统计学logistic回归分析课件
合集下载
logistic回归分析精选PPT课件

Number of obs =
LR chi2(1)
=
Prob > chi2
=
Pseudo R2
=
152 30.67 0.0000 0.1455
------------------------------------------------------------------------------
case |
Coef. Std. Err.
z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
exposure | 2.112829 .4228578 5.00 0.000 1.284043 2.941615
2
二分类资料的分析
非条件logistic模型:成组病例对照研究资料 条件logistic模型:配比病例对照研究资料3源自非条件logistic回归模型
lo ( p ) g 0 + i 1 X 1 + t = 2 X 2 k X k
01X1+ 2X2+ + kXk
p1ee01X12X2 kXk 1
|------------------------+----------------------
Odds ratio |
8.271605
| 3.4193 21.33091 (exact)
Attr. frac. ex. |
.8791045
| .7075425 .9531197 (exact)
Attr. frac. pop |
.4626866
《Logistic回归》课件

公式
f(x)=1/(1+e^-x)其中,x是一个实数,源自表示 自然对数的底数。特点
• 输出范围在0-1之间,代 表了一个概率值;
• 函数有单峰性,中心对 称,可以确定最大值和
• 最在小输值入;接近0时函数近 似于线性函数。
应用场景:二元Logistic回归
乳腺癌预测
贷款审核
二元Logistic回归被广泛应用于医 学界用于识别患有乳腺癌的女性。
数据预处理
4
的潜在关系和规律。
对需要进行缩放、归一化、标准化等处
理的变量进行预处理。
5
模型拟合
将数据划分训练集和测试集,通过模型 对训练集进行拟合,并评估模型预测能 力。
模型评估方法
混淆矩阵
将预测结果与真实结果进行比对,计算假正率、假负率、真正率和真负率等指标。
ROC曲线
通过绘制真正率与假正率的曲线,评估模型的预测能力。
AUC指标
ROC曲线下的面积就是AUC,AUC越大说明模型预测结果越准确。
常见模型优化方法
1 数据增强
通过合成数据或者样本扩 增等方法,增加数据量, 提高模型泛化性能。
2 特征选择
选择对于问题最重要的变 量,避免过拟合。
3 模型集成
通过结合多个模型的结果, 提高整体预测能力。
应用探索:Logistic回归的扩展
2 作用
通过逻辑函数将线性变量转化为概率值,从 而进行二元分类。
3 优点
简单易懂、易于解释和使用,对于大规模数 据集有效率。
4 缺点
只适用于二元分类问题,并且在分类较为复 杂的非线性问题上表现较差。
sigmoid函数
介绍
sigmoid函数是Logistic回归模 型中核心的激活函数,将输入 值映射到0-1的概率分布区间内。
医学统计学十六篇Logisic回归分析精品PPT课件

4
1
1
416
265 151
2021/1/6
医学统计学
18
经 logistic 回归计算后得
经经lol经 og经igslitlsoioctgigics回 ist经回 itci归回cl归o回 归计g计 is计归 算ti算 c算计 后回后 后算 得归得得后计: b得 0算=后 -0.得9099, Sb0 =0.1358;b1 =0.885 b0b=0 =-0-b.009.=09-90099., 9b0,09=S9b-S00, b=0.9=00S.091b0.931=, 53085.S; 18b03;=5Sb018bb1.