统计学-相关与回归分析ppt课件
合集下载
统计学相关分析和回归分析ppt课件

23
计算积距相关系数, 连续性变量才可采用
图8-1 Bivariate Correlations 对话框
。
计算Kendall秩相关
系数,适合于定序变
量或不满足正态分布
假设的等间隔数据。 计算Spearman秩相
关系数,适合于定序
见图 8-2
变量或不满足正态分
关布。不还假清是设楚负的变相等量关间之时隔间选数是择据正此相项 。
没有关系
9
8.2.2 相关系数 利用相关系数进行变量间线性关系的分析通常需
要完成以下两个步骤:
第一,计算样本相关系数r;
相关系数r的取值在-1~+1之间 r>0表示两变量存在正的线性相关关系;r<0表示两变
量存在负的线性相关关系 r=1表示两变量存在完全正相关;r=-1表示两变量存
在完全负相关;r=0表示两变量不相关 |r|>0.8表示两变量有较强的线性关系; |r|<0.3表示
。 (4)在Test of Significance框中选择输出相关系数检验的双
边(Two-Tailed)概率p值或单边(One-Tailed)概率 p值。 (5)选中Flag significance correlation选项表示分析结果 中除显示统计检验的概率p值外,还输出星号标记,以标明 变量间的相关性是否显著;不选中则不输出星号标记。 (6)在Option按钮中的Statistics选项中,选中Crossproduct deviations and covariances表示输出两变量的 离差平方和协方差。
例如,在研究商品的需求量和价格、消费者收入之间 的线性关系时,需求量和价格之间的相关关系实际还包含 了消费者收入对价格和商品需求量的影响。在这种情况下 ,单纯利用相关系数来评价变量间的相关性显然是不准确 的,而需要在剔除其他相关因素影响的条件下计算变量间 的相关。偏相关的意义就在于此。
计算积距相关系数, 连续性变量才可采用
图8-1 Bivariate Correlations 对话框
。
计算Kendall秩相关
系数,适合于定序变
量或不满足正态分布
假设的等间隔数据。 计算Spearman秩相
关系数,适合于定序
见图 8-2
变量或不满足正态分
关布。不还假清是设楚负的变相等量关间之时隔间选数是择据正此相项 。
没有关系
9
8.2.2 相关系数 利用相关系数进行变量间线性关系的分析通常需
要完成以下两个步骤:
第一,计算样本相关系数r;
相关系数r的取值在-1~+1之间 r>0表示两变量存在正的线性相关关系;r<0表示两变
量存在负的线性相关关系 r=1表示两变量存在完全正相关;r=-1表示两变量存
在完全负相关;r=0表示两变量不相关 |r|>0.8表示两变量有较强的线性关系; |r|<0.3表示
。 (4)在Test of Significance框中选择输出相关系数检验的双
边(Two-Tailed)概率p值或单边(One-Tailed)概率 p值。 (5)选中Flag significance correlation选项表示分析结果 中除显示统计检验的概率p值外,还输出星号标记,以标明 变量间的相关性是否显著;不选中则不输出星号标记。 (6)在Option按钮中的Statistics选项中,选中Crossproduct deviations and covariances表示输出两变量的 离差平方和协方差。
例如,在研究商品的需求量和价格、消费者收入之间 的线性关系时,需求量和价格之间的相关关系实际还包含 了消费者收入对价格和商品需求量的影响。在这种情况下 ,单纯利用相关系数来评价变量间的相关性显然是不准确 的,而需要在剔除其他相关因素影响的条件下计算变量间 的相关。偏相关的意义就在于此。
