水平井轨道控制方案设计(第五章)

合集下载

钻井工程:第五章 井眼轨道设计与轨迹控制

钻井工程:第五章 井眼轨道设计与轨迹控制

第五章井眼轨道设计与轨迹控制1.井眼轨迹的基本参数有哪些?为什么将它们称为基本参数?08答:井眼轨迹基本参数包括:井深、井斜角、井斜方位角。

这三个参数足够表明井眼中一个测点的具体位置,所以将他们称为基本参数。

2.方位与方向的区别何在?请举例说明。

井斜方位角有哪两种表示方法?二者之间如何换算?答:方位都在某个水平面上,而方向则是在三维空间内(当然也可能在水平面上).方位角表示方法:真方位角、象限角.3.水平投影长度与水平位移有何区别?视平移与水平位移有何区别?答:水平投影长度是指井眼轨迹上某点至井口的长度在水平面上的投影,即井深在水平面上的投影长度。

水平位移是指轨迹上某点至井口所在铅垂线的距离,或指轨迹上某点至井口的距离在水平面上的投影。

在实钻井眼轨迹上,二者有明显区别,水平长度一般为曲线段,而水平位移为直线段.视平移是水平位移在设计方位上的投影长度.4.狗腿角、狗腿度、狗腿严重度三者的概念有何不同?答:狗腿角是指测段上、下二测点处的井眼方向线之间的夹角(注意是在空间的夹角)。

狗腿严重度是指井眼曲率,是井眼轨迹曲线的曲率.5.垂直投影图与垂直剖面图有何区别?答:垂直投影图相当于机械制造图中的侧视图,即将井眼轨迹投影到铅垂平面上;垂直剖面图是经过井眼轨迹上的每一点做铅垂线所组成的曲面,将此曲面展开就是垂直剖面图。

6.为什么要规定一个测段内方位角变化的绝对值不得超过180 ?实际资料中如果超过了怎么办?答:7.测斜计算,对一个测段来说,要计算那些参数?对一个测点来说,需要计算哪些参数?测段计算与测点计算有什么关系?答:测斜时,对一个测段来说,需要计算的参数有五个:垂增、平增、N坐标增量、E坐标增量和井眼曲率;对一个测点来说,需要计算的参数有七个:五个直角坐标值(垂深、水平长度、N坐标、E坐标、视平移)和两个极坐标(水平位移、平移方位角)。

轨迹计算时,必须首先算出每个测段的坐标增量,然后才能求得测点的坐标值。

第五章:井斜及其控制

第五章:井斜及其控制

(2)井斜角(α): 井斜角( )
指井眼方向线与重力线之间的夹角。单位为度( 指井眼方向线与重力线之间的夹角。单位为度(°)。 井眼方向线: 井眼方向线: 过井眼轴线上某测点作 过井眼轴线上某测点作 轴线上 井眼轴线的切线, 井眼轴线的切线,该切线向 井眼前进方向延伸的部分称 为井眼方向线。 为井眼方向线。 井斜角增量( ∆α ): 井斜角增量( 下测点井斜角与上测点 井斜角之差。 井斜角之差。
1磁铁定向法双罗盘定向法双罗盘测斜仪定向磁铁安装在无磁钻铤上上罗盘处在定向磁铁位置指针标志工具面方位下罗盘远离定向磁铁指针指向正北方位
钻井工程
井斜及其控制
——钻井工程
重庆科技学院石油工程学院制作
第五章 井斜及其控制
本节主要内容: 本节主要内容:
第一节 第二节 井斜及其控制标准 井斜原因
第三节 控制井斜的措施 第四节 虹吸测斜仪
二、衡量井斜的参数
目的:掌握有关参数的概念及这些参数之间的关系。 目的:掌握有关参数的概念及这些参数之间的关系。
1.轨迹的基本参数
测量方法:非连续测量,间断测量。 测段” 测点” 测量方法:非连续测量,间断测量。“测段”,“测点”。 井深、井斜角和井斜方位角----轨迹的三个基本参数。 轨迹的三个基本参数。 井深、井斜角和井斜方位角 轨迹的三个基本参数 (1)井深(或称为斜深、测深) 井深(或称为斜深、测深) 井口(通常以转盘面为基准)至测点的井眼长度。 井口(通常以转盘面为基准)至测点的井眼长度。 以字母D 表示,单位为米(m) (m)。 以字母Dm表示,单位为米(m)。 井深增量(井段) 下测点井深与上测点井深之差。 井深增量(井段):下测点井深与上测点井深之差。 表示。 以ΔDm表示。
(a) 井斜曲率对比图 (b)

