = Ox2 φ1ө> φ2ө ,当体系处于标准状态时,电对1 中的氧化 态是较强的氧化剂,电对2中的还原态是较强的还原 剂,它们之间能够发生氧化还原反应,氧化还原反 应的方向为: Ox1 + Red2 = Red1 + Ox2
2Cu2+ + 4I-⇌2CuI↓ + I2 有关反应电对为:Cu2+ + e ⇌ Cu+ φCu2+/Cu+ө = 0.16V I2 + 2e ⇌ 2IφI2/I-ө = 0.54V 从电对的标准电极电位来判断,应当是I2氧化Cu+。 但事实上,Cu2+氧化I-的反应进行的很完全。这是由 于CuI沉淀的生成,使溶液中[Cu+]极小,Cu2+/Cu+电 对的条件电位显著升高, Cu2+ 的氧化能力显著增强 的结果。
3、催化剂对反应速率的影响 催化剂可以从根本上改变反应机制和反应速率,使用 催化剂是改变反应速率的有效方法。能加快反应速率 的催化剂称为正催化剂,能减慢反应速率的催化剂称 为负催化剂。
第三节 氧化还原滴定原理
一、氧化还原滴定曲线
1、滴定开始前 FeSO4 溶液中可能有极小量的 Fe2+ 被空气和介质氧化 生成 Fe3+ ,组成 Fe3+/Fe2+ 电对,但 Fe3+ 的浓度未知, 故滴定开始前的电位无法计算。
分析化学 第6章 氧化还原滴定

0.1
化学计量点时:
sp
(1.44 0.68) V 2
1.06
V
化学计量点后 用 Ce4+ / Ce3+ 电对计算
1.44 V
0.0592 V
lg
cr (Ce 4 cr (Ce 3
) )
加 20.02mL Ce4 时,
等于 -3
1.44 V 0.0592 V lg 0.1 1.26 V
由上可见,同一电极反应当条件不同时,
和 不同, 不同。
当 0.0592 V lg (O) (R)
n
(R) (O)
0.0592 n
V
lg
cr cr
(O) (R)
0.0592 V lg cr (O)
n
cr (R)
≠ 0 时,
即:在任意浓度时,用下式计算 某特定条件下的电对的电极电势
若相近条件下的条件电势也查不到时, 只好用标准电极电势。
条件电势表见附录Ⅴ(p311)。
例如计算 1.5 mol·L-1 H2SO4 介质中 Fe3+/Fe2+ 电对的电极电势时, 查附录Ⅴ(p311)可知, 查不到这一条件下的条件电势,此时可用 1 mol·L-1 H2SO4 介质中的条件电势 0.68 V, 这仍比用标准电极电势 0.771 V 算得的结果 更接近实际值。
变为 0.71 ~ 1.31 V,
突跃范围扩大(突跃开始点的电势降低)了。
此时,二苯胺磺酸钠指示剂的变色点电势 0.84 V 在突跃范围 0.71 ~ 1.31 V 内、成为合 适的指示剂了(在突跃范围内变色)。
可见,同一氧化还原反应, 介质不同时, 突跃范围不同(因 不同)。
3. 化学计量点电势 (sp ) 的位置
化学计量点时:
sp
(1.44 0.68) V 2
1.06
V
化学计量点后 用 Ce4+ / Ce3+ 电对计算
1.44 V
0.0592 V
lg
cr (Ce 4 cr (Ce 3
) )
加 20.02mL Ce4 时,
等于 -3
1.44 V 0.0592 V lg 0.1 1.26 V
由上可见,同一电极反应当条件不同时,
和 不同, 不同。
当 0.0592 V lg (O) (R)
n
(R) (O)
0.0592 n
V
lg
cr cr
(O) (R)
0.0592 V lg cr (O)
n
cr (R)
≠ 0 时,
即:在任意浓度时,用下式计算 某特定条件下的电对的电极电势
若相近条件下的条件电势也查不到时, 只好用标准电极电势。
条件电势表见附录Ⅴ(p311)。
例如计算 1.5 mol·L-1 H2SO4 介质中 Fe3+/Fe2+ 电对的电极电势时, 查附录Ⅴ(p311)可知, 查不到这一条件下的条件电势,此时可用 1 mol·L-1 H2SO4 介质中的条件电势 0.68 V, 这仍比用标准电极电势 0.771 V 算得的结果 更接近实际值。
变为 0.71 ~ 1.31 V,
突跃范围扩大(突跃开始点的电势降低)了。
此时,二苯胺磺酸钠指示剂的变色点电势 0.84 V 在突跃范围 0.71 ~ 1.31 V 内、成为合 适的指示剂了(在突跃范围内变色)。
可见,同一氧化还原反应, 介质不同时, 突跃范围不同(因 不同)。
3. 化学计量点电势 (sp ) 的位置
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K 2Cr 2O7
Na2S2O3
K 2Cr2O7
K2Cr2O7与I反应速度较慢,为了加速反应 需加入过量的KI并提高酸度,但酸度太大 时, I易被空气氧化,所以酸度一般控制 在1mol/L左右,并置于暗处10min以使反应 完全。在用Na2S2O3 滴定前应加水稀释以降 低溶液的酸度,否则酸度大时,Na2S2O3易分 解,且I易被空气氧化。加水稀释的另一个 目的是使Cr3+的绿色减弱,有利于终点观 察。
Ar N R NaCl H2O
NO
重氮化滴定应注意以下反应条件:
1、酸的种类和浓度
通常加入HCl,且酸度控制在
1mol/L,若酸度过低,则发生如下副
反应: [Ar
N
N]Cl
Ar
NH 2
Ar N N NHAr HCl 若酸度过高,会阻碍芳伯胺的游
离,影响重氮化反应的速度。
准溶液滴定。
NaIO3+5NaI+3H2SO4 3I2+3Na2SO4+3H2O
如何计算?