=; 11==0305.0b.8811.88; =558065b0.1, 86;=8,05b.682, 8=506.,5261, Sb2 =0.15 SSb1 b=1 =0S.01b.151=05000.; 10S5;b01b=02b0; =2.1=05b.0502.025=; 62016.b, 5122,吸 =6S01Sb烟 .2, 5b=22与 =06S.10b1不 , 2.51=75吸 S027b.212烟 =507的 .215优72势比:ORˆ1 exp 吸吸烟烟吸 与与烟 不不与 吸吸吸不 烟烟 烟吸 的与 的烟 优不 优的 势吸势优 比烟比势 : 的:O比 优 OROR1ˆ: 势 1R的ˆ1比 Oe9xReˆ: p51xbp1Obe1可 Rˆx1epx信 ebpe1xxp0区 p.08eb.18x8间5p8650e:=x6.8p2=8.0245..82648=2526.=422.42 OORR1 的1O的R9159的5可 O9可 5R信 1 的 信可 区区 9信 间 5间区 :可: 间信:区ex间 p[b:1 u0.05/ 2Sb1 ] exp(0.8856 1.96 0 饮 ex饮 epx酒[p酒 b[饮 1与 ebx1与p酒 u不[0u不 b.010与 5饮 .0/52饮 饮 e/Su不 2酒 xbS01p酒 酒 .0]b[15饮 的 b/]12与 的Se酒 优bxeu1不优 p]x0.的 (势 0p5饮 0(/势e2.08优 S比 x酒 .8b8p比 15]8(势 :的 605:饮 .6e8比 O优 x81pR酒5.ˆ19(势 :260.69.与 86比e810x5不 .:.9p0616.b51饮2015.009酒).0e61x)5p的00(01.0(1..1优 5)85.21086,0势 13(1),1.32.比 8.521(11).5,6.:3)89.12, 35.)25) OOORO2RRˆ的 22RˆO的 2OOReeR92xRxe2ˆ59p的 2px5bp(的b2b可 eO2929x可 OR5e5pex信 21Rxˆbep的 2.信 p2x9(可可 b区 0p62.e区 09S5信ex信 .间 52bx5p126p间 2区).b91区 620:6可 1.间:5Se1间 e2bx信 2:x.616)pp1.9:O6(区 009.eRe5.1x5间 x22.p62p6的(196(:0b1.52192.6651191..99661可.S9b06信 2 .)105区.71e25x间7)p2(:0) (.15(2.126.421,42, 2.13..30906)) 0
logistic回归分析PPT优秀课件

(2)线性回归分析:由于因变量是分类变量,不能满足 其正态性要求;有些自变量对因变量的影响并非线性。
2
logistic回归:不仅适用于病因学分析,也可用于其他方面的研究,研 究某个二分类(或无序及有序多分类)目标变量与有关因素的关 系。
logistic回归的分类: (1)二分类资料logistic回归: 因变量为两分类变量的资料,可用
非条件logistic回归和条件logistic回归进行分析。非条件logistic回 归多用于非配比病例-对照研究或队列研究资料,条件logistic回归 多用于配对或配比资料。 (2)多分类资料logistic回归: 因变量为多项分类的资料,可用多 项分类logistic回归模型或有序分类logistic回归模型进行分析。
比较
调查方向:收集回顾性资料
人数 暴露
疾病
a/(a+b) c/(c+d)
a
+
b
-
病例
c
病例对照原理示意图
6
是否暴露 暴露组 未暴露组 合计
病例 a c a+c
对照 b d b+d
合计 a+b(n1) c+d(n2) n
比数比(odds ratio、OR):病例对照研究中表示疾病与暴露间
联系强度的指标,也称比值比。
相对危险度RR的本质是暴露组与非暴露组发病率之比或发病概率 之比。但病例对照研究不能计算发病率,只能计算比值比OR值。 OR与RR的含义是相同的,也是指暴露组的疾病危险性为非暴露组 的多少倍。当疾病发病率小于5%时,OR是RR的极好近似值。
OR>1,说明 该因素使疾病的危险性增加,为危险因素;
