第十二章-无穷级数(整理解答)
(完整版)无穷级数整理

无穷级数整理一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。
高等数学无穷级数

数敛散性相同.
当级数收敛时, 其和的关系为 S Sk .
类似可证前面加上有限项的情况 .
性质4. 收敛级数加括弧后所成的级数仍收敛于原级数
的和.
证: 设收敛级数 S un , 若按某一规律加括弧, 例如
n1
则新级数的部分和序列
为原级数部分和
序列 Sn ( n 1 , 2 , )的一个子序列, 因此必有
n
n
证: 令 Sn uk , 则 n c uk c Sn ,
k 1
k 1
lim
n
n
cS
这说明 c un 收敛 , 其和为 c S .
n1
说明: 级数各项乘以非零常数后其敛散性不变 .
性质2. 设有两个收敛级数
S un, vn
n1
n1
则级数 ( un vn )也收敛, 其和为 S .
n1
n
n
证: 令 Sn uk , n vk , 则
k 1
k 1
n
n ( uk vk )
S ( n )
k 1
这说明级数 ( un vn ) 也收敛, 其和为 S .
n1
说明:
(1) 性质2 表明收敛级数可逐项相加或减 .
(2) 若两级数中一个收敛一个发散 , 则 ( un vn )
1 2
1 2
1 3
1 3
1 4
1 n
n
1
1
1 1 1 ( n ) n 1
所以级数 (2) 收敛, 其和为 1 .
技巧: 利用 “拆项相消” 求和
二、无穷级数的基本性质
性质1. 若级数
收敛于 S , 即 S un , 则各项
n1
乘以常数 c 所得级数
D12无穷级数

例4.
判断级数
n1
1 n(n
1)
的敛散性.
若收敛,求其和s.
解: un
1 n(n 1)
1 n
1, n1
sn
(1
1) 2
(1 2
1) 3
(1 3
1) 4
(
1 n
n
1
) 1
1
1, n1
lnim sn
lim(1 n
1 )
n1
微积分虽然是研究函数的有力工具, 但也有其局 限性, 即一般要求问题本身具有有限形式.如:有限个 无穷小的和仍是无穷小; 有限个函数和的导数等于 导数的和. 有些函数的原函数不是初等函数, 不具有 有限形式. 本章将借助于新的工具来研究函数, 这个 工具就是无穷级数.
本章主要研究无穷多个数、函数相加的问题. 如
n1
例如
则新级数的部分和序列
为原级数部分和
序列 S ( n 1 , 2 , n
)的一个子序列, 因此必有
s
逆否命题: 若加括弧后的级数发散, 则原级数必发散.
注意: 收敛级数去括弧后所成的级数不一定收敛.
例如,(1 1) (1 1) 0 , 但
发散.
17
例5.证明调和级数 解: 考虑加括号后的级数
1
1
所以级数收敛,和
s
=1.
即
n1
n(n
1)
1.
技巧: 利用 “拆项相消” 求 和
12
二、无穷级数的基本性质
性质1. 若级数
收敛于 s , 即 s u , 则各项 n
第十二章无穷级数练习题含答案

