催化反应动力学

合集下载

催化作用导论第三章多相催化反应动力学

催化作用导论第三章多相催化反应动力学

而不能写成:
பைடு நூலகம்
C、反应机理与反应历程: 反应机理:包括吸附、表面反应、脱附等步骤的序 列称反应机理。 如气-固催化反应机理:
(1)反应物分子在催化剂内表面上吸附;
( 2 )吸附的反应物分子在催化剂表面上相互作用 或与气相分子作用进行化学反应;
(3)反应产物向催化剂内表面脱附。
所要回答的是,反应机理是吸附控制,表面反应 控制,还是脱附控制?
④ 对含活性组分量不同的催化剂样品进行 TOF值的测量, 可以用来作为判别在速率测量中是否存在如传质和 / 或 传热等影响因素的依据; ⑤ 在相同条件下,对暴露不同晶面或有不同晶粒大小的 催化剂样品的TOF值进行测量,可以用于判别晶体各向 异性的重要性。这一点不论在理论上还是在实际上都是 很重要的信息; ⑥ TOF值对开发潜在的催化剂新材料是非常有用的。
1 dn TOF S dt
n = ξ∙NA=TON,S — 活性位数。
在实际应用中,常常用单位活性位的时间得率 STY (site time yield)来表示催化反应的速率。该表示法要 求我们除了要测量催化反应速率外,还要求测量催化剂 的分子数或固体催化剂表面上的活性位数目。优势: ① 如果测量催化反应速率的方法和条件以及测量催化剂 活性位的方法有非常充分的描述,那么不同实验室获得 的同一催化剂的TOF值是完全可以重复的; ② 它也能够用来比较在不同催化剂上获得的 TOF值,例 如,同一种金属的不同形式单晶、金属、负载金属,不 同的金属和不同催化材料的催化剂,从理论和反应机理 研究的意义上讲,这样的比较更具有决定性意义; ③ 即便由于活性位数目测量值的较大误差所得到的 TOF 值只是一个近似值,也能马上判断出该催化剂是不是一 个真正的催化剂。如果 TOF值大于 1则是,如果TOF值 等于或小于 1,则仅仅是一个反应试剂,而催化剂能转 化反应物分子的总数目则是对催化剂的潜在寿命的直接 测量;

热力学知识:热力学催化和反应动力学

热力学知识:热力学催化和反应动力学

热力学知识:热力学催化和反应动力学热力学是研究物体间能量转移和转化规律的一门学科。

在化学反应中,热力学不仅能够帮助我们预测反应的热效应,还可以探究反应体系的稳定性、平衡常数等。

然而,热力学所关注的只是反应是否可行,并不说明反应的速率或路径,这就需要引入反应动力学的概念。

另外,在实际反应中,有时候需要添加催化剂来促进反应的进行,这也是热力学催化需要考虑的问题。

本文将着重探讨这三个方面的知识。

首先,热力学催化是指添加辅助物质,以降低反应的活化能,从而使反应更容易进行。

这种物质就是催化剂。

催化剂并不参与反应,仅在反应前后吸附在反应物或产物的表面,从而改变反应物的反应性质。

因此催化剂对于反应热力学稳定性没有影响,但能够影响反应速率。

我们知道,反应速率受到活化能以及反应物浓度等因素的影响,如果要提高反应速率,就要降低反应物之间碰撞所需的能量,这就是催化剂作用的核心。

催化剂通过形成一个新的反应路径来达到此目的,这个新的反应路径所需能量比原反应路径低,因此需要的活化能也会小得多。

值得说明的是,催化剂毕竟是一种化合物,它本身所关注的热化学效应即其生成或分解时的热效应仍然是需要考虑的。

其次,反应动力学是研究反应速率与反应物浓度、温度、催化剂等因素之间的关系的学科。

在化学反应中,只有达到一定的催化剂触媒活性才能使化学反应成功,这个值通常被称为活化能。

催化剂能改变反应物分子之间的电荷分布,从而影响其碰撞所需能量;同时,它也可以帮助生成更容易反应的中间产物。

由于催化剂的作用,反应物分子之间的能量转移变得容易,并且可以快速引发反应。

此外,反应动力学还要考虑到反应速率受到温度和催化剂浓度等因素的影响,通常采用Arrhenius公式进行计算,即k=A*e^(-Ea/RT),其中k为反应速率常数,A为阿伦尼乌斯常数,Ea为反应物分子间所需的活化能,R 为气体常数,T为温度。

