计量经济学自相关
计量经济学:自相关

所以在实际应用中,对于序列相关问题一般只进行D.W.检验。
3、LM检验(或BG检验)
• 此方法不仅适用于一阶自相关检验,也适用于高阶自相关的检验。 • 检验步骤: 1、用OLS对回归模型进行,得到残差序列et;
1、经济变量固有的惯性 大多数经济时间序列数据都有一个明显的特点——惯性,表现为 滞后值对本期值具有影响。
例如:GDP、价格指数、生产、就业与失业等时间序列都呈周期性,如周期 中的复苏阶段,大多数经济序列均呈上升势,序列在每一时刻的值都高于前 一时刻的值,似乎有一种内在的动力驱使这一势头继续下去,直至某些情况 (如利率或课税的升高)出现才把它拖慢下来。
证明:由于 DW
e
t 2
T
t
e t 1
2 t T
2
e
t 1
T
e e
t 2 2 t t 2 T T
T
T
2 t 1
2 e t e t 1
t 2 2 t
T
e
t 1 t 2 2 t 1
T
若样本容量足够大,有 则 e e
t 2 2 t
et2
3、数据的“加工整理”
在实际经济问题中,有些数据是通过已知数据生成的。因此,新生
成的数据与原数据间就有了内在的联系,从而表现出序列相关性。
例如:季度数据来自月度数据的简单平均,这种平均的计算减弱了每 月数据的波动而引进了数据中的平滑性,这种平滑性本身就能使干扰项 中出现系统性的因素,从而出现序列相关。 还有就是两个时间点之间的“内插”技术往往导致随机项的序列相关性。
计量经济学第六章自相关

计量经济学第六章自相关自相关是计量经济学中一种重要的现象,它指的是一个变量与其自己在过去时间点上的相关性。
自相关在实证研究中十分常见,对经济学家来说,了解和掌握自相关性质是至关重要的。
1. 引言自相关作为计量经济学的一项基础概念,是经济学研究中不可或缺的一个重要方法。
自相关性的存在通常会引起回归结果的偏误,而忽略自相关性可能导致估计不准确的结果。
因此,探讨自相关性的性质和应对方法是计量经济学的重点之一。
2. 自相关的定义和表示自相关是指一个变量与其自身在过去时间点上的相关性。
假设我们有一个时间序列数据集,其中变量yt表示一个时间点上的观测值,t表示时间索引。
自相关系数可以通过计算观测值yt与其在过去某一时间点上的观测值yt-k(k为时间滞后期数)的相关性来得到。
数学上,自相关系数可以用公式表示为:ρ(k) = Cov(yt, yt-k) / (σ(yt) * σ(yt-k))其中,ρ(k)表示第k期的自相关系数,Cov表示协方差,σ表示标准差。
3. 自相关性的性质自相关性具有以下几个性质:3.1 一阶自相关性一阶自相关性是指变量值yt与前一期的观测值yt-1之间的相关性。
一阶自相关系数ρ(1)通常用来检验时间序列数据是否存在自相关性。
若ρ(1)大于零且显著,则表明存在正的一阶自相关性;若ρ(1)小于零且显著,则表明存在负的一阶自相关性。
3.2 高阶自相关性除了一阶自相关性,时间序列数据还可能存在高阶自相关性。
高阶自相关性是指变量值yt与过去第k期的观测值yt-k之间的相关性。
通过计算不同滞后期的自相关系数ρ(k),可以了解数据在不同时间跨度上的自相关性情况。
3.3 异方差自相关性异方差自相关性是指时间序列数据中的方差不仅与自身相关,还与过去观测值的相关性有关。
异方差自相关性可能导致在回归分析中的标准误差失效,从而产生无效的回归结果。
因此,在处理存在异方差自相关性的数据时要采取合适的修正方法。
4. 自相关性的检验方法在实证研究中,经济学家通常使用多种方法来检验数据中的自相关性,常用的方法包括:4.1 Durbin-Watson检验Durbin-Watson检验是一种常用的检验自相关性的方法,其基本思想是通过检验误差项的相关性来判断自相关是否存在。
第七章自相关(计量经济学)

3、广义差分法
如果原模型存在:
i 1i1 2 i2 l il i
可以将原模型变换为:
(2.5.11)
Yi 1Yi1 lYil 0 (1 1 l ) 1 ( X i 1 X i1 l X il ) i
(2.5.8)
即
Y*=X*B+N*
该模型具有同方差性和随机误差项互相独立性。
E(** ) E(D1 D1 )
D 1E ( )D 1
D 1 2 WD 1 D 1 2DDD 1 2I
• 于是,可以用OLS法估计模型(2.5.8),得
(X* X* ) 1 X* Y*
(XD 1D 1X) 1 XD 1D 1Y (XΩ1X) 1 XΩ1Y
第七章自相关(计量经济 学)
2021年7月30日星期五