第十二章无穷级数练习题含答案第十二章无穷级数练习1.判断下列数列的收敛性和发散性:n?1sin1n?;2?n?1ln(1?1n?);?n?1n!n?;n?n?1(2n?13n?2)2n?12.判断下列序列是绝对收敛、条件收敛还是发散?(?1)n?1n?1n1;[n?]3n2??n?1ncosn3n2?;N1(?1)n?11n?lnn3.求幂级数?n?0(x?1)nn?1的收敛区间。
4.证明系列?N1n!NNX何时|x |?当e是绝对收敛时,当| x |?E.1n)处的散度单调增加,而limxn?En??nn注:数列xn?(1?5.找出区间(?1,1)中的幂级数n?1xn?1n的和函数。
6.找到这个系列吗?N21(n?1)和22 n。
一7.设a1?2,an?1?12(an?1an)(n?1,2,?)证明1)利曼存在;2)连续剧?(n?Anan?1?1)收敛。
n?18.设定一个??40? ntanxdx1)求?n?11n(an?an?2)的值;2)验证:对于任何常数??0系列?N1安?汇聚19.设正项数列{an}单调减少,且?(?1)nan发散,试问a?1?是否收敛?并说明理N1.N1n拜拜。
1211??11?xlndx。
10.已知1?2?2[参见教材246页],计算??1?x3580x。
二无穷级数例题选解1.判断下列数列的收敛性和发散性:n?1sin1n?;2?n?1ln(1?1n21n?);n?1n!n2?;n?n?1(2n?13n?2)2n?1解决方案:1)?sin1n2和N11n收敛,由比较审敛法知2)?ln(1?1n?n?1sin1n2收敛。
)~ 1n(n??)和N1.1n散度,由比较审敛法的极限形式知联合国?1un?N1ln(1?1n)散度。
n3)??lim?nlim(n?1)!(n?1)n?1?n??1?nlim,NN1n!Ennn??知识收敛比1n1n!n2收敛。
14)?? 林恩??un4?2n?1.2n?1.N林N3n?29 3n?2.2n?1.2n?1.汇聚1.从根值收敛法,我们可以知道3n?2.N1.2.判断下列序列是绝对收敛、条件收敛还是发散?N1(?1)n?1n1;[n?]3n?n?12??n?1ncosn3n2?;N1(?1)n?11n?lnn解:1)对于级数?(?1)n?1n32n,N1人??林?|联合国?1 | | un | n?1n13.知道进展情况吗?(?1)n?1.N32n绝对收敛,n1[n?]条件收敛。
高等数学下册第十二章 无穷级数

边形, 设 a0 表示
这个和逼近于圆的面积 A . 即
DMU
第一节 常数项级数
定义 给定一个数列 u1 , u2 , u3 , , un , 将各项依
次相加, 简记为 un , 即
n1
称为无穷级数, 其中第 n 项 un 叫做级数的一般项,
级数的前 n 项和
称为级数的部分和. 收敛 , 并称 S 为级数的和.
xx0
f
(x)
A
xnk
x0
(xnk
x0 )
(k )
f (xnk ) A
例如 lim n2 ((1 1)2n e2 )
n
n
(1 lim
x0
1
)
2 x
x
x2
e2
2 ln(1 1 )
ex x
lim
x0
x2
e2
e (e 2
2 ln(1 1 )2 xx
1)
lim
x0
x2
DMU
第一节 常数项级数
5)两边夹法则
n1
莱布尼茨定理: 如果交错级数 (-1)n-1un满足条件 :
n1
(1)un un1(n 1, 2,3, );
(2)lim n
un
0,
则级数收敛,且其和s u1 ,
其余项rn的绝对值 rn un1.
DMU
第三节 一般常数项级数的收敛判别法
用莱布尼茨 判别法判别下列级数的敛散性:
1) 1 1 1 1 (1)n1 1 n1 1
有和函数
它的发散域是 ( , 1 ] 及 [1, ), 或写作 x 1.
又如, 级数
所以级数的收敛域仅为
DMU
级数发散 ;
高等数学(复旦大学版)第十二章 无穷级数

第十二章 无穷级数无穷级数是数与函数的一种重要表达形式,也是微积分理论研究与实际应用中极其有力的工具. 无穷级数在表达函数、研究函数的性质、计算函数值以及求解微分方程等方面都有着重要的应用. 研究级数及其和,可以说是研究数列及其极限的另一种形式,但无论在研究极限的存在性还是在计算这种极限的时候,这种形式都显示出很大的优越性. 本章先讨论数项级数,介绍无穷级数的一些基本内容,然后讨论函数项级数,并着重讨论如何将函数展开成幂级数与三角级数的问题.第一节 常数项级数的概念和性质教学目的:1、理解无穷级数的概念;2、理解级数的收敛或发散的概念;3、掌握等比级数和p 级数等特殊级数的敛散性;4、了解无穷级数的基本性质。
教学重点:级数收敛或发散的判定 教学难点:级数收敛或发散的判定 教学内容:一、常数项级数的概念定义1 给定数列{}n u ,则称12n u u u ++++L L为常数项无穷级数,简称级数,记做1n n u ¥=å,即121n n n u u u u ¥==++++åL L式子中每一项都是常数,称作常数项级数,第n 项称为级数的一般项(或通项)。
级数1n n u ¥=å的前n 项和称为级数的部分和,记做n s ,即12n n s u u u =+++L级数的所有前n 项部分和n s 构成一个数列{}n s ,称此数列为级数1n n u ¥=å的部分和数列。
定义2 若级数1n n u ¥=å的部分和数列{}n s 收敛于s ,则称级数1n n u ¥=å收敛,或称1nn u ¥=å为收敛级数,称s 为这个级数的和,记作121n n n s u u u u ¥==++++=åL L而12n n n n r s s u u ++=-=++L称为级数的余项,显然有lim lim()0n n nnr s s =-=若{}n s 是发散数列,则称级数1n n u ¥=å发散,此时这个级数没有和。
高等数学 第十二章 无穷级数