最后,对于实际反应的操作,需要根据具体情况选择合适的催化剂和反应动力学条件对反应进行控制。

催化反应动力学的机理及应用

催化反应动力学的机理及应用

催化反应动力学的机理及应用催化反应动力学是研究化学反应速率的科学,对于实现高效、环保的化学过程以及制备高性能材料具有重要意义。

本文将会从机理及应用两个方面介绍催化反应动力学。

一、催化反应动力学机理催化反应动力学研究的核心是了解催化剂如何影响反应速率。

在一般的化学反应中,反应物分子相遇形成化学键,经过一定的反应途径,生成产物分子。

反应速率的快慢,取决于反应物相遇的频率和反应活化能。

催化反应的机理在于,通过引入外部物质,调整反应势垒,从而加速反应过程。

催化剂对反应的影响主要为两种形式:一是在表面提供反应活性位,使得反应物能够容易地被吸附在活性位上,形成中间体,并且在不或极少改变催化剂自身的情况下活化反应物;而二是通过改变反应物的吸附方式和解离方式,从而调整活化能,加速或减缓反应过程。

因此,催化剂的能力,在于在反应过程中减少转化的活化能,而非改变反应末状态的性质。

二、催化反应动力学应用催化反应动力学的研究成果已经在工业、化学、石油,甚至生物学领域有了广泛的应用。

1. 工业应用在工业生产中,通过催化剂加速反应速率,可以实现高通量、高效率的反应,并且降低反应操作温度和压力,从而节省能量成本。

例如,化学工业中氧化还原反应、生物质转化为液体燃料的催化反应和碳酸酯的聚合反应等,都是基于催化作用的。

2. 医药领域针对疾病的治疗和药物制备,催化反应是一个重要的研究方法。

例如,催化剂可以用于制备药物前体和中间体,提高药物合成的收率和纯度。

同时,在药物的作用机制中,也需要考虑到催化反应的作用。

3. 环境保护催化反应在环境保护中也有广泛的应用。

例如,可以通过催化剂将二氧化碳转化为有用的化合物,从而实现二氧化碳的减排和资源化利用;还可以通过催化反应降解废水中的有害物质,提高废水的处理效率。

催化反应动力学的研究成果在近年来得到了不断的推广和应用,也为化学领域的科研进展和工业发展带来了巨大的推动力。

而随着科技的不断发展,我们相信,催化反应动力学研究的意义和价值,也将会越来越广泛。

催化反应动力学的研究及其应用

催化反应动力学的研究及其应用

催化反应动力学的研究及其应用催化反应动力学是化学领域中的一个重要分支,在化学合成、能源转化、环境保护等方面有着广泛的应用。

为了更好地理解催化反应的机理和优化反应条件,学者们一直在研究催化反应的动力学特性。

本文将就催化反应动力学的研究及其应用作一探讨。

一、催化反应动力学的基本概念催化反应动力学是研究反应速率与反应条件之间关系的学科,用于描述反应速率随温度、反应物浓度等条件变化而变化的规律。

其中,催化剂是催化反应的关键因素之一。

催化反应是在催化剂的作用下,通过改变反应物分子间的作用力,从而降低反应物的活化能,促进反应的过程。

催化剂可大大提高反应速率,降低反应温度和反应压力,节约能源,减少环境污染,因此催化剂在工业化学、环境保护等领域得到了广泛应用。

二、催化反应动力学中常见的反应机理催化反应动力学中,常见的反应机理有:1.酸碱催化机理酸碱催化机理是指催化剂通过向反应物中引进氢离子或羟离子,使得反应物中的反应物种发生电子云的重新分布,从而促进反应。