普通最小二乘法(OLS)要求计量模型 的随机误差项相互独立或序列不相关。
如果模型的随机误差项违背了互相独 立的基本假设的情况,称为自相关性。
一、自相关性
1、自相关的概念
对于模型
Yi 0 1 X 1i 2 X 2i k X ki i
e~i 2
大致相等,则(2.5.6)可以化简为:
i2
i2
i 1
n e~i e~i1
D.W . 2(1 i2
) 2(1 )
n e~i2
i 1
式中,
n e~i e~i1 n e~i2 n e~i e~i1
i2
i 1
i2
为一阶自相关模型
n e~i2
i2
t t1 t
1 1
的参数估计,
1
计量经济学:自相关

Yt = 1 + 2 X 2t + 3 X 3t + ut
而建立模型时,模型设定为: Yt = 1 + 2 X 2t + ut 则 X 3t 对 Y 的影响便归入随机误差项 ut 中,由 t 于 ut 在不同观测点上是相关的,这就造成了 在不同观测点是相关的,呈现出系统模式,此 时 ut 是自相关的。
St 1 2 P t 1 ut
6-12
原因5-模型设定偏误
如果模型中省略了某些重要的解释变量或者模型 函数形式不正确,都会产生系统误差,这种误差 存在于随机误差项中,从而带来了自相关。由于 该现象是由于设定失误造成的自相关,因此,也 称其为虚假自相关。
6-13
例如,应该用两个解释变量,即:
6-14
模型形式设定偏误也会导致自相关现象。如将 形成本曲线设定为线性成本曲线,则必定会导致
自相关。由设定偏误产生的自相关是一种虚假自
相关,可通过改变模型设定予以消除。
自相关关系主要存在于时间序列数据中,但是在
横截面数据中,也可能会出现自相关,通常称其
为空间自相关(Spatial auto correlation)。
体回归模型(PRF)的随机项为 如果自相关形式为 其中 为自相关系数, v 为经典误差项,即 t
E(vt ) 0 , Var(vt ) , Cov(vt , vt+s ) 0 , s 0
2
u1 , u2 ,..., un,
ut = ut -1 + vt
- 1< < 1
6-9
原因2- 经济活动的滞后效应
滞后效应是指某一指标对另一指标的影响不仅 限于当期而是延续若干期。由此带来变量的自 相关。 例如,居民当期可支配收入的增加,不会使居 民的消费水平在当期就达到应有水平,而是要 经过若干期才能达到。因为人的消费观念的改 变客观上存在自适应期。
计量经济学自相关实验报告

第六章自相关实验报告一、研究目的对于广大的中国农村人口而言,其消费总量比重却不高。
农村居民的收入和消费是一个值得研究的问题。
消费模型是研究居民消费行为的常用工具。
通过中国农村居民消费模型的分析可判断农村居民的边际消费倾向,这是宏观经济分析的重要参数。
同时,农村居民消费模型也能用于农村居民消费水平的预测。
二、模型设定影响居民消费的因素很多,但由于受各种条件的限制,通常只引入居民收入一个变量做解释变量,即消费模型设定为:+β1X t+ U tY t=β参数说明:Y——农村居民人均消费支出 (单位:元)tX——农村居民人均纯收入(单位:元)tU t——随机误差项收集到数据如下(见表2-1)表2-1 1985-2011年农村居民人均收入和消费单位:元注:资料来源于《中国统计年鉴》1986-2012。
为了消除价格变动因素对农村居民收入和消费支出的影响,不宜直接采用现价人均收入和现价人均消费支出的数据,而需要用经消费价格进行调整后的1985年可比价格及人均纯收入和人均消费支出的数据做回归分析。
根据表2-1中调整后的1985年可比价格计的人均纯收入和人均消费支出的数据,使用普通最小二乘法估计消费模型得如下结果。
表2-2 最小二乘估计结果Dependent Variable: YMethod: Least SquaresDate: 12/04/13 Time: 20:00Sample: 1985 2011Included observations: 27Coefficient Std. Error t-Statistic Prob.C 45.40225 10.30225 4.407025 0.0002X 0.718526 0.012526 57.36069 0.0000R-squared 0.992459 Mean dependent var 580.5296 Adjusted R-squared 0.992157 S.D. dependent var 256.4506 S.E. of regression 22.71079 Akaike info criterion 9.154744 Sum squared resid 12894.50 Schwarz criterion 9.250732 Log likelihood -121.5890 Hannan-Quinn criter. 