二、指示剂 常用的是I2作自身指示剂,淀粉
作特殊指示剂,尤以后者多用。
弱酸性
I3-+淀粉(直链) 常温 深蓝色吸附物
注意:间接碘量法中的加入时机。
三、标准溶液的配制与标定
(一)碘标准溶液
1、配制方法
标定法
方法是将一定量的I2与过量的KI一 起置于研钵中,加少量水研磨,使I2全 部溶解,再用水稀释,加少量HCl,过 滤,放入棕色瓶中保存。
CaCl(OCl)+2H+ Ca2++HClO+HCl
HClO+HCl
Cl2+H2O
Cl2+2KI I2+2KCl
I2+2S2O32-
2I-+S4O62-
Cl%
(CV ) Na2S2O3
MCl 1000 100
S样
例:卡尔费休法测定微量水, Karl
Fischer法的基本原理是利用:I2氧化 SO2时需定量的水:
2、反应温度与滴定速度
反应温度应在150C以下进行,温度 升高易使HNO2分解,重氮盐也会变得 不稳定。
3、苯环上取代基团的影响
在苯胺环上,有吸电子基团取代如: -NO2、-SO3H、-COOH等使反应加 速;有斥电子基团(-OH、-OR)使 反应减慢。
二、标准溶液的配制与标定
亚硝酸钠标液应用间接法配制,并在
第四节 高锰酸钾法
一、基本原理
1.概述 ~:是以高锰酸钾为标 准溶液的氧化还原滴定法。
MnO4-+8H++5e
Mn2++4H2O
1.51V
MnO
4
/
Mn
2
(可用硫酸和磷酸调[H+]约为:1~2mol/L)
MnO4-+2H2O+3e
MnO2+4OH-
MnO
4
/
MnO
2
0.59V
2H
SO 2 S H2O
4I 4H O2
2I2 2H2O
若在碱性溶液中,则发生:
3I2 6OH
5I IO3 3H2O
4I2
S O2 23
10OH
2SO24 8I 5H2O
间接碘量法的误差主要来源于两
方面:一是I2的挥发,二是I-在酸性 溶液中被空气中的O2氧化。
(三)反应条件
1、直接碘量法(碘滴定法) 必须在酸性、中性或弱碱性溶液
中进行,若溶液pH>9,则发生如下 副反应:
3I2 +6OH- 5I-+IO3-+3H2O
由于I2的氧化能力不强,所以能用 I2直接滴定的物质仅限于还原性较强 的物质,如 S2,SO32,S2O32, AsO33 SO 22 ,安乃静,维生素等。
机物的含量。由于Br2与有机物反应速 度较慢,所以必须加入过量的试剂,
待反应完成后,过量的Br2再用碘量法 测定。
示例1:测定苯酚含量。 在苯酚的试样溶液中,加入一定量过 量的KBrO3—KBr标准溶液,酸化后,则
KBrO3和KBr作用产生Br2:
BrO3 5Br 6H
OH Br
+ 3Br2 =
I2+2NO +2H2O
橙黄Ⅳ -亚甲蓝、中性红、二苯胺 3、永停滴定法
第六节 其它氧化还原滴定法
一、溴酸钾法和溴量法
1、溴酸钾法
KBrO3是强氧化剂,在酸性溶液中 其半反应为:
BrO3 6H 6e
Br 3H2O
BrO
3
/
Br
1.44V
化学计量点后,
BrO3 5Br 6H
1) 温度 反应宜在75~850C 下进行,
但温度不能高于900C,否则:
H2C2O4
CO2 +CO +H2O
2)酸度 一般在开始滴定时,溶液的酸度约为
0.5~1mol/L,滴定终了,酸度约为0.2 ~0.5
mol/L。 酸度过高,又会促使H2C2O4分解。
3) 滴定速度 开始滴定时速度不宜快,
否则,KMnO4来不及与C2O4 2- 反应, 便在热的酸性溶液中发生分解。
I2+SO2+2H2O
2HI+H2SO4