OR<1,说明 该因素使疾病的危险性减小,为保护因素;
2
logistic回归:不仅适用于病因学分析,也可用于其他方面的研究,研 究某个二分类(或无序及有序多分类)目标变量与有关因素的关 系。
logistic回归的分类: (1)二分类资料logistic回归: 因变量为两分类变量的资料,可用
非条件logistic回归和条件logistic回归进行分析。非条件logistic回 归多用于非配比病例-对照研究或队列研究资料,条件logistic回归 多用于配对或配比资料。 (2)多分类资料logistic回归: 因变量为多项分类的资料,可用多 项分类logistic回归模型或有序分类logistic回归模型进行分析。
比较
调查方向:收集回顾性资料
人数 暴露
疾病
a/(a+b) c/(c+d)
a
+
b
-
病例
c
病例对照原理示意图
6
是否暴露 暴露组 未暴露组 合计
病例 a c a+c
对照 b d b+d
合计 a+b(n1) c+d(n2) n
比数比(odds ratio、OR):病例对照研究中表示疾病与暴露间
联系强度的指标,也称比值比。
相对危险度RR的本质是暴露组与非暴露组发病率之比或发病概率 之比。但病例对照研究不能计算发病率,只能计算比值比OR值。 OR与RR的含义是相同的,也是指暴露组的疾病危险性为非暴露组 的多少倍。当疾病发病率小于5%时,OR是RR的极好近似值。
OR>1,说明 该因素使疾病的危险性增加,为危险因素;
OR<1,说明 该因素使疾病的危险性减小,为保护因素;
《logistic回归》课件

03
易于理解和实现: 由于基于逻辑函数,模型输出结 果易于解释,且实现简单。
Logistic回归的优势与不足
• 稳定性好: 在数据量较小或特征维度较高 时,Logistic回归的预测结果相对稳定。
Logistic回归的优势与不足
01
不足:
02
对数据预处理要求高: 需要对输入数据进行标准化或归一化处理,以 避免特征间的尺度差异对模型的影响。
模型假设
01
线性关系
因变量与自变量之间存在线性关系 。
无自相关
因变量与自变量之间不存在自相关 。
03
02
无多重共线性
自变量之间不存在多重共线性,即 自变量之间相互独立。
随机误差项
误差项是独立的,且服从二项分布 。
04
模型参数求解
最大似然估计法
通过最大化似然函数来求解模型参数。
梯度下降法
通过最小化损失函数来求解模型参数。
特征选择与降维
在处理大数据集时,特征选择和降维是提高模 型性能和可解释性的重要手段。
通过使用诸如逐步回归、LASSO回归等方法, 可以自动选择对模型贡献最大的特征,从而减 少特征数量并提高模型的泛化能力。
降维技术如主成分分析(PCA)可以将高维特 征转换为低维特征,简化数据结构并揭示数据 中的潜在模式。
迭代法
通过迭代的方式逐步逼近最优解。
牛顿法
利用牛顿迭代公式求解模型参数。
模型评估指标
准确率
正确预测的样本数占总样本数的比例 。
精度
预测为正例的样本中实际为正例的比 例。
召回率
实际为正例的样本中被预测为正例的 比例。
F1分数
精度和召回率的调和平均数,用于综 合评估模型性能。
易于理解和实现: 由于基于逻辑函数,模型输出结 果易于解释,且实现简单。
Logistic回归的优势与不足
• 稳定性好: 在数据量较小或特征维度较高 时,Logistic回归的预测结果相对稳定。
Logistic回归的优势与不足
01
不足:
02
对数据预处理要求高: 需要对输入数据进行标准化或归一化处理,以 避免特征间的尺度差异对模型的影响。
模型假设
01
线性关系
因变量与自变量之间存在线性关系 。
无自相关
因变量与自变量之间不存在自相关 。
03
02
无多重共线性
自变量之间不存在多重共线性,即 自变量之间相互独立。
随机误差项
误差项是独立的,且服从二项分布 。
04
模型参数求解
最大似然估计法
通过最大化似然函数来求解模型参数。
梯度下降法
通过最小化损失函数来求解模型参数。
特征选择与降维
在处理大数据集时,特征选择和降维是提高模 型性能和可解释性的重要手段。