n 1
n 1
设法求出和函数s( x)
an xn ,
n 1
n(n 1)
例10 求 n 1
2n
的和.
1 将其转化成幂级数求和函数问题.
2
原式
s(
1 2
),
s(x)
n(n
n 1
1)xn
2x (1 x)2
.
3
推广:
n1
n(n 3n
1)
S
(
1
),
3 n1
n(n 1
n1)
S(1) 5
.
5
n1 的和 .
n0
(2n1)!
解: 原式 = 1 (1)n (2n 1) 1
2 n0 ( 2 n 1)!
1 2
n0
(1)n ( 2 n)!
n0
(
(1)n 2 n 1)!
1 [cos1 sin 1 ].
2
(参见例6 ,也可用间接法解本题.)
(间接法)求数项级数和:
化
an an x0n s( x0 ),
0
0
n 0
∴
f(x)
x(1)nx2ndx(1)nx2n 1
(
x
1).
0 n0
n0 2n1
例13
将函数
(2
1
x )2
展开成 x 的幂级数.
解:
1 (2x)2
1 2x
11
2
1
x 2
1 2
xn 2n
n0
1 2
n 1
n x n1 2n
x2 (
)n
x n1 2
1x12x2
x 2x2
,
无穷级数知识点总结公式

无穷级数知识点总结公式无穷级数的定义:无穷级数的一般形式可以表示为:\[ \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]其中,\( a_n \) 是级数的第 n 个项。
级数的和通常记为 \( S \),即\[ S = a_1 + a_2 + a_3 + \ldots + a_n + \ldots \]当级数的和存在有限值时,称级数收敛;当级数的和不存在有限值时,称级数发散。
无穷级数的性质:1. 无穷级数的和与项的次序无关级数的项次序可以进行重新排列,其和仍然相同。
2. 收敛级数的任意项的和都趋于零对于收敛级数,其各项的和对应的部分和序列的极限为级数的和。
3. 收敛级数的每一项都可以表示为部分和序列的差对于收敛级数,其每一项都可以表示为相邻两个部分和之差。
无穷级数的收敛性:在讨论无穷级数时,我们关心的一个重要问题是该级数是否收敛。
无穷级数的收敛性可以通过不同的收敛判别法来进行判断。
1. 正项级数收敛判别法对于正项级数 \(\sum_{n=1}^{\infty} a_n\):- 若 \( \lim_{n \to \infty} a_n = 0 \) 且 \( a_n \) 单调递减(即 \( a_{n+1} \leq a_n \)),则级数收敛;- 若 \( a_n \) 单调递减且有界,则级数收敛;- 若 \( \lim_{n \to \infty} a_n \) 不存在或 \( \lim_{n \to \infty} a_n \neq 0 \) ,则级数发散。
2. 比较判别法设 \( \sum_{n=1}^{\infty} a_n \) 和 \( \sum_{n=1}^{\infty} b_n \) 为两个级数,若存在正常数 \( C \),当 \( n \) 充分大时有 \( 0 \leq a_n \leq Cb_n \),则级数\( \sum_{n=1}^{\infty} b_n \) 收敛时级数 \( \sum_{n=1}^{\infty} a_n \) 收敛,级数\( \sum_{n=1}^{\infty} b_n \) 发散时级数 \( \sum_{n=1}^{\infty} a_n \) 发散。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章 无穷级数一. 常数级数的审敛,常数级数的性质收敛:12.3下列级数中收敛的是( ); A .()∑∞=-+11n n n B .∑∞=+111n nC .nn n n ∑∞=⎪⎭⎫⎝⎛+123 D .∑∞=⎪⎭⎫ ⎝⎛+1211n n12(1)n =≥≥+,所以()∑∞=-+11n n n 发散;∑∞=+111n n 发散,因为11n ∞=∑发散,所以∑∞=⎪⎭⎫ ⎝⎛+1211n n 发散,因此选C 。