例如,催化裂化过程中,硫酸是一种常用的酸催化剂,可以促进碳氢化合物的分解。

2.物理吸附机理物理吸附机理是指当反应物分子与固体催化剂接触时,由于固体催化剂表面存在一定的能量吸附作用,使得反应物分子吸附在催化剂表面,从而促进反应。

这种吸附方式是可逆的,与化学反应机制不同。

例如,这种机制在氧线还原反应中经常被利用。

3.偶氮苯氧化机理偶氮苯氧化机理是指通过催化剂与氧气的作用,氧气会与氨分子反应生成氮氧化物,从而促进反应。

气相催化颗粒,常通过催化剂让反应物进入固体表面产生物理吸附和化学反应发生,实现化学反应。

三、催化反应动力学的应用在催化反应动力学的研究中,学者们不仅仅关注反应机理的了解,更关注于在技术上的应用。

催化反应动力学的应用主要有以下几个方面:1.工业开发催化反应动力学在工业化学中发挥了重要作用。

例如,涉及汽车尾气净化、催化裂化、有机合成等领域。

通过对催化反应动力学的研究,能够找到最优化的反应条件,提高产率、提高反应速率、降低制造成本。

催化作用导论第三章多相催化反应动力学

催化作用导论第三章多相催化反应动力学

有毒有害物质降解
多相催化反应可用于有毒有害物 质的降解,如苯酚、氯代烃等, 降低对环境和生物体的危害。
废气处理
多相催化反应可用于废气处理, 如硫氧化物、氮氧化物等,降低 对大气的污染。
新材料设计与开发
纳米材料
多相催化反应可用于设计和开发新型纳米材料,如金属氧化物、碳 纳米管等,具有优异性能和广泛应用前景。
参数不确定性
动力学模型中的参数可能存在不确定性,如反应速率常数、 活化能等,导致模型预测精度降低。
非线性效应
多相催化反应过程中可能存在非线性效应,如反应级数的 变化、反应路径的改变等,而现有动力学模型难以准确描 述这些效应。
实验与理论研究的挑战
实验技术限制
01
实验测量多相催化反应动力学参数时,受到实验设备、测量精
催化反应的动力学过程和机理。
03 多相催化反应动力学研究 方法
实验研究方法
实验研究是研究多相催化反应动力学的主要手段之一。通过实验,可以测量反应速 率、反应机理、反应路径等重要信息。
实验研究方法包括固定床反应器、流化床反应器、微型反应器等,这些方法可以根 据实验需求选择。
实验研究需要精确控制温度、压力、浓度等实验条件,以确保实验结果的准确性和 可靠性。
分子模拟方法可以模拟分子在 催化剂表面的吸附、扩散、反 应等过程,为实验研究和理论 计算提供支持。
分子模拟方法需要较高的计算 机技术和计算资源,因此需要 不断优化算法和提高计算效率。
04 多相催化反应动力学应用
工业催化过程
1 2 3
石油化工
多相催化反应在石油化工中广泛应用,如烃类裂 解、烷基化、异构化等,提高油品质量和产量。
反应机理
01
02