通过使用诸如逐步回归、LASSO回归等方法, 可以自动选择对模型贡献最大的特征,从而减 少特征数量并提高模型的泛化能力。
降维技术如主成分分析(PCA)可以将高维特 征转换为低维特征,简化数据结构并揭示数据 中的潜在模式。
迭代法
通过迭代的方式逐步逼近最优解。
牛顿法
利用牛顿迭代公式求解模型参数。
模型评估指标
准确率
正确预测的样本数占总样本数的比例 。
精度
预测为正例的样本中实际为正例的比 例。
召回率
实际为正例的样本中被预测为正例的 比例。
F1分数
精度和召回率的调和平均数,用于综 合评估模型性能。
精品课程医学统计学教学课件-logistic回归分析

前瞻性研究方法,将人群按照是否暴露于某因素进行分组,追踪 各组的结局并比较其差异。
详细描述
队列研究在医学中常用于评估危险因素对疾病发生和发展的影响,以及评估预防 措施的效果。通过长期追踪和研究对象的定期随访,收集各组人群的结局数据, 分析暴露因素与结局之间的关联。
随机对照试验
随着大数据和人工智能技术的不断发 展,Logistic回归分析在医学领域的 应用越来越广泛。未来的研究将更加 注重Logistic回归分析与其他先进技 术的结合,如深度学习、机器学习等 ,以提高模型的预测精度和稳定性。
未来的研究将更加关注Logistic回归 分析在临床实践中的应用,如疾病预 测、诊断和治疗方案的制定等。同时 ,如何将Logistic回归分析与其他统 计方法结合,以更好地解决医学实际 问题,也是值得探讨的方向。
课件采用了多种教学方法,如理论讲解、案例分析、软件操作等,使学生能够全面了解和 掌握Logistic回归分析的技能。
教学效果
通过本课件的学习,学生能够熟练掌握Logistic回归分析的基本原理和应用,提高解决实 际问题的能力,为后续的医学研究和临床实践打下坚实的基础。
研究展望
研究前沿
研究方向
教学改进
03
Logistic回归分析在医学 中的应用
病例对照研究
总结词
病例对照研究是一种回顾性研究方法,通过比较病例组和对 照组的暴露情况,探讨疾病与暴露因素之间的关联。
详细描述
在医学领域,病例对照研究常用于探讨病因、预测风险和评 估干预措施的效果。通过收集病例组和对照组的相关信息, 分析暴露因素与疾病发生之间的关系,为病因推断提供依据 。
利用样本数据,建立Logistic回归模 型,描述自变量与因变量之间的关系。
详细描述
队列研究在医学中常用于评估危险因素对疾病发生和发展的影响,以及评估预防 措施的效果。通过长期追踪和研究对象的定期随访,收集各组人群的结局数据, 分析暴露因素与结局之间的关联。
随机对照试验
随着大数据和人工智能技术的不断发 展,Logistic回归分析在医学领域的 应用越来越广泛。未来的研究将更加 注重Logistic回归分析与其他先进技 术的结合,如深度学习、机器学习等 ,以提高模型的预测精度和稳定性。
未来的研究将更加关注Logistic回归 分析在临床实践中的应用,如疾病预 测、诊断和治疗方案的制定等。同时 ,如何将Logistic回归分析与其他统 计方法结合,以更好地解决医学实际 问题,也是值得探讨的方向。
课件采用了多种教学方法,如理论讲解、案例分析、软件操作等,使学生能够全面了解和 掌握Logistic回归分析的技能。
教学效果
通过本课件的学习,学生能够熟练掌握Logistic回归分析的基本原理和应用,提高解决实 际问题的能力,为后续的医学研究和临床实践打下坚实的基础。
研究展望
研究前沿
研究方向
教学改进
03
Logistic回归分析在医学 中的应用
病例对照研究
总结词
病例对照研究是一种回顾性研究方法,通过比较病例组和对 照组的暴露情况,探讨疾病与暴露因素之间的关联。
详细描述
在医学领域,病例对照研究常用于探讨病因、预测风险和评 估干预措施的效果。通过收集病例组和对照组的相关信息, 分析暴露因素与疾病发生之间的关系,为病因推断提供依据 。
利用样本数据,建立Logistic回归模 型,描述自变量与因变量之间的关系。
Logistic回归分析(共53张PPT)