统计学相关与回归分析法PPT课件

关系,以及何种关系作出判断。
定量分析
在定性分析的基础上,通过编制相 关表、绘制相关图、计算相关系数
等方法,来判断现象之间相关的方 向、形态及密切程度。
第15页/共50页
相关表和相关图
将现象之间的相互关系,用
相关表
表格的形式来反映。
简单 相关表
适用于所观察的样本单位数 较少,不需要分组的情况
分组 相关表
第19页/共50页
相关系数 (只研究简单相关系数)
在直线相关的条件下,用以反映两变量间
线性相关密切程度的统计指标,用r表示
r 2xy
x xy y n
x y
2
2
xx n yy n
x xy y (积差法)
x
2
x
y y2
第20页/共50页
令
(
x
x
)(
y
y
)
xy
1 n
x
y
相关系数r的取值范围:-1≤r≤1
r>0 为正相关,r < 0 为负相关; |r|=0 表示不存在线性关系; |r|=1 表示完全线性相关;
0<|r|<1表示存在不同程度线性相关:
|r| < 0.3 为微弱相关(基本无关);
0.3≤ |r| <0.5为低度相关; 0.5≤ |r| <0.8为显著相关(中度相关) ; 0.8≤ |r| <1.0第为22页高/共5度0页 相关(强相关) 。
0.7961
a y bx 625 0.7961 916 6.5142
16
16
即线性回归方程为:
yˆ 6.5142 0.7961x
计算结果表明,在其他条件不变时,能源消耗 量每增加一个单位(十万吨),工业总产值将 增加0.7961个单位(亿元)。
定量分析
在定性分析的基础上,通过编制相 关表、绘制相关图、计算相关系数
等方法,来判断现象之间相关的方 向、形态及密切程度。
第15页/共50页
相关表和相关图
将现象之间的相互关系,用
相关表
表格的形式来反映。
简单 相关表
适用于所观察的样本单位数 较少,不需要分组的情况
分组 相关表
第19页/共50页
相关系数 (只研究简单相关系数)
在直线相关的条件下,用以反映两变量间
线性相关密切程度的统计指标,用r表示
r 2xy
x xy y n
x y
2
2
xx n yy n
x xy y (积差法)
x
2
x
y y2
第20页/共50页
令
(
x
x
)(
y
y
)
xy
1 n
x
y
相关系数r的取值范围:-1≤r≤1
r>0 为正相关,r < 0 为负相关; |r|=0 表示不存在线性关系; |r|=1 表示完全线性相关;
0<|r|<1表示存在不同程度线性相关:
|r| < 0.3 为微弱相关(基本无关);
0.3≤ |r| <0.5为低度相关; 0.5≤ |r| <0.8为显著相关(中度相关) ; 0.8≤ |r| <1.0第为22页高/共5度0页 相关(强相关) 。
0.7961
a y bx 625 0.7961 916 6.5142
16
16
即线性回归方程为:
yˆ 6.5142 0.7961x
计算结果表明,在其他条件不变时,能源消耗 量每增加一个单位(十万吨),工业总产值将 增加0.7961个单位(亿元)。
统计学课件第七章 相关与回归.ppt

30 家同类企业的有关资料
单位成本 y
产量 x(件)
合计
(元/件)
20 30 40 50 80
18
4 ————4
16
4 3 1 1 —9
15
1 2 3 3 1 10
14
—— 1 2 4 7
合计
9 5 5 6 5 30
(二)相关图:以横轴代表X,纵轴代表Y,绘制散点图。
不足之处:难以量化,反映相关程度不精确。
xy n
xy f f
11
相关系数的取值范围: 1r1
当r=0时,表明两个变量之间完全不相关,即不存在线性相 关关系;
当r= 1时,相关关系转为函数关系,称为完全相关;