催化反应动力学基础

催化反应动力学基础

dξ dt
(mol/s)
1 dξ v dt
1 dξ m dt
νv =
(mol/m
3

s)
• 质量比速率 (νm): • 面积比速率 (νm): Areal rate
νm =
(mol/g • s)
νA =
1 dξ A dt
2 (mol/m • s)
• Turn over number [ 转换(化)数 ]: • Turn over frequency [ 转换频率 ]:
S +C X + W
k1 k-1 k2
X+Y P + Z
Arrhenius intermediate (平衡处理) 即:k2 << k-1 E2 E-1 E1+ E2-E-1
作业:如果底物和催化剂的初 始浓度分别为[S]0和[C]0, 试证明: (1). 当 [S]0 >> [C]0时, r = k2[X][W] = k2K [S]0[C]0[W]/(K[S]0+[Y])
催化在国民经济中的作用
1999年CE&N:
• 催化在7000个化学化工、药物产品的生产中每年产生 3 Trillion US$. 美国GNP的1/3与催化有关。中国近 年达到20%。 • 80% 化学化工产品,90% 生产过程用催化剂 • 催化剂年销售价值:8.5 Billion US$
2004 年世界化学化工产值:US$1,800 B; 85%
• 1888-1905 年 W. Ostwald 对催化(反应)进行了一系 列的研究,发展和明确了催化概念。W. Ostwald (1895): Any substance that alters the velocity of a chemical reaction without modification of the energy factors of the reaction. • 1902: A catalyst is any substance that alters the velocity of a chemical reaction without appearing in the end product of the reaction. • 1902: A substance that changes the velocity of a rxn without itself being changed by the process.

催化反应动力学

催化反应动力学
k1 k2
d[P] = k2 [ES] dt
k1[S][E] [S][E] [ES] = = k−1 + k2 KM
酶催化反应的级数
令酶的原始浓度为[E] 反应达稳态后, 令酶的原始浓度为 0,反应达稳态后,一 部分变为中间化合物[ES],余下的浓度为 部分变为中间化合物 ,余下的浓度为[E]
[E] = [E]0 -[ES]
它的选择性超过了任何人造催化剂, 它的选择性超过了任何人造催化剂,例如脲酶它只 能将尿素迅速转化成氨和二氧化碳, 能将尿素迅速转化成氨和二氧化碳,而对其他反应 没有任何活性。 没有任何活性。
2.高效率 2.高效率
它比人造催化剂的效率高出10 它比人造催化剂的效率高出 9至1015 倍。例如 一个过氧化氢分解酶分子, 一个过氧化氢分解酶分子,在1秒钟内可以分解十 秒钟内可以分解十 万个过氧化氢分子。 万个过氧化氢分子。 一般在常温、常压下进行。 一般在常温、常压下进行。
1 1 作图,从斜率和截距求出K 以 r ~ [S] 作图,从斜率和截距求出 M和rm
= k [ A] k = k 0 + k c [C ]
酶催化反应
•酶催化反应历程 酶催化反应历程 •用稳态近似法处理 用稳态近似法处理 •酶催化反应的级数 酶催化反应的级数 •酶催化的反应速率曲线 酶催化的反应速率曲线 •米氏常数 米氏常数 •酶催化反应特点 酶催化反应特点
酶催化反应特点
酶催化反应与生命现象有密切关系, 酶催化反应与生命现象有密切关系,它的主 要特点有: 要特点有: 1.高选择性 高选择性
均相酸碱催化反应
设有一均相催化反应: 设有一均相催化反应: C A P C:催化剂 : • 催化反应历程可设为: 催化反应历程可设为: k1 A + C M k-1 k2 M P + C • 由稳态法: 由稳态法:

催化反应动力学

催化反应动力学
空位率或未被覆盖率 θ
V:
未被覆盖的活性中心数 V 总活性中心数
( i ) V 1
i 1 n
θ
i
--- i 组分的吸附率
② 吸附速率式
吸附过程可视为化学反应(基元反应),吸附速率与被吸附组分的气
相分压和未被覆盖分率成正比:
ra ka pAV
r a---吸附速率;
pA ---A组分在气相中的分压。
气固催化反应过程示意图
相界面是指多孔催化剂颗粒的内表面, 化学反应主要在催化剂的孔道内表面上进行。
5
气固相催化反应的7个步骤:
设有气-固相催化反应:
CO( g ) H 2O( g ) CO2 ( g ) H 2 ( g ) A B C D
① A 和 B 从气相主体扩散到达颗粒外表面; ② A 和 B 从颗粒外表面扩散进入颗粒内部; ③ A 和 B 被催化剂内表面的活性位吸附,成为吸附态 的A 和 B;④ 吸附态的A 和 B在催化剂内表面的活性 中心上发 生表面化学反应,生成吸附态 C和D(产物); ⑤ 吸附态 C 和 D 脱附成为自由的 C 和 D; ⑥ C 和 D 从颗粒内部扩散到达颗粒外表面; ⑦ C 和 D 从颗粒外表面扩散到达气相主体。 以上七个步骤是前后串联的。
A 1 A1 B 2 B2
A1 B2 R1 S2
R1 R 1
S 2 S 2
对两类活性中心分别有:
A R V 1 1
B S V 2 1
第一类活性中心有:
速率式
rA kA pAV 1 kAA rR kRR kR pRV 1