定向水平井轨迹控制.课件

定向水平井轨迹控制.课件
1、钻头与地层相互作用因素:
–钻头:特殊结构,侧切特性,各向异性 –地层:岩性,可钻性,各向异性,几何产状 –钻头作用力:钻压,侧向力,钻头转角,扭矩 –高压射流作用:清洗碎屑,辅助轴向破岩
2、钻柱及其底部钻具组合(BHA)分析
– 确定钻头对地层的机械作用力:井斜力和方位力 – 确定钻头指向:转角 – 确定钻压及钻头扭矩 – 确定钻柱或BHA任一点内力和挠度
井下动力滑动钻进目前存在的缺点:
✓ 钻柱滑动,受到较大的轴向阻力,不利于施 加钻压及大位移延伸
✓ 受井下马达排量限制,洗井效果不佳 ✓ 没有钻柱旋转,不利于修整井壁 ✓ 在有些情况下,机械钻速较慢
井下马达性能的不断改进 井下动力滑动钻进系统的改进
智能钻井系统的概念
(英国)Inglis T A. :定向钻井,石油工业出版社,1995
Ir1<Ir2<1 (Ddip<Dstr<Dn) Ir1=Ir2<1 (Ddip=Dstr<Dn) Ir1=Ir2>1 (Ddip=Dstr>Dn) Ir1>Ir2>1 (Ddip>Dstr>Dn) Ir2<Ir1<1 (Dstr<Ddip<Dn) Ir1<1<Ir2 (Ddip<Dn<Dstr) Ir1<Ir2=1 (Ddip<Dstr=Dn) Ir2>Ir1>1 (Dstr>Ddip>Dn) Ir2<1<Ir1 (Dstr<Dn<Ddip) Ir1>Ir2=1 (Ddip>Dstr=Dn) Ir1=1>Ir2 (Ddip=Dn>Dstr) Ir1=1<Ir2 (Ddip=Dn<Dstr)

5钻井工程理论与技术_第5章井眼轨道设计与轨迹控制

5钻井工程理论与技术_第5章井眼轨道设计与轨迹控制
我国钻井行业标准规定: 手工计算时用平均角法; 计算机计算时用校正平均角法。
4.校正平均角法
校正平均角法假设测段形状为一条圆柱螺线。 如图5—11所示,圆柱螺线在水平投影图上是圆
弧。圆柱螺线在圆柱面展平平面上也是圆弧, 即垂直剖面图是圆弧。根据这个假设推导的计 算方法,称为“圆柱螺线法”。这是我国著名 学者郑基英教授首先提出的。这种方法与美国 人提出的“曲率半径法”的公式表达不同,但 计算结果是完全相同的。
(7)在一个测段内,井斜方位角的变化的绝 对值不得超过180 °。在具体计算时,还
要特别注意平均井斜方位角Φc的计算方 法。
三、轨迹计算的方法
1.轨迹计算的顺序 轨迹计算的最终要求是算出每个测点的坐标值。
D1=Do+∆D1 Lp1=Lpo+∆Lp1 N1=No+∆N1 E1=Eo+∆E1 第0测点已知,即:Do=Dmo,Lpo=0,No=0, Eo=0。
(三)随钻随测
二、对测斜计算数据的规定
我国钻井行业标准对测斜计算数据有以下规定。
(1)测点编号:测斜时虽然是自下而上进行的,测点编
号却是规定自上而下进行,第一个井斜角不等于零的测 点作为第一测点,向下类推编号。每个测点的参数皆以 该点编号作为下标符号。
(2)测段编号:也是自上而下编号。且规定第i一1点与
多点测斜仪:即一次下井可记录井眼轨迹上多个井深处的井斜参 数:井斜角和井斜方位角。多点测斜仪的下入,在裸眼井中用 电缆送入到井底,然后在上提过程中每隔一定长度进行静止测 量,并将数据用照相的办法记录在胶片上,提出后进行冲洗阅 读。多点测斜仪也可在起钻前从钻柱内投入到靠近钻头处,然 后在起钻过程中利用每起一个立柱静止卸扣的时间进行测量和 记录。