9.183287 F-statistic 3290.249 Durbin-Watson stat 0.528075 Prob(F-statistic) 0.000000由以上结果得到以下方程:^Y t=45.4022545+0.718526X t(6.1)(10.30225)(0.012526)t = (4.407025) (57.36069)R2=0.992459--R2=0.992157 F=3290.249 DW=0.528075该回归方程可决系数较高,回归系数均显著。
计量经济学实验报告(多元线性回归 自相关 )

计量经济学实验报告(多元线性回归自相关 )1. 背景计量经济学是一门关于经济现象的定量分析方法研究的学科。
它的发展使得我们可以对经济现象进行更加准确的分析和预测,并对社会发展提供有利的政策建议。
本文通过对多元线性回归模型和自相关模型的实验研究,来讨论模型的建立与评价。
2. 多元线性回归模型在多元线性回归模型中,我们可以通过各个自变量对因变量进行预测和解释。
例如,我们可以通过考虑家庭收入、年龄和教育程度等自变量,来预测某个家庭的消费水平。
多元线性回归模型的一般形式为:$y_i=\beta_0+\beta_1 x_{i1}+\beta_2 x_{i2}+...+\beta_k x_{ik}+\epsilon_i$在建立模型之前,我们需要对因变量和自变量进行观测和测算。
例如,我们可以通过调查一定数量的家庭,获得他们的收入、年龄、教育程度和消费水平等数据。
接下来,我们可以通过多元线性回归模型,对家庭消费水平进行预测和解释。
在实际的研究中,我们需要对多元线性回归模型进行评价。
其中一个重要的评价指标是 $R^2$ 值,它表示自变量对因变量的解释程度。
$R^2$ 值越高,说明多元线性回归模型的拟合程度越好。
3. 自相关模型在多元线性回归模型中,我们假设各个误差项之间相互独立,即不存在自相关性。
但实际上,各个误差项之间可能会互相影响,产生自相关性。
例如,在一个气温预测模型中,过去的温度对当前的温度有所影响,说明当前的误差项和过去的误差项之间存在相关性。
我们可以通过自相关函数来研究误差项之间的相关性。
自相关函数表示当前误差项和过去 $l$ 期的误差项之间的相关性。
其中,$l$ 称为阶数。
自相关函数的一般形式为:$\rho_l={\frac{\sum_{t=l+1}^{T}(y_t-\bar{y})(y_{t-l}-\bar{y})}{\sum_{t=1}^{T}(y_t-\bar{y})^2}}$在自相关模型中,我们通过对误差项进行差分或滞后变量,来消除误差项之间的自相关性。
【总结】计量经济学异方差性、多重共线性、自相关的联系与区别知识总结

《计量经济学》中多重共线性、异方差性、自相关三者之间的联系与区别首先我们先来回顾一下经典线性回归模型的基本假设:1、为什么会出现异方差性我们可以从一下两方面来分析:第一,因为随即误差项包括了测量误差和模型中被省略的一些因素对因变量的影响;第二,来自不同抽样单元的因变量观察值之间可能差别很大。
因此,异方差性多出现在截面样本之中。
至于时间序列,则由于因变量观察值来自不同时期的同一样本单元,通常因变量的不同观察值之间的差别不是很大,所以异方差性一般不明显。
含义及影响:y=X β+ε,var(εi )var(εj ), ij ,E(ε)=0,或者记为212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭即违背假设3。
用OLS 估计,所得b 是无偏的,但不是有效的。
111(')'(')'()(')'b X X X y X X X X X X X βεβε---==+=+由于E(ε)=0,所以有E(b )=β。
即满足无偏性。
但是,b 的方差为1111121var(|)[()()'][(')''(')|] (')'['|](') (')'()(')b X E b b E X X X X X X X X X X E X X X X X X X X X X ββεεεεσ------=--===Ω其中212200['|]0000n E X σεεσσ⎛⎫⎪=Ω= ⎪ ⎪⎝⎭2、自相关产生的原因:(1)、经济数据的固有的惯性带来的相关 (2)、模型设定误差带来的相关 (3)、数据的加工带来的相关 含义及影响:cov(,)0,i j i j εε≠≠影响:和异方差一样,系数的ls 估计是无偏的,但不是有效的。