数值。
• 优势比
• 常把出现某种结果的概率与不出现的概率 之比称为比值(odds),即odds=p/1-p。两个
比值之比称为比值比(Odds Ratio),简称 OR。
• Logistic回归中的常数项(b0)表示,在不
接触任何潜在危险/保护因素条件下,效 应指标发生与不发生事件的概率之比的对 数值。
Forward: LR ( 向前逐步法:似然比 法 likelihood ratio,LR)→ 再击下 方的 Save 钮,将 Predicted values 、 Influence 与 Residuls 窗口中的 预选项全勾选 → Continue → 再击 下方的 Options 钮,将 Statistics and Plot 小窗口中的选项全勾选 → Continue → OK 。
三、参数检验
• 似然比检验(likehood ratio test)
通过比较包含与不包含某一个或几 个待检验观察因素的两个模型的对数似 然函数变化来进行,其统计量为G (又 称Deviance)。
G=-2(ln Lp-ln Lk) 样本量较大时, G近似服从自由度
为待检验因素个数的2分布。
• 比分检验(score test)
, Logistic回归系数的解释变得更为复杂 ,应特别小心。
根据Wald检验,可知Logistic回归系
数bi服从u分布。因此其可信区间为
病例与对照匹配---条件logistic回归 其中, 为常数项, 为偏回归系数。 应变量水平数大于2,且水平之间不存在等级递减或递增的关系时,对这种多分类变量通过拟合一种广义Logit模型方法。
u= bi s bi
u服从正态分布,即为标准正态离差。
• 优势比
• 常把出现某种结果的概率与不出现的概率 之比称为比值(odds),即odds=p/1-p。两个
比值之比称为比值比(Odds Ratio),简称 OR。
• Logistic回归中的常数项(b0)表示,在不
接触任何潜在危险/保护因素条件下,效 应指标发生与不发生事件的概率之比的对 数值。
Forward: LR ( 向前逐步法:似然比 法 likelihood ratio,LR)→ 再击下 方的 Save 钮,将 Predicted values 、 Influence 与 Residuls 窗口中的 预选项全勾选 → Continue → 再击 下方的 Options 钮,将 Statistics and Plot 小窗口中的选项全勾选 → Continue → OK 。
三、参数检验
• 似然比检验(likehood ratio test)
通过比较包含与不包含某一个或几 个待检验观察因素的两个模型的对数似 然函数变化来进行,其统计量为G (又 称Deviance)。
G=-2(ln Lp-ln Lk) 样本量较大时, G近似服从自由度
为待检验因素个数的2分布。
• 比分检验(score test)
, Logistic回归系数的解释变得更为复杂 ,应特别小心。
根据Wald检验,可知Logistic回归系
数bi服从u分布。因此其可信区间为
病例与对照匹配---条件logistic回归 其中, 为常数项, 为偏回归系数。 应变量水平数大于2,且水平之间不存在等级递减或递增的关系时,对这种多分类变量通过拟合一种广义Logit模型方法。
u= bi s bi
u服从正态分布,即为标准正态离差。
logistic回归(共36张PPT)

二分类自变量 系数为比数比的对数值,由此比数比=eb
多分类自变量 以第i类作参照,比较相邻或相隔的两个类别。
连续型自变量 当自变量改变一个单位时,比数比为eb
2022/11/3
27
输出结果的解释
模型拟合的优劣
自变量与结果变量(因变量)有无关系
确认因变量与自变量的编码 模型包含的各个自变量的临床意义 由模型回归系数计算得到的各个自变 量的比数比的临床意义
3
一般直线回归难以解决的问题
医学数据的复杂、多样
连续型和离散型数据
医学研究中疾病的复杂性
一种疾病可能有多种致病因素或与多种危 险因素有关