2.化学吸附
吸附剂与被吸附物之间可视为发生化学反应,是固 体表面与气相分子间的化学键力造成的。 化学吸附是吸附剂和被吸附物之间的电子共用或转 移发生相互作用,使气相分子的结构发生了变化, 降低了活化能,从而加快了反应速率,起到催化作 用。 化学吸附是吸附剂和被吸附物之间的电子转移或共 用,因此二者之间有很强的选择性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[S ],r = k2[E0 ],即反应速率与酶的总浓度成正比,
当[ S ] → ∞ 时,速率趋于极大 ( rm ),即有 rm = k 2 [ E0 ],代入(11)式,得: r [S ] = rm K M + [ S ] 当r = (12)
rm 时 , K M = [ S ], 也就是说当反应速率达到最大速率的一半 时,底物 2 的浓度就等于米氏常数。K M 的第三 个含义 ) ( 将(12)式重排得: 1 KM 1 1 = + r rm [ S ] rm (13)
5.3 酶催化反应
许多生物化学反应都是酶催化反应。酶是一种蛋 白质分子,其质点的直径范围在10~100nm之间, 因此酶催化反应处于均相与复相催化之间,既可 以看成是底物与酶形成了中间化合物,也可以看 成是在酶的表面上首先吸附了底物,而后再进行 反应。
1.酶催化反应具有一下四个特点: (1)高度的选择性:一种酶常只能催化一种反应,而对其它反应 不具活性。 (2)高效性:酶催化反应的催化效率非常高,比一般的无机或有 机催化剂可高出108~1012倍。例如,一个过氧化氢分解酶分 子,能在1S内分解105个过氧化氢分子;而石油裂解中使用的 硅酸铝催化剂,在773K时约4S才分解一个烃分子。 (3)酶催化反应所需的条件温和,一般在常温常压下即可进行。 如:工业合成氨反应必须在高温高压下的特殊设备中进行, 而某些植物茎中的固氮酶,不但能在常温常压下固定空气中 的氮,而且能将它还原成氨。 (4)酶催化反应的历程复杂,其具体表现在酶催化反应的速率方 程复杂,对酸度、离子强度敏感,与温度关系密切等。
Cu CH3CHO + H2 → 200~250 0C Al2O3 C2 H4 + H2O 350~360 0C → C2 H5OH Al O 2 3 C2 H5OC2 H5 + H2O 140 0C → ZnO⋅Cr2O3 CH2 = CH − CH = CH2 + H2O + H2 400~500 0C →
斜率KM/rm 1/rm 1/r
K 1 1 如以 对 作图, 直线的斜率为 M , r [S ] rm 直线的截矩为 解出 K M 和 rm . 1 KM 1 1 = + → 对有副反应 or r0 rm [ S ]0 rm 反应易受其它因素干扰时,常用初速法处理。 1 ,二者联立从而可 rm
-1/KM
故催化反应的活化能Ea为E1 + E3 − E2 . 对于一般催化反应来说,E1、E2均比Ea(非 催化)小得多(如图1),故有Ea ′ < Ea . 在催化剂的存在下,反应的途径改变了, 只需克服两个小的能峰E1和E3。
由以上我们可以看出, 催化剂改变了反应机理,降低了活化能, (1) 从而使反应活速率增大; 催化剂有时受活化熵的影响, (2)
反应 1 反应
首先我们来考查反应总活化能Ea与各步活化物E1 , E2 , E3之间的关系 若第一个反应能快速达到平衡,则速控步骤应为(2),总反应速率为 r = k3[ AK ][ B] 由催化剂与反应物之间的平衡r+ = r-,有: k1[ A][ K ] = k2 [ AK ] [ AK ] = r = k3 k1 [ A][ K ] k2
化合物的消耗速率常数与生成速率常数之比(K M第一个含义)。 反应速率r=
由上述可知:KM = [ E][S ]/[ ES ] 即:米氏常数实相当于反应[ E] + [S ] = [ ES ]的不稳定常数(KM第二个含义)。
令酶的起始浓度为[E0 ],反应达稳定后,它一部分变为中间化合物[ES ], 另一部分仍处于游离状态。所以: [E0 ] = [E] + [ES ] 即 [E] = [E0 ]-[ES ] [E][S ] 代入[ES ] = 得: KM [E0 ][S ] [ES ] = KM + [ S ] k2[E0 ][S ] d[P] 所以 r = = k2[ES ] = dt KM + [ S ] (1)当[S ]很大时,KM 而与[S ]无关,对[S ]来说是零级反应。 (2)当[S ]很小时,KM+ S ] ≈ KM,r = [ 这一结论与实验事实是一致的。 k2[E0 ][S ] ,反应对[S ]来说为一级反应。 KM (11)
CO2 + 3H 2 ƒ CH 3OH + H 2O
在常压下寻找甲醇分解反应的催化剂就可作为高压下合成甲 醇的催化剂。