D -W 检验(Durbin -Watson )221212222121212222112112122211221122121()()()2()()222222(1)n i i i n i i n n n i i i i i i i n i i n n n i i i i i i i n n i i n i i i nn n i i i i nn i ie e d e e e e e e e e e e e e e e e e e e e e e e ρρ=-===-=-====-==-===∑-=∑∑+∑-∑=∑∑+∑-∑--=∑∑+=--∑∑+=--∑≈-其中2121n i i i n i ie e e ρ=-=∑=∑是样本一阶自相关函数。
计量经济学 第六章 自相关性

第六章自相关性6.1 自相关性:6.1.1. 非自相关假定由第2章知回归模型的假定条件之一是,Cov(u i, u j) = E(u i u j) = 0, (i, j∈T, i≠j), (6.1)即误差项u t的取值在时间上是相互无关的。
称误差项u t非自相关。
如果Cov (u i,u j ) ≠ 0, (i≠j)则称误差项u t存在自相关。
自相关又称序列相关。
原指一随机变量在时间上与其滞后项之间的相关。
这里主要是指回归模型中随机误差项u t与其滞后项的相关关系。
自相关也是相关关系的一种。
6.1.2.一阶自相关自相关按形式可分为两类。
(1)一阶自回归形式当误差项u t只与其滞后一期值有关时,即u t = f (u t - 1) + v t称u t具有一阶自回归形式。
(2) 高阶自回归形式当误差项u t的本期值不仅与其前一期值有关,而且与其前若干期的值都有关系时,即u t = f (u t– 1, u t– 2 , …u t– p ) + v t则称u t具有P阶自回归形式。
通常假定误差项的自相关是线性的。
因计量经济模型中自相关的最常见形式是一阶自回归形式,所以下面重点讨论误差项的线性一阶自回归形式,即u t = α1 u t -1 + v t(6.2)其中α1是自回归系数,v t 是随机误差项。
v t 满足通常假设E(v t) = 0, t = 1, 2 …,T,Var(v t) = σv2, t = 1, 2 …,T,Cov(v i , v j ) = 0, i ≠ j , i , j = 1, 2 …, T , Cov(u t -1, v t ) = 0, t = 1, 2 …, T ,依据普通最小二乘法公式,模型(6.2)中 α1 的估计公式是,1ˆa= ∑∑=-=-Tt t Tt t t u u u 22121(1ˆβ=∑---2)())((x x x x y y t t t ) (6.3)其中T 是样本容量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
4
(a)-(d)存在自相关,(e)不存在自相关
4、自相关与异方差的图型判断区别
异方差需要按解释变量大小排序后,关于e2-X做 散点图观察,如果散点成水平带状,表明残差相 对样本直线的离散程度很均匀,没有异方差。
自相关不需要按解释变量大小排序,按照样本的 观测顺序排列et的散点图,即做et-t(t=1,2…n)
e~i Yi (Yˆi )0ls
然后,通过分析这些“随机误差的近似估计量”之间 的相关性,以判断随机误差项是否具有序列相关性。
按时间先后顺序绘制残差图et-t
正自相关
负自相关
由于经济的惯性,通常不会出现负自相关的形式
绘制et-et-1散点图
正自相关
负自相关
H0 : 0,H1 : 0
例如,绝对收入假设下居民总消费函数模型:
Ct=0+1Yt+t
t=1,2,…,n
由于消费习惯的影响被包含在随机误差项中,则
可能出现序列相关性(往往是正相关 )。
2、模型设定的偏误
所谓模型设定偏误(Specification error)是指 所设定的模型“不正确”。主要表现在模型中丢掉 了重要的解释变量或模型函数形式有偏误。
cov( i , is ) 0 s 0
由于序列相关性经常出现在以时间序列为样本的模型中,
因此,本节将用下标t代表i。
6 X
4
2
0
-2
-4
-6
-6
-4
-2
0
4 U
2
a. 正相关
X(-1)
6 X
4
2
4
62
0
b. 负相关 -2
-4
X(-1) -6
-6
-4
-2
0
2
4
6