水平井井眼轨迹控制技术.doc

水平井井眼轨迹控制技术.doc

我就水平井井眼轨迹控制技术说一点:1、水平井井身剖面的优化设计(1)、井身剖面设计原则:.1)满足地质要求,实现地质目的;2)保证钻进和起下钻摩阻扭矩尽可能小;3)其形状有利于地质导向工作和现场实际井眼轨迹控制;4)能克服油层深度预测和工具(含地层)造斜率的不确定问题等等。

(2)、井身剖面类型的选择水平井井身剖面根据地质目标、油层情况、地质要求、靶前位移,选择不同的剖面类型。

油田施工的水平井,从曲率半径来分,选择长曲率半径水平井和中曲率半径水平井。

剖面选用了具有两个稳斜井段的直-增-稳-增-稳(探油顶)-增(着陆段)-水平段三增剖面、直-增-稳(探油顶)-增(着陆段)-水平段双增剖面、直-增-水平段单增剖面。

设计造斜率选为2~10o/30m。

(3)水平井防碰绕障技术受地面条件限制,油田多为丛式定向井,防碰绕障问题突出,水平井又需要一定的靶前位移,许多井往往从一个平台打到另一个平台下面,即要考虑本平台邻井的防碰,又要考虑下部斜井段和水平段的防碰,通过现场水平井钻井实践,形成了油田特有的水平井防碰绕障技术:1)、井身剖面的优化设计。