疾病转归的影响因素也可能多种多样 临床治疗结局的综合性
2022/11/3
4
简单的解决方法
固定其他因素,研究有影响的一两个因 素; 分层分析:按1~2个因素组成的层进行 层内分析和综合。 统计模型
2022/11/3
28
输出结果的解释
模型的预测结果的评价
敏感度、特异度和阳性预测值
正确选择预测概率界值,简单地以0.5为 界值,但并不是最好的。
C指数
预测结果与观察结果的一致性的度量。 C值越大(最大为1),模型预测结果的
能力越强。
2022/11/3
29
非条件logistic回归
研究对象之间是否发生某事件是 独立的。 适用于:
放入所有变量,再逐个筛选
理论上看,前进法选择变量的经验公式缺乏总体概念,当用于因
素分析时,建议用后退法。当变量间有完全相关性时,后退法无 法使用,可用前进法。
2022/11/3
21
5.交互作用的引入
交互作用的定义
当自变量和因变量的关系随第三个变量 的变化而改变时,则存在交互作用
多分类自变量 以第i类作参照,比较相邻或相隔的两个类别。
连续型自变量 当自变量改变一个单位时,比数比为eb
2022/11/3
27
输出结果的解释
模型拟合的优劣
自变量与结果变量(因变量)有无关系
确认因变量与自变量的编码 模型包含的各个自变量的临床意义 由模型回归系数计算得到的各个自变 量的比数比的临床意义
3
一般直线回归难以解决的问题
医学数据的复杂、多样
连续型和离散型数据
医学研究中疾病的复杂性
一种疾病可能有多种致病因素或与多种危 险因素有关
疾病转归的影响因素也可能多种多样 临床治疗结局的综合性
2022/11/3
4
简单的解决方法
固定其他因素,研究有影响的一两个因 素; 分层分析:按1~2个因素组成的层进行 层内分析和综合。 统计模型
2022/11/3
28
输出结果的解释
模型的预测结果的评价
敏感度、特异度和阳性预测值
正确选择预测概率界值,简单地以0.5为 界值,但并不是最好的。
C指数
预测结果与观察结果的一致性的度量。 C值越大(最大为1),模型预测结果的
能力越强。
2022/11/3
29
非条件logistic回归
研究对象之间是否发生某事件是 独立的。 适用于:
放入所有变量,再逐个筛选
理论上看,前进法选择变量的经验公式缺乏总体概念,当用于因
素分析时,建议用后退法。当变量间有完全相关性时,后退法无 法使用,可用前进法。
2022/11/3
21
5.交互作用的引入
交互作用的定义
当自变量和因变量的关系随第三个变量 的变化而改变时,则存在交互作用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
或
1 p (y 1 /x 1 ,x 2 x k) 1 e (0 1 x k ....kx k)
统计学logistic回归分析
10
2.模型中参数的意义
ln1PP=0 1X1
Β0(常数项):暴露因素Xi=0时,个体发病 概率与不发病概率之比的自然对数比值。
ln1PP (y(y1/0x/x 0)0)=0
事件发生率很小,OR≈RR。
统计学logistic回归分析
14
二、 Logistic回归模型
• Logistic回归的分类
二分类 多分类
条件Logistic回归 非条件Logistic回归
统计学logistic回数单位转换
logit P=
ln
1
P
P
统计学logistic回归分析
ORe
ORP1/(1P1) od1ds P0/(1P0) od0ds
统计学logistic回归分析
12
Y 发病=1 不发病=0
危险因素
x= 1 x= 0
30(a) 10( b)
70(c) 90(d)
a+c
b+d
危险因素
Y
x= 1 x= 0
发病=1 不发病=0
p1 1-p1
p0 1-p0
a
p1 a c 有暴露因素人群中发病的比例
发生
Y=1
不发生 Y=0
例:暴露因素
冠心病结果
高血压史(x1):有 或无
有 或无
高血脂史(x2): 有 或 无
吸烟(x3): 有或无
统计学logistic回归分析
2
研究问题可否用多元线性回归方法?