0
-2
-4
-4
-2
0
c 非自相关
U (-1)
其他检验也是如此。
3、模型的预测失效
区间预测与参数估计量的方差有关,在方 差有偏误的情况下,使得预测估计不准确,预测 精度降低。
所以,当模型出现序列相关性时,它的预 测功能失效。
4、随机项的方差一般会低估
5.3 序列相关性的检验
5.3 序列相关性的检验
基本思路:
序列相关性检验方法有多种,但基本思路相同: 首先,采用 OLS 法估计模型,以求得随机误差项的 “近似估计量”,用e~i 表示:
一元和多元线性回归对于模型
Yi=0+1X1i+2X2i+…+kXki+i
基本假设其中一条:
无自相关,即 Cov(ui, uj) = 0,
(i j , i 、j=1,2,…n )
i=1,2, …,n
如果违背了这条基本假设, Cov(ui, uj) ≠ 0 称随机误差项之间存在自相关,认为出现了序列
相关性。
在其他假设仍成立的条件下,序列相关即意味着
E(i j ) 0
或
2
Cov(μ ) E(μμ)
E(1n )
E
(
n
1
)
2
2 1n
n1
2
2Ω 2I
最常见的类型是一阶自相关,即随机误差项只与
它的前一期值相关:cov(i , i1 ) 0 也可表示为:i i1 i 被称为自协方差系数或一阶自相关系数
自相关往往可写成如下形式:
t=t-1+i
-1<<1
其中:被称为自协方差系数(coefficient of
autocovariance)或一阶自相关系数(first-order
coefficient of autocorrelation)
i是满足以下标准的OLS假定的随机干扰项:
E( i ) 0 , var( i ) 2 ,
无的异方差e2-x图
无自相关的et-t图
1、经济变量惯性的作用
如国内生产总值,固定资产投资,国民消费,物价指 数等随时间缓慢地变化。
2、经济行为的滞后性 3、模型设定不正确
曲线模型当作直线模型建立。
注:时间序列的数据经常出现自相关
——实际经济问题中的序列相关性 Nhomakorabea1、经济变量固有的惯性
大多数经济时间数据都有一个明显的特点:惯性, 表现在时间序列不同时间的前后关联上。
n
(et et1)2
构造统计量DW t2 n
et2
t 1
对于i i-1 i,其中为自相关系数介于-1和1之间, DW 2(1-),因此有: 0 DW 4
① DW=0→ρ=1,即存在正自相关 ② DW=4→ρ=-1,即存在负自相关(极少见) ③ DW=2→ρ=0,即不存在(一阶)自相关
自相关的一般形式可以表示为
i 1i1 2 i2 p i p i
可 称 为 p阶 自 相 关 (也 称 为 高 阶 自 相 关 ) 注:自相关还有另一个名字——自回归 若模型中不存在一阶自相关,一般不会出现高阶自相关
如果仅存在
cov(t t+1)0
t=1,2, …,n
称为一阶列相关,或自相关(autocorrelation)
还有就是两个时间点之间的“内插”技术往往导致 随机项的序列相关性。
1、估计量ˆ j仍具有无偏性。 2、var(ˆ j )不再具有最小方差性 3、一般会低估随机误差项方差 2
4、统计检验(t检验和F检验)失效 5、区间预测精度降低
计量经济学模型一旦出现序列相关性,如果仍 采用OLS法估计模型参数,会产生下列不良后果:
例如,本来应该估计的模型为
Yt=0+1X1t+ 2X2t + 3X3t + t
但在模型设定中做了下述回归:
Yt=0+1X1t+ 1X2t + vt 因此, vt=3X3t + t,如果X3确实影响Y,则出 现序列相关。
又如:如果真实的边际成本回归模型应为:
Yt= 0+1Xt+2Xt2+t
其中:Y=边际成本,X=产出,
但建模时设立了如下模型:
Yt= 0+1Xt+vt 因此,由于vt= 2Xt2+t, ,包含了产出的平方对随机项 的系统性影响,随机项也呈现序列相关性。
3、数据的“编造”
在实际经济问题中,有些数据是通过已知数据 生成的。
因此,新生成的数据与原数据间就有了内在的 联系,表现出序列相关性。
例如:季度数据来自月度数据的简单平均,这种平 均的计算减弱了每月数据的波动性,从而使随机干扰项 出现序列相关。
1、参数估计量非有效
因为,在有效性证明中利用了 E(NN’)=2I
即同方差性和互相独立性条件。 而且,在大样本情况下,参数估计量虽然具有
一致性,但仍然不具有渐近有效性。
2、变量的显著性检验失去意义
在变量的显著性检验中,统计量是建立在参数方差正 确估计基础之上的,这只有当随机误差项具有同方差性和 互相独立性时才能成立。