在设计时,充分考虑邻井情况,通过剖面类型、造斜点、造斜率等的优化设计,尽量避开老井,必要时进行绕障设计。

2)、利用软件进行防碰扫描和防碰距离计算。

3)、现场井眼轨迹的监控和防碰绕障施工。

4)、地质导向技术在防碰绕障中的应用。

2、井眼轨迹控制技术随着水平井在不同区块的施工,不同区块每口井的地质情况不同,井眼轨迹控制过程中遇到的问题也不一样。

突出表现在以下几个方面:(1)、实钻地质情况复杂多变,油层深度与设计变化较大,井眼轨迹需要随地质情况变化进行调整。

(2) 、水平段油层深度在横向上变化不一,有从低部位到高部位的,也有从高部位到低部位的,还有先从低部位到高部位再下降的。

(3) 、不同区块工具造斜能力和地层对井眼轨迹的影响不同。

(4) 、测量数据的相对滞后对地质导向和井眼轨迹的预测和调整带来困难。

水平井水平段轨迹控制课件

水平井水平段轨迹控制课件
、小直径水平井等。
应用范围扩大
随着技术的进步和应用的不断扩 大,水平井的应用范围越来越广 泛,已经成为石油、天然气和矿 产开发中的重要技术手段之一。
02 水平井轨迹控制技术
CHAPTER
水平井轨迹控制的基本原理
01
水平井轨迹控制的基本原理是通 过钻具组合的设计和钻进参数的 优化,实现对井眼轨迹的精确控 制。
产数据等。
控制优化
03
根据预测模型,优化控制参数如水平段位置、钻井液排量等,
实现水平段轨迹的精确控制。
基于优化算法的智能控制策略
优化算法控制策略
利用遗传算法、粒子群算法等优 化算法,寻找最优的控制参数组
合。
遗传算法
通过模拟生物进化过程,寻找最优 解。在水平井轨迹控制中,可应用 于寻找最优的钻井液排量、水平段 位置等参数组合。
基于人工智能的自适应控制的水平井轨迹控制实例
基于人工智能的自适应控制是一种新兴的控制方法,通过机器学习等技术对系统进行学习和 自适应。在水平井轨迹控制中,可以使用人工智能技术对地下井眼模型进行学习和自适应, 并制定相应的控制策略。
基于人工智能的自适应控制的优势在于能够自适应地处理复杂的非线性系统,并具有较好的 泛化性能。此外,人工智能技术可以处理大量的数据,并通过数据挖掘等技术提取出有用的 信息。
要点三
测量与导向系统
测量与导向系统是实现水平井轨迹控 制的关键技术之一。目前,该领域仍 存在一些技术瓶颈,如测量精度不高 、导向稳定性不足等。这些问题的解 决需要进一步研究和改进测量与导向 系统技术。
06 结论与展望
CHAPTER
主要结论
水平井水平段轨迹控制技术的发 展趋势是高效、精准、智能化。
• 水平井轨迹控制需要解决防斜打直问题,确保井眼 轨迹的垂直性和稳定性。

井眼轨道设计与控制

井眼轨道设计与控制

方位角ψ :正北顺时针转至轴 线上某点切线在水平面的投影 的夹角。
井眼曲率Rh:单位长度井段井眼轴线的切线所转过的角度。
井斜变化率Rn:单位长度井段井斜角变化值。 垂深D:井 眼轴线上某 测点至井口 转盘所在平 面的垂直距 离。 方位变化率Ri:单位长度井段方位角变化值。 测深Dm:某测点到转盘补 心的井眼轴线实际长度。 井斜角α i :轴线切 向方向与垂线的夹角。 井深D W :转盘补心到 井底的深度。
第五章
第一节 井眼轨道设计的原则和方法
3. 井眼轨道水平投影 1) 工具弯角(θ b):在造斜 钻具组合中 , 拐弯处上下两段的 轴线间的夹角。 2) 工具面 : 在造斜钻具组合 中 , 由弯曲工具的两个轴线所决 定的平面。 3) 反扭角(β r):在使用井 下动力钻具进行定向造斜或扭方 位时 , 动力钻具启动前的工具面 与启动后且加压钻进时的工具面 之间的夹角。反扭角总是使工具 面逆时针转动。
第三章
第一节 井眼轨道设计的原则和方法
一、基本概念
1 .井眼轨道的基本要素
井眼轨道:表示井眼轴线形状的图形。
其它基本要如下图所示:
第五章
第一节 井眼轨道设计的原则和方法
井底水平位移Sh:井口与井底两点 在水平投影面上的直线距离。 井底闭合方位角Ψ h :从正北方向 顺时针转至井口与井底的水平投影 连线的夹角。
第五章 第一节 井眼轨道设计的原则和方法
第五章 第一节 井眼轨道设计的原则和方法
与整个井眼相比为小量,其长设为dl,B点的定向要素为 DA+dD、EA+dE、 NA+dN、αA+dα、 ShA+dShA 、 φA +dφ。连接AB两点,AB线段水平投影为AˊBˊ 线段。可以近似地认为:AB弧长=AB线段长= dl。 在垂直投影面中:

水平井轨道设计

水平井轨道设计

水平井轨道设计一.水平井分类:长半径水平井 1~6°/100英尺;中半径水平井 8~20°/100英尺;短半径水平井1~3.5°/1英尺;超短半径水平井 30mm 。

二.水平井轨道类型:A 类水平井轨道:是有一个增斜段达到水平,多用于短半径水平井,常用于侧钻井。

B 类水平井轨道:先用一个增斜段然后用一个稳斜段,在用一个增斜段达到水平。

C 类水平井轨道:用一个增斜段+稳增段+一个增斜段达到水平。

三.水平轨迹设计需要考虑的问题:1.考虑能否取得预期的经济效益,水平井获得经济效益的关键是目标段的设计,包括油藏类型的选择,对油层厚度、性质以及剩余油分布的研究,目标段的走向、倾向、长度、完井方法等。