1.多y ˆ元 线性a回 归b 1 方x1 法 要b 求2x Y2的取b 值m 为xm 计量的连续
性随机变量。 2.多元线性回归方程要求Y与X间关系为线性关系。 3.多元线性回归结果 不能回答“发生与否”
Logistic回归模型
e(b0b1x1b2x2bkxk) P1e(b0b1x1b2x2bkxk)
统计学logistic回归分析
18
三、参数估计
• 最大似然估计法 (Maximum likehood estimate)
似然函数:L=∏Pi 对数似然函数: lnL=∑(ln P)=ln P1+ln P2+…+ln Pn 非线性迭代方法——
方程如下:
线性 关系
ylo i(tg p )01x1 Y~(-∞至+∞)
截距(常数)
回归系数
统计学logistic回归分析
9
在有多个危险因素(Xi)时
• 多个变量的logistic回归模型方程的线性表达:
log li n 1 t P P ( = p0 )1 X 12 X 2 m X m
第十六章 logistic回归分析
logistic回归为概率型非线性回归 模型,是研究分类观察结果(y)与 一些影响因素(x)之间关系的一种 多变量分析方法
统计学logistic回归分析
1
问题提出:
医学研究中常研究某因素存在条件下某结果是否 发生?以及之间的关系如何?
因素(X)
疾病结果(Y)
x1,x2,x3…XK
16
流行病学概念:
设P表示暴露因素X时个体发病的概率, 则发病的概率P与未发病的概率1-P 之 比为优势(odds), logit P就是odds的 对数值。
统计学logistic回归分析
17
• Logistic回归模型 Logistic回归的logit模型
l o g it P = b 0 b 1 x 1 b 2 x 2 b k x k
e0x p1P(y1/x1)1e0x
P (y0/x1)11 ee 0 0 xx1p1
e0
p0P(y1/x0)1e0
e0
P(y0/x0)11e 统计学logistic回归分析
0
1p0
8
logistic回归模型方程的线性表达
对logistic回归模型的概率(p)做logit变换,
logit(p) ln( p ) 1 p
统计学logistic回归分析
13
多元回归模型的的 概i 念
logit(p)ln 1 P P = 01X 1m X m
件 i的反对映数了优在势其比他。变量固定后,X=1与x=0相比发生Y事
回归系数β与OR i X与Y的关联
•
β=0,OR=1,
无关
β>0,OR>1 , 有关,危险因素
β<0,OR<1, 有关,保护因子
logistic回归方法补充多元Yˆ线性回归的不足
统计学logistic回归分析
3
Logistic回归方法
该法研究是 当 y 取某值(如y=1)发生的概率(p)与某暴露
因素(x)的关系。
p (y 1 /x ) f(x ),即 p f(x )
P(概率)的取值波动0~1范围。 基本原理:用一组观察数据拟合Logistic模型,揭示 若干个x与一个因变量取值的关系,反映y 对x的依存关 系。
统计学logistic回归分析
4
一、基本概念
1.变量的取值 logistic回归要求应变量(Y)取值为分类变量
(两分类或多个分类)
1 Y0
出现阳性(结 发果 病、有效、死亡等) 出现阴性(结 未果 发病、无效) 、存活等
自变量(Xi)称为危险因素或暴露因素,可为连续 变量、等级变量、分类变量。 可有m个自变量X1, X2,… Xm
统计学logistic回归分析
11
与Xi=i 0的相含比义,:发某生危某险结因果素(,如暴发露病水)平优变势化比时的,对即数X值i=。1
ln
OR
ln
P1 P0
/(1 /(1
P1) P0 )
log itP1 log itP0
P1(y=1/x=1)的概率 P0(y=1/x=0)的概率
(0 1x1) (0 x0 ) 1x1
统计学logistic回归分析
5
2.两值因变量的logistic回归模型方程
• 一个自变量与Y关系的回归模型
如:y:发生=1,未发生=0 x 有=1无=0,
记为p(y=1/x)表示某暴露因素状态下,结果y=1 的概率(P)模型。
或
P(y1/x)1ee00xx
1
p(y1/x)1exp (0 [x)]
模型描述了应统变计学量logistipc回与归分x析 的关系
6
p(y1)1exp1 ([0x)]P概1率 z01x
0.5
Β为正值,x越 大,结果y=1发 生的可能性(p) 越大。
-3 -2 -1 0 1
Z值 23
图16-1 Logistic统回计学lo归gistic回函归分数析 的几何图形
7
几个logistic回归模型方程