当[-1<r<1]时,表明两个变量之间不完全相关; 当[-1<r<0]时,表明两个变量之间是负相关; 当[0<r<1]时,表明两个变量之间是正相关. r 越接近于1(+1或-1),表明相关关系越强, r 越接近于0,表 明相关关系越弱。
5
第七章 相关与回归分析
STAT
(三)按相关的形式可分为 1、**线性相关(直线相关):一个变量对另一个变量的影响 表现为直线的形式。进一步可区分为正相关与负相关。 2、非线性相关(曲线相关):一个变量对另一个变量的影响 表现为曲线的形式。非线性相关一般不区分方向。 (四)按影响因素的多少可区分为 1、**单(简单)相关:两个变量之间的相关关系; 2、复(多元)相关:三个或三个以上的变量之间的相关关系。 [例]:体重与身高、食欲、睡眠时间之间的关系 3、偏相关:在三个或三个以上的变量中,假定其他变量不变 只测定其中两个变量的相关关系。
(x x)2 (y y)2
统计学--第八章相关与回归分析精选文档PPT课件

x2ˆ0ˆ1x3v ˆ
计算残差 v ˆx2ˆ0ˆ1x3
此时 vˆ 中不再含有 x 3 对 x 2 的影响。
19.07.2020
课件
33
第八章 相关与回归分析
第五节 相关分析
第三步,计算 uˆ 和 vˆ 的简单相关系数
由于 uˆ 和 vˆ 中都不再包含 x 3 的影响,因此 uˆ 和 vˆ
的简单相关系数就是 x 3 保持不变时,x 1与 x 2 之间的相关系数。
目的 检验总体两变量间线性相关性是否显著
⒈提出假设: H 0:0H 1:0
步 ⒉构造检验统计量: 骤
tr n2 1r2~t(n2 )
19.07.2020
课件
25
第八章 相关与回归分析
相关系数的显著性检验(t检验法)
步 骤
⒊ 根据给定的显著性水平,确定临界值 t
⒋ 确定原 ,表示总体两
19.07.2020
课件
5
相关关系与因果关系
案例分析
一家研究机构有一项惊 人的发现:统计数据显 示,脚长的儿童拼写能 力比脚短的儿童强。
原来他们调查的是一 群年龄不同的儿童, 脚长的儿童比脚短的 儿童年龄大!
赶快回去量一 下儿子的脚长
我要把脚拉长
19.07.2020
一课件点!
6
第八章 相关与回归分析
19.07.2020
课件
4
第八章 相关与回归分析
第一节 相关与回归分析的基本概念
一、相关关系与函数关系
(二)统计关系
统计关系不同于函数关系,当重复观测时,观测点 不是完全落在统计关系曲线上,而是围绕统计关系 曲线散布。统计关系可以表示为确定部分和随机性 部分二者之和,这是回归分析的基础。
计算残差 v ˆx2ˆ0ˆ1x3
此时 vˆ 中不再含有 x 3 对 x 2 的影响。
19.07.2020
课件
33
第八章 相关与回归分析
第五节 相关分析
第三步,计算 uˆ 和 vˆ 的简单相关系数
由于 uˆ 和 vˆ 中都不再包含 x 3 的影响,因此 uˆ 和 vˆ
的简单相关系数就是 x 3 保持不变时,x 1与 x 2 之间的相关系数。
目的 检验总体两变量间线性相关性是否显著
⒈提出假设: H 0:0H 1:0
步 ⒉构造检验统计量: 骤
tr n2 1r2~t(n2 )
19.07.2020
课件
25
第八章 相关与回归分析
相关系数的显著性检验(t检验法)
步 骤
⒊ 根据给定的显著性水平,确定临界值 t
⒋ 确定原 ,表示总体两
19.07.2020
课件
5
相关关系与因果关系
案例分析
一家研究机构有一项惊 人的发现:统计数据显 示,脚长的儿童拼写能 力比脚短的儿童强。
原来他们调查的是一 群年龄不同的儿童, 脚长的儿童比脚短的 儿童年龄大!
赶快回去量一 下儿子的脚长
我要把脚拉长
19.07.2020
一课件点!