2.考虑两个不确定性问题:其一、目标垂深的不确定性;其二、造斜率的不确定性 (1)考虑施工人员的轨迹控制能力,特别是增斜段的轨迹控制能力,是否具备必要的造斜工具和测量工具测量仪器等。

(2)考虑所选的造斜率,下套管时,套管是否顺利通过。

(3)目标段的长度,还要受到众多因素的影响。

四.水平井目标区的设计:水平井合理井位选择:水平井合理井位的选择是水平井优化是的第一个课题,它是保证水平井取得良好经济效益的重要因素,其关键是油藏筛选的合理性,地质设计的准确性,在研究过程中,结合大港油田实际,形成了水平井合理井径选择的技术及工作流程 水平井:其延伸长度不小于目标层的六倍,井斜角度不小于85°的井。

五.水平井的主要难度之一:井眼轨迹控制要求高:要求高是指轨迹控制的目标区要求高,普通定向井的目标区是一个靶圆,井眼轨迹只要穿过此靶圆即为合格。

水平井的目标区是一个扁平的立方体,不仅要求井眼准确的进入窗口,而且要求井眼方位与靶区轴线一致,俗称“矢量中靶”。

水平井的主要难度之二:难度大是指在井眼轨迹控制过程中存在“两个不确定的因素”。

轨迹控制的精度稍差就有可能脱靶。

所谓“两个不确定因素”,一是目标垂深的不确定性,防止地质部门对目‰标层垂深精度有误差就可能脱靶;二是井眼曲率比普通定向井高的多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章轨道控制方案设计在水平井实际钻井实践过程,油中深度的误差是难免的,它是影响轨道施工方案设计的重要因素之一,油中深度的不确定性将直接影响着轨道控制方案的选择问题。

目前常用的减少油中深度的不确定性的方法是通过标准层的对比来实现的。

另从施工本身而言,还存在着工具本身的实际造斜率与设计造斜率之间的偏差,这种偏差也是难免的,每种工具在不同地层,不同的钻井条件下,其造斜率总会表现出一定的差异,显然,偏差范围越小,控制精度越高,对轨道的控制越有利。

这种偏差也是影响轨道控制方案设计的重要因素之一。

考虑施工中影响轨道控制方案的因素,设计出适当的轨道控制方案,以适应这些因素在实钻中对轨道控制的影响,争取主动,是水平井尤其是薄油层水平井井眼轨道控制工艺的重要内容之一。