由于上述反应可逆,要使反应向右 进行需加入适当的碱性物质以中和反 应生成的酸,采用吡啶可满足此要求。
I2+SO2+3C5H5N+CH3OH+H2O
H
H
2C5H5N +C5H5N
I
SO4CH3
在此反应中I2可作自身指示剂, 但最好使用永停法指示终点。
例:碘量法在有机分析中的应用。其 中有直接碘量法的应用,也有间接碘 量法的应用。
(微酸性、中性或弱碱性溶液)
2.高锰酸钾法的应用
1) 直接滴定法 许多还原性物质,如Fe2+、As(Ⅲ)、 Sb(Ⅲ )、H2O2、C2O42-等,可用KMnO4 溶液直接滴定。 例如: 2MnO4-+5H2O2+6H+
2Mn2++5O2+8H2O
例如:原料药中亚铁离子的测定
溶解样品,并在硫酸酸性条件下立 即滴定
3Br2 3H2O
OH Br
+ 3HBr
Br2+2I-
Br
I2+2Br-
防止I2挥发的方法:1)加入过量的 KI;2)在室温中进行;3)使用碘瓶, 快滴慢摇。
防止I-被O2氧化的方法:1)降低 酸度,以降低I-被O2氧化的速率;2) 防止阳光直射,除去Cu2+、NO2-等 催化剂,避免I-加速氧化;3)使用 碘量瓶,滴定前反应完全后立即滴定,
快滴慢摇。
例:漂白粉中有效氯的测定(主要 成分:CaCl(OCl)
2、标定的方法 基准物:K2Cr2O7、KIO3、KBrO3等。 其中以重铬酸钾最常用。
Cr2O72-+6I-+14H+
I2 2S2O32
2Cr3++3I2+7H2O
2I -
S O 2 46
K2Cr2O7~6I-~3I2~6Na2S2O3
C 16 V1000WM Na2S2O3
配制好后要注意保存。
(二)硫代硫酸钠标准溶3 ·5H2O 晶体容易 风化,并含有少量 S、S2-、SO32-、 CO32-、Cl-等杂质,不能直接配制标 准溶液,配好的Na2S2O3溶液也不稳 定,浓度将逐渐发生变化,这是因为:
a、 溶于水中的CO2的作用,水中 CO2的存在,使水呈弱酸性,而Na2S2O3 在酸性溶液中会缓慢分解。
其还原态可用碘标准溶液直接滴定, 此方法称为直接碘量法。
2、间接碘量法(滴定碘法) 凡标准电极电位高于 的电对,其
I2/2I-
氧化态可用I-还原,定量置换出I2,置 换出的I2用Na2S2O3标准溶液滴定,此 方法称为置换碘量法。
有些还原性物质可与过量的I2标准 溶液反应,待反应完全后,用Na2S2O3 标准溶液滴定多余的I2,此方法称为剩 余碘量法或回滴碘量法。
CaC2O4
加硫酸溶解沉淀后,
2MnO4-+5C2O42-+16H+ 2Mn2++10CO2+8H2O
二、标准溶液的配制
1.配制高锰酸钾标液采用
标定法
一般高锰酸钾试剂中常含有 少量MnO2和其他杂质,而且…
为配制较稳定的KMnO4溶液,常需:
称取稍多于理论量的KMnO4溶解。 将配好的溶液加热至沸,并保持 微沸1hr,密闭放置7~10天。 用微孔玻璃漏斗过滤。
b、细菌作用: Na 2S2O3 细菌 Na 2SO3 S
c、空气中氧的氧化作用:
2
S O2 23
O2
2 SO
2 4
2S
因此,配制溶液时,应使用新煮沸并冷却 了的蒸馏水,煮沸的目的是除去水中溶解 的CO2和O2,并杀死细菌,同时加入少量 Na2 CO3使溶液呈弱碱性(pH≈9),以抑制细 菌的生长。配好的溶液置于棕色瓶中放置 7~10天,过滤后再标定。过一段时间后如 发现溶液有混浊,表示有硫析出,应弃去 重配或过滤后再标定。
2、标定的方法
常用基准物:As2O3
As2O3+2NaOH
2NaAsO2+H2O
(溶解)
酸化后,加NaHCO3调pH值
HAsO2+I2+2H2O