6
第八章 相关与回归分析
19.07.2020
课件
4
第八章 相关与回归分析
第一节 相关与回归分析的基本概念
一、相关关系与函数关系
(二)统计关系
统计关系不同于函数关系,当重复观测时,观测点 不是完全落在统计关系曲线上,而是围绕统计关系 曲线散布。统计关系可以表示为确定部分和随机性 部分二者之和,这是回归分析的基础。
统计学课件第八章相关和回归分析

2019/12/17
2
本章学习目的
1.理解相关的意义、主要形式、以及相 关分析的基本内容。
2.掌握相关系数的设计原理,以及相关 关系显著性检验。
3.回归和相关的区别和联系
4.普通最小二乘法的原理以及回归参数 的意义。
5.估计标准误差的分析等。
2019/12/17
3
第一节 相关的意义和种类
+1.0
2019/12/17
34
【例1】计算人均可支配收入和消费支出之间 的简单相关系数。
Ïû ·Ñ Ö§ö³ (°Ù Ôª )y
ÈË ¾ù ¿É Ö§ Åä ÊÕ Èë (°Ù Ôª )x
y2
x2
xy
15
18
225
324
270
20
25
400
625
500
30
45
900
2025 1350
40
60
1600 3600 2400
2019/12/17
x
y
x
1.0000
y
0.9697 1.0000
31
相关系数取值及其意义
1. r 的取值范围是 [-1,1] |r|=1,为完全相关 r =1,为完全正相关 r =-1,为完全负相关
2. r = 0,不存在线性相关关系 3. -1r<0,为负相关 4. 0<r1,为正相关 5. |r|越趋于1表示关系越密切;|r|越趋于0表示
40 30 20 10
0 0
20 40 60 80 100
广告费(万元)
2019/12/17
27二、简单相关系数 Nhomakorabea (一)简单相关系数的概念
统计学第8章相关回归分析精品PPT课件

1 2003 2 2004 3 2005 4 2006 5 2007 6 2008 7 2009 8 2010
合计
x (万元)
500 540 620 730 900 970 1050 1170
y (万元)
120 140 150 200 280 350 450 510
xx y y
xx2 yy2 xxyy
例2 分组相关表和相关图的编制方法:
企业按销售额分组 (万元) 4以下 4~ 8 8 ~ 12 12 ~ 16 16 ~ 20 20 ~ 24 24 ~ 28 28 ~ 32 32 ~ 36
流通费用率 (%) 9.65 7.68 7.25 7.00 6.86 6.73 6.64 6.60 6.58
计算表明该市工资性现金支出与城镇储蓄存款余额 之间存在着高度正相关。
r的特点: (1) r取正值或负值决定于分子协方差; (2) r的绝对值,在0与1之间; (3) r的绝对值大小,可说明现象之间相关关系的紧密程度。
用以反映因变量估计值的可靠程度;
5. 相关系数的显著性检验。
第二节 简单线性相关分析
一、相关表和相关图
简 单 相 关 表 — 根 据 总 体 单 位 的 原 始 资 料 汇 编 的 相 关 表 分 组 相 关 表 — 将 原 始 资 料 进 行 分 组 而 编 制 的 相 关 表
单 变 量 分 组 表 — 按 自 变 量 分 组 双 变 量 分 组 表 — 按 自 变 量 和 因 变 量 均 分 组
相关图,也称散布图(或散点图)。
例1 简单相关表和相关图的编制方法:
某市2003年 — 2010年的工资性现金支出与城镇储蓄存款余额的资料
序号
1 2 3 4 5 6 7 8
合计
x (万元)
500 540 620 730 900 970 1050 1170
y (万元)
120 140 150 200 280 350 450 510
xx y y
xx2 yy2 xxyy
例2 分组相关表和相关图的编制方法:
企业按销售额分组 (万元) 4以下 4~ 8 8 ~ 12 12 ~ 16 16 ~ 20 20 ~ 24 24 ~ 28 28 ~ 32 32 ~ 36
流通费用率 (%) 9.65 7.68 7.25 7.00 6.86 6.73 6.64 6.60 6.58
计算表明该市工资性现金支出与城镇储蓄存款余额 之间存在着高度正相关。
r的特点: (1) r取正值或负值决定于分子协方差; (2) r的绝对值,在0与1之间; (3) r的绝对值大小,可说明现象之间相关关系的紧密程度。