本文总结出三种目前普遍采用的控制方案的设计方法。

王平1井的轨道控制实践充分说明了该方法在薄油层中半径水平井着陆控制方案设计上具有普遍意义。

第一节单元弧法该法是一单元弧造斜段从着陆控制过程的起始点直接钻至靶区着陆点的方法。

适用于油层厚度大,靶窗高度大,且油中的深度相对确定的情况。

这样,仅需考虑工具的造斜的误差,以选择合适的造斜率和井斜角。

另一方面,为保证工具的造斜率存在误差的情况下亦能顺利中靶着陆,则必须要求以所选工具造斜率的上限造斜时不高出靶窗上方,而以其造斜率的下限造斜时不低于靶窗下方。

如图1所示。

设C点为着陆控制段始点,即当前井底位置,L为着陆点,T为设计靶点,为着陆点井斜,C点与T点的垂直深度差为△H,水平位移差为△S,设计的IL靶窗高度2h。

单元弧法就是从C点设计一圆弧段,与靶中心线相切,设切点为与T点位置及井斜L。

这样便能保证单圆弧着陆。

但由于C点的位置及井斜IC等条件的限制,实际着陆点L与T点不一定重合,这样就必会出现一段距离,IL即着陆平差。

平差的大小在某种程度上也反映了轨道控制的准确程度。

上图中设圆弧段造斜率为B°/30m。

靶区上限及下限着陆的造斜率分别为Bmax°/30m和Bmin°/30m。

则有:L ctgI S H H ·△△-= (1)B H COS I I SInI H S ctgI I I I lC l l l C L=⋅--=-⋅⋅--1719117191()cos(()sin ∆∆ (2) lC l L SInI I I COS h ctgI S H B )(11719max --⋅-⋅∆-∆= (3) LC l l I I I h ctgI S H B sin )cos((11719m in --⋅+⋅∆-∆= (4)当设计靶区水平段井斜I L =90°时,H=△H ,此时式(2)、(3)、(4)变为: )sin 1(1719L I HB -⋅∆= (5) )sin 1(1719m axC I hH B -⋅-∆= (6) )sin 1(1719m inC I h H B -⋅+∆= (7) 通过上述计算可知,应选择造斜率为B °/30m 的工具从C 点开始造斜着陆进靶,且该工具的最大造斜率不应超出Bmax °/30m ,也不应低于Bmin °/30m ,设实钻中工具的造斜率B 。

则最终着陆点与设计着陆靶点T 的平差P S 为:()S I I B S L C p ∆--⋅=cos cos 17190(8) 当P S 〈0,表示实际着陆点的水平位移小于设计着陆点的位移,即提前着陆,当P S 〉0时表示实际着陆点的水平位移大于设计着陆点的水平位移,即延迟着陆。

单元弧法设计中的另一种情况是已知着陆段所用的工具的造斜率为B °/30m ,其上下限造斜率分别为Bmax °/30m 及Bmin °/30m ,选择合适着陆段初始井斜角I C 的问题,如上图所示,为使该工具能顺利陆着进靶,则必须满足:h I I I B B L C L 2sin )cos(117191719max min=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛- 故着陆始点理想的井斜角应不小于:))(1719sin 21arccos(min max min max B B B B I h I I L L C -⋅⋅⋅⋅--= (9) 否则用该工具造斜将可能出靶。

第二节 应变法该法指在着陆控制中,为适应实钻过程中可能出现的各种误差而在两段增斜段中设置一稳斜调整段的方法。

设置调整段的目的,一方面是为了适应在实验中油中深度发生变化时,改变调整方案而不致于使轨道控制处于被动地位,另一方面可通过调整段补偿前段造斜时工具造斜率的误差所造成的轨道偏差,以使在最终着陆时,进靶能够更加准确、顺利。

这是一种“以不变应万变”的设计方法,见图2。

应变段井斜e I 的设计满足当以e I 稳斜时,在钻遇并探测到真正的油顶之后,有足够余地留待在轨道着陆控制段控制时,先以造斜率B 1°/30m 从当前井底位置C 点开始增斜到E 点,即从井斜c I 增至e I ,进入应变段之后一直稳斜,配合地质及油层随钻参数显示,直至探到油顶位置,确定出确切油中深度之后,最后以设计的造斜率B2°/30m 增斜着陆进靶窗。

该设计方法中,有三个参数需要确定:①应变段的井斜e I ; ②应变段的长度y L ;③第一增斜段增斜率B1°/30m 。

1、应变井斜e I 的计算应变井斜e I 的设计应满足当以e I 稳斜时在钻遇并探测到真正的油顶之后,有足够的余地留待造斜率为B 2°/30m 的工具着陆进靶而不致于错过靶窗,设油层靶中深度离油顶以下距离d 米,r L 为钻具组合中地质参数仪器(如随钻γ参数探测仪)离钻头的最大距离,如图3所示,则e I 应满足: d I I B I I e L e c =-+)sin (sin 1719cos 2解上方程可得: 22222222)1719(sin 1719arcsin )1719(1719arccos B L d I B B L B I r L r e +-+++=上式求出的e I 角还应根据B 2造斜率在实际应用时变化值的上、下限以及靶窗高度依式(9)进行校核,取二者中的大者做为应变段井斜角e I 。