⑥催化剂不能实现热力学上不能发生的反应。即加入催化剂不 可能使一个反应的∆G改变符号。因此在找寻催化剂时,首 先要尽可能地根据热力学的原则核算一下某反应在该条件下 发生的可能性。 ⑦催化剂具有特殊的选择性。所谓选择性是指当一个反应体系 中同时可能存在着几种反应时,催化剂的存在可以使其中某 反应的速率显著增加,而使另一些反应的速率改变很小,甚 至不改变,使反应朝着需要的方向进行。
0 0 ∆≠Sm ∆≠Hm kBT k(r) = exp( r )exp(− r ),若活化熵改变,也能强烈地影响 h R RT 速率常数k(r). 例如乙烯的加氢反应,在W和Pt催化剂上活化能相同,
但在Pt上的活化熵增大,导致指前因子A增大,反应速率加快; 增大,反应速率加快; (3)催化反应随催化剂浓度的增大,反应速率变大。在大多数情况下, k3k1 有关系式k = [K]存在; 催化剂参与反应,生成中间化合物,反 (4) k2 应后又被恢复,形成了一个催化循环。
2.催化机理 目前,酶催化的研究是十分活跃的领域,但至今酶催化理论 还很不成熟。最简单的酶催化机理是Michaelis和Menton提 出的。酶(E)与底物(S)先形成中间化合物(ES),然后中间化 合物(ES)再进一步分解为产物,并释放出酶。
S+
k2 ES E + P →
1/[S]
3. 抑制作用 实际上,上述酶催化反应机理过于简化,即使最 简单的酶催化反应也比上述情况复杂得多,且在 机理中往往还存在着多种阻化历程。另外,如果 酶反应速度过快,往往采用抑制的方法研究。抑 制作用有很多种,其中一种叫做竞争性抑制作用。 这类抑制剂与底物分子结构及大小相似,它可占 据酶上的活性部位,与底物发生竞争。
④催化剂只能加速反应达到平衡,缩短达到平衡所需的时间, 但不能改变平衡常数,不能移动平衡点。原因是△G0 只取决 于起始态,而与中间过程无关。(△G0=-RTlnK0)。 对于已达到平衡的反应,不可能借助加入催化剂以增加产物 百分比,只提高反应速率。我们知道所谓化学平衡不是绝对 的静止,而是正向反应速率与逆向反应速率相等。对一可逆 反应来说,其平衡常数等于正向反应速率常数和逆向反应速 率常数之比,即 K=k+/k-
催化反应的基本共同点
①催化剂在反应前后,其化学性质没有改变,但在反应过程中 催化剂参加了反应,与反应物生成某种不稳定的中间化合物, 形成一个催化循环,其物理性质则可能发生了变化。如: MnO2催化KClO3分解,MnO2由粒状变为粉状;Pt催化氨氧化, Pt表面变得粗糙等。 ②催化剂量比较少(相对于反应物而言)。 ③催化剂能加快反应达到平衡的速率,是由于改变了反应的历 程,降低了活化能。至于它怎样降低活化能,机理如何,对 大部分催化反应来说,了解得还很有限。
①[S]很大时,r与[S]无关,r∝[E0] ②[S]很小时,r与[S]直线,r与[S]成正比
KM
[s]
ES分解为产物( P)的速率很慢,它控制着整个反应的速率。采用稳态法处理: d[ ES ] = k1[S ][ E] − k−1[ ES ] − k2[ ES ] = 0 dt k1[S ][ E] [ E][S ] 所以 [ ES ] = = (9) k−1 + k2 KM 式中KM = k-1 + k2 称为米氏常数,这个公式也叫米氏公式。可见,KM 为中间 k1 d[ P] = k2[ ES ] dt k [ E][S ] = 2 KM
5.1 催化作用基本原理
当催化剂的作用是加快反应速率时,称为 “正 催化剂”;当催化剂的作用是减慢反应速率 时,称为“负催化剂”或阻化剂。负催化剂的 实 际应用目前还很少,一般如不特别说明,都是 指正催化剂而言。
催化反应通常可分为三大类: ①均相催化:即催化剂和反应物同处于同一相中,均为气相或 均为液相。如:NO2与SO2处于同一气相中,PdCl2·CuCl2与乙 烯处于同一液相中。 ②复相催化:即催化剂和反应物处于不同相中,如:V2O5对 SO2氧化为SO3的催化作用,Fe对合成氨的催化作用等。 ③生物催化,或称酶催化。如馒头的发酵、制酒过程中的发酵 等都属于酶催化。由于酶是由蛋白质或核酸分子组成,而分 子很大,已达到胶体粒子大小的范围,因此它既不同于均相 催化也不同于复相催化,而是兼备二者的某些特征。 虽然这三类催化作用的催化机理可能不大相同,但催化作用都 由若干共同的特征。
上述这些反应从热力学观点看,都可自发进行, 但某种催化剂却只对某一特定反应有催化作用, 而并不能加速所有热力学上可能的反应,这就是 催化剂的选择性。
5.2 均相催化反应
在均相催化反应中,催化剂与反应物同处于气相或液相。 设催化剂K能加速反应 A + B AB →
K
其机理为首先反应物和催化剂反应生成不稳定的中间化合物 A + K AK* → 然后这中间化合物分解为产物,同时又使催化剂再生 AK* + B AB + K → 上述机理表明,催化剂参与了反应,改变了反应途径, 但催化剂的数量不变
1、催化剂加速反应的实质(中间化合物理论) 、催化剂加速反应的实质(中间化合物理论)
AB
对于总包反应 A+ B AB →
K
能 量
Ea
E1
AK
ABK
其机理为 A+ K
k1 k2
E’a’ E2 E3
A+B+K
相关文档
最新文档