用以反映因变量估计值的可靠程度;
5. 相关系数的显著性检验。
第二节 简单线性相关分析
一、相关表和相关图
简 单 相 关 表 — 根 据 总 体 单 位 的 原 始 资 料 汇 编 的 相 关 表 分 组 相 关 表 — 将 原 始 资 料 进 行 分 组 而 编 制 的 相 关 表
单 变 量 分 组 表 — 按 自 变 量 分 组 双 变 量 分 组 表 — 按 自 变 量 和 因 变 量 均 分 组
相关图,也称散布图(或散点图)。
例1 简单相关表和相关图的编制方法:
某市2003年 — 2010年的工资性现金支出与城镇储蓄存款余额的资料
序号
1 2 3 4 5 6 7 8
[课件]统计学:第八章 相关与回归分析PPT
![[课件]统计学:第八章 相关与回归分析PPT](https://img.taocdn.com/s3/m/f088c63d650e52ea551898e9.png)
2018/12/4 河北工程大学经济管理学院 8
二、相关关系的种类
把握以下问题: 1、按相关程度划分; 2、按相关方向划分; 3、按相关形式划分; 4、按变量多少划分; 5、按相关性质划分。
2018/12/4 河北工程大学经济管理学院 9
1、按相关程度划分
可分为完全相关、不完全相关和不相关 (1 )完全相关:当一种现象的数量变化完全 由另一个现象的数量变化所确定时,称这两 种现象之间的关系为完全相关,例如圆的周 长 L 决定于它的半径 R ,即 L=2∏R 。在这种 情况下,相关关系即为函数关系,也可以说 函数关系是相关关系的一种特例。
第八章 相关与回归分析
本章分三节: 第一节 相关与回归分析的基本概 念 第二节 一元线性回归分析 第三节 相关分析
2018/12/4
河北工程大学经济管理学院
3
第一节 相关与回归分析的 基本概念
本节需要把握四个问题: 一、函数关系与相关关系; 二、相关关系的种类; 三、相关分析与回归分析; 四、相关表和相关图。
16
三、相关分析与回归分析
把握以下问题: 1、相关分析与回归分析的概念; 2、二者的联系; 3、二者的区别; 4、应用中注意局限性。
2018/12/4 河北工程大学经济管理学院 7
3、二者关系
上述函数关系和相关关系之间并不存在 严格的界限,一定条件下可以转化。由 于有测量误差等原因,函数关系在实际 中往往通过相关关系表现出来;反之当 对现象之间的内在联系和规律性了解得 更清楚深刻的时候,相关关系也可能转 化为函数关系。因此,相关关系通常可 以用一定的函数关系表达式去近似地描 述。
2018/12/4 河北工程大学经济管理学院 4
二、相关关系的种类
把握以下问题: 1、按相关程度划分; 2、按相关方向划分; 3、按相关形式划分; 4、按变量多少划分; 5、按相关性质划分。
2018/12/4 河北工程大学经济管理学院 9
1、按相关程度划分
可分为完全相关、不完全相关和不相关 (1 )完全相关:当一种现象的数量变化完全 由另一个现象的数量变化所确定时,称这两 种现象之间的关系为完全相关,例如圆的周 长 L 决定于它的半径 R ,即 L=2∏R 。在这种 情况下,相关关系即为函数关系,也可以说 函数关系是相关关系的一种特例。
第八章 相关与回归分析
本章分三节: 第一节 相关与回归分析的基本概 念 第二节 一元线性回归分析 第三节 相关分析
2018/12/4
河北工程大学经济管理学院
3
第一节 相关与回归分析的 基本概念
本节需要把握四个问题: 一、函数关系与相关关系; 二、相关关系的种类; 三、相关分析与回归分析; 四、相关表和相关图。
16
三、相关分析与回归分析
把握以下问题: 1、相关分析与回归分析的概念; 2、二者的联系; 3、二者的区别; 4、应用中注意局限性。
2018/12/4 河北工程大学经济管理学院 7
3、二者关系
上述函数关系和相关关系之间并不存在 严格的界限,一定条件下可以转化。由 于有测量误差等原因,函数关系在实际 中往往通过相关关系表现出来;反之当 对现象之间的内在联系和规律性了解得 更清楚深刻的时候,相关关系也可能转 化为函数关系。因此,相关关系通常可 以用一定的函数关系表达式去近似地描 述。
2018/12/4 河北工程大学经济管理学院 4
《统计学原理与应用》课件第07章 相关与回归分析

74.4 172.0 248.0 418.0 575.0 805.2 972.0 1,280.0