2、应变段长度及造斜率B 1的确定。

如图所示,由于e I 已求出,F 点的相对位置便可确定。

)sin (sin 17192e L F I I B H H -∆∆-= )cos (cos 17192e L F I I B S S -∆∆-= 式中:△H F :F 点相对于C 点的垂差。

F S ∆:F 点相对于C 点的水平距离。

为计算方便,在图中过F 点作靶中心线的平行线KF 交过C 点的垂线于K 点,CK 的距离为H 。

则有:L L e e L ctgI I I B S I I B H H ⎥⎦⎤⎢⎣⎡--∆---∆=)cos (cos 1719)sin (sin 171922 从而可得稳斜段长Ly 与B 1的关系: H ctgI I L I I B I L I I B L e y L e e y e L +⎥⎦⎤⎢⎣⎡+-=+-sin )cos (cos 1719cos )sin (sin 171921解上式得:[])sin(sin )cos()cos(17191e L y L c L e L I I L I H I I I I B -----= (10) 此时平增大小为:F e y e c p S I L I I B S ∆++-=sin )(cos 17191(11) 从式(10)及(11)可知,y L 减少时,1B 也随之减少,此时造斜段和水平段的位移减少,当y L 减为0时,即为单圆弧,此时水平位移最短。

如图4所示:(应变段末端必须落在KF 线上)。

显然,y L 越长,1B 越大,水平位移越远,可能造成的平差越大,为此,在设计时应选择合适的y L ,不但要吸收误差,而且具有足够的长度使轨道穿过油顶,故应根据油顶实际可能存在的大小△E 来设计稳斜段长y L ,不但要吸收误差,而且具有足够的长度使轨道穿过油顶,故应根据油顶实际可能存在的误差大小△E 来设计稳斜段长y L ,从而最终确定1B 。

由图知稳斜段长度y L 至少应为:r ey L I E L +∆=cos (12) 可将式(12)代入式(10)求得第一造斜段造斜率B 1°/30m 。

从上面的设计可以看出,当用(12)式求得的y L 及式(10)求得的1B 进行计算水平位移时,如果此时的水平位移比原设计的水平位移小时,可以适当增加y L 的长度,增加第一段造斜率,缩短平差,从而达到调整的目的。

第三节 导眼法所谓导眼法即在水平井着陆控制之前,先以一定的井斜直接稳斜钻入油层,探得油顶及油中深度之后,回填到一定深度后以单元弧方式直接进行着陆。

采用这种方法,主要地对油层的确切深度把握不准,且在油层上部无合适的标准层可做参考,这样为确保水平井钻井目的,该法不失为行之有效的最直接的方法。

当决定要用导眼法且工程上可行时,在轨道控制方面,需要解决的问题是:● 导眼段的井斜d I ;● 回填的井段长度h L 。

由于该法与单圆弧法基本类似,在确定了造斜工具的造斜率B 及其上、下限变化范围m in m ax ,B B 之后,根据所设计的靶区高度,可按式(9)直接求得,如图所示。

⎥⎦⎤⎢⎣⎡---=)(1719sin 21arccos min max min max B B B B I h I I L L d 式中,L I :水平段设计井斜;h:靶窗单边高度(靶窗总高为2h) 。

如图5所示,设C 点为回填到的井底那一点,作靶中心线的延长线交过C 点的垂线于K 点。

则有:Ld L I I I B H sin )sin(11719--= )sin()cos(11719d L d L h I I I I B L ---=即在导眼段钻遇油中后,回填h L 米,便能保证在回填后,以单圆弧造斜,顺利着陆进靶。

结论:(1)在中半径水平井着陆控制中,除了要有一套灵活、多变,造斜能力控制范围广的导向钻具作为着陆控制手段外,还需要有一套合适的轨道控制方案相配合,以适应控制过程中可能遇到的各种偏差。

(2)水平井轨道控制的具体要求,应结合工具的现有条件,选择出合适的方案与之相配合。

通过实践,应变法对于中半径薄油层水平井井眼轨道的控制方案设计是成功的,具有普遍意义。

相关文档
最新文档