104,214
4,544.6
统计学基础
第七章 相关与回归分析
根据计算结果可知:Βιβλιοθήκη x 36.4y 880
n8
x2 207.54
y2 104,214
xy 4,544.6
Fundamentals of Statistics
n x2 ( x)2 n y2 ( y)2
公式7—3
公式7—3是实际工作中使用较多的计算公式
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(四)相关系数的运用
(1)相关系数有正负号,分别表示正相关和负相关。
(2)相关系数的取值范围在绝对值的0 之1 间。其值大小 反映两变量之间相关的密切程度。
统计学基础
第七章 相关与回归分析
二、相关关系的种类
3.相关关系按照相关的方向分为正相关和负相 关 正相关:是指一个变量的数量变动和另一个变 量的数量变动方向一致.
负相关:当一个变量的数量变动与另一个变量 的数量变动方向相反时,称为负相关.
Fundamentals of Statistics
统计学基础
统计学基础
第七章 相关与回归分析
二、相关关系的测定 (一)相关系数的含义:
相关系数是在直线相关的条件下,用来说明两个 变量之间相关关系密切程度的统计分析指标。
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(二)相关系数的作用
1.说明直线相关条件下,两变量的相关关系的密切程 度的高低. (见教材第159页说明)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F值 F MSR
MSE
.
14
模型评价-显著性检验2
• 单个回归系数的检验
(1)要检验的假设:H 0 : i 0 ;H1 : i 0 (i=1,2,……,p)
^
(2)t 检验的计算公式为: ti
i
S i
,其中 Si 是回归系数
标准误,t 值应该有 p 个
(3)给定显著性水平α,确定临界值 t / 2 (n p 1)
相关程度、 相关方向、 相关形式、 变量多少、 相关性质
二、线性相关关系的识别
(一)散点图 (例子)
最简单、最直观的识别方法, 但难以给出相关的程度.
(二)直线相关系数
直线相关系数的设计思想 总体相关系数与Pearson相关系数 相关系数的检验
.
7
三、一元线性回归分析
一元线性回归模型的概念
y01x 变量y对x的一元线性回归总体模型
(1) 把非线性关系转化为线性关系,然后再运用线性回 归的分析方法进行估计。
(2) 利用非线性最小二乘法直接估计 非线性模型转换成线性模型的常用方法:直接和间接代换法
例1:太阳镜的日销售数量 Y 与日最高气温 X 之间的关系
例2:人均消费与人均GDP的关系
.
2
相关分析与回归分析
相关分析
用一个指标来表明现象间相互依存关系 的密切程度。
回归分析
根据相关关系的具体形态,选择一个合 适的数学模型,来近似地表达变量间关系。
相关分析所研究的变量是对等关系;回归分析所
研究的两个变量不是对等关系。
(4)若 F F ( p, n p 1) ,则拒绝 H 0 ,说明总体回归系数 i 不
全为零,即回归方程是显著的;反之,则认为回归方程不显著。
表 10.4 多元线性回归模型的方差分析表 方差来源 平方和 自由度 均方
回归
SSR
p
MSR SSR p
误差 总计
SSE SST
n-p-1 n-1
MSE SSE n p 1
第九章
相关相与关回回归归分析
南京财经大学统计学系
相关分析与回归分析是现代统计学中非常重要的内容,在 自然、管理科学和社会经济领域有着十分广泛的应用。
在分析变量之间关系的时,常用的基本模型: (1)相关模型; (2)回归模型
实践中到底使用哪种模型取决于研究者的研究目的和数据 的收集方式和条件。相关分析: 变量 X 和 Y 都被视为随机 变量,服从二元分布;经典的回归分析: 通常变量 x 不是 随机变量,在事先选好的值中取值,变量 Y 是随机变量, 在变量 x 的给定值处有相应的观测值。
基本概念:回归系数、被解释变量(因变量)、解释 变量(自变量)、多元回归、 随机误差项。
多元线性回归模型的样本形式:
y1 0 1x11 2 x12 ...... p x1p 1 y2 0 1x21 2 x22 ...... p x2 p 2
......
yn 0 1xn1 2 xn2 ...... p xnp n
3300
2800
2300
1800 4.300
5300
6300
7300
8300
人均GDP 9300 4
本章内容
一、相关关系的概念和分类 相
关
二、线性相关关系的识别
分 析
三、一元线性回归分析
四、多元线性回归分析 New
五、非线性回归分析
New
.
5
一、相关关系的概念和分类
一、函数关系和相关关系 二、相关关系的分类
(4)若 ti t /2 ,则拒绝 H 0 ,即总体回归系数 i 0
有多少个回归系数,就要做多少次 t 检验。
.
15
EXCEL演示和解释
.
16
五、非线性回归分析
线性回归模型的结构特点: (1)被解释变量是解释变量的线性函数—变量线性 (2)被解释变量也是参数的线性函数—参数线性
根据实际分析建立的模型往往不符合上述线性特点,称为 非线性模型。如: 柯布—道格拉斯生产函数 YALK 处理非线性回归模型的方法有两种:
写成矩阵形式为:Y X ε
.
9
1 x11 x12 ...... x1p
X
1
x21
x22
.......
x2
p
....... ...... ...... ...... ......
1
xn1
xn2
......
xnp
;
y1
0
1
Y
y2
...... ;
yn
1
......
p
;
2
......
n
.
10
基本假设
解释变量是确定性变量,不是随机变量,且要求矩 阵X中的自变量列之间不相关,样本容量的个数应 大于解释变量的个数。 独立、同分布、零均值
正态分布的假定条件:
i~ N (0 , 2 )i, 1 ,2 , ,n
.
11
参数估计
• 与一元线性回归方程的参数估计原理一样, 应该使得估 计值与观测值y之间的残差在所有样本点上达到最小, 即使Q达到最小
Q n(y i y ^ i)2ne i2 e T e (Y X ˆ)T (Y X ˆ)
i 1
i 1
• 参数的最小二乘估计值为:
• 另外,
βˆ(X'X)1X'Y
^
ˆ Sy(x1xp)
(yi yi)2 np1
.
12
模型评价-拟合优度
• 一般不再用可决系数
r2 SSR yˆi y2
因果
.
3
年份 人均国内生产总值 人均消费金额
yபைடு நூலகம்ar
x
y
1995
4854
2236
1996
5576
2641
1997
6054
2834
1998
6308
2972
1999
6551
3138
2000
7086
3397
2001
7651
3609
2002
8214
3818
2003
9101
4089 4300
人均消费
3800
E (Y|x)01x 一元线性回归方程
yˆˆ0 ˆ1x 一元线性经验回归方程
New
估计方法:普通最小二乘估计 、标准误差 — 的估计
模型评价:可决系数、显著性检验1 2
预测方法:点预测,区间预测
将代入回归方程得=181.5830+0.4414×10000=4595.5628(元)
.
8
四、多元线性回归分析
SST
2
yi y
• 而是用修正的可决系数
ra21(1r2)nnp11
.
13
模型评价-显著性检验1
• 整个回归方程的检验
(1)提出假设 H0 : 1 2 p 0 , H1 : 1, p 不全为 0.
(2)根据表 10.4 构建 F 统计量,见表 10.4 (3)给定显著性水平α,查 F 分布表,得临界值 F ( p, n p 1) 。