12.7 下列级数中收敛的是( ) A.∑∞=+1121n n B.∑∞=+113n n nC.)1|(|1001<∑∞=q q n nD.∑∞=-1132n n n 解:121n ≥+,∑∞=+1121n n 发散;1lim 313n n n →∞=+,∑∞=+113n n n 发散;||1q <时,100lim n n q →∞=∞,)1|(|1001<∑∞=q qn n发散;213n =<,∑∞=-1132n n n 收敛,所以选D 。
12.11 下列级数中收敛的是( );A .∑∞=-1121n n B .∑∞=122n n n C .11ln(1)n n ∞=+∑ D .∑∞=⎪⎭⎫ ⎝⎛+1311n n解:1121lim 12n n n →∞-=,∑∞=-1121n n 发散;212(1)12lim 122n n nn n +→∞+=<,∑∞=122n n n 收敛;1ln(1)lim 11n n n →∞+=,11ln(1)n n ∞=+∑发散;11n ∞=∑发散,∑∞=⎪⎭⎫ ⎝⎛+1311n n 发散。
所以选B 。
12.15 下列正项级数中收敛的是( );A .∑∞=-112n n n B .∑∞=12n n n C .)11ln(1∑∞=+n n D .∑∞=+1)1(2n n n n解:1lim 212n n n →∞=-,∑∞=-112n n n发散;112n =<,∑∞=12n n n 收敛;)11ln(1∑∞=+n n 发散;12(2)(1)lim 212(1)n n n n n n n +→∞++=>+;∑∞=+1)1(2n n n n 发散。
所以选B 。
12.45 已知级数1nn ua ∞==∑,则级数∑-∞=+11)(n n n u u 的和s =解:因为1nn ua ∞==∑,所以1111111()()n n n n n n n u u u u a a u u ∞∞∞++===-=-=--=∑∑∑,填1u 。
绝对收敛:12.13 下列级数中满足绝对收敛的是( ); A .∑∞=---1112)1(n n n n B .∑∞=-11sin )1(n n n C .∑∞=-13)1(n n n n D .∑∞=-+-11)1(2)1(n n n n n 解:121n n n ∞=-∑、11sin n n ∞=∑、12(1)n n n n ∞=+∑发散,13n n n ∞=∑收敛,所以∑∞=-13)1(n n n n 绝对收敛,选C 。
12.17 下列级数中绝对收敛的是( ) (A)1nn ∞= (B)nn ∞= (C) 11(1)ln(1)n n n +∞=-+∑ (D)1(1)nn n ∞=-∑ 解:因为由正项级数审敛法,1n ∞=、11n n ∞=∑、11ln(1)n n ∞=+∑都发散,而1n ∞=收敛,所以1nn ∞=绝对收敛,选B 。
12.21 下列级数中满足绝对收敛的是( );A . 1(1)1nn n n ∞=-+∑ B .11(1)sin n n n ∞=-∑ C.1(1)n n ∞=-∑ D .1(1)2n n n n ∞=-∑ 解:选D 。
12.19 下列级数中条件收敛的是( )(A)11(1)n n ∞+=-∑ (B) 211(1)nn n∞=-∑ (C) 1(1)1nn nn ∞=-+∑ (D)11(1)(1)nn n n ∞=-+∑ 解:作为交错级数1(1)n n ∞+=-∑收敛,但不绝对收敛,因此,选A 。
12.23 下列级数中满足条件收敛的是( );A .∑∞=--112)1(n nn n B .∑∞=--1211)1(n n n C .∑∞=-13)1(n n n n D .∑∞=-11)1(n n n 解:∑∞=--112)1(n nn n 不收敛,∑∞=--1211)1(n n n 、∑∞=-13)1(n n n n 绝对收敛,因此,选D 。
发散:12.2 下列级数级数中发散的是( ).(A) 11(1cos )∞=-∑n n (B)112sin3∞=∑n nn (C) 21(!)(2)!∞=∑n n n (D)2111n nn∞=++∑ 解:观察易知2111n nn ∞=++∑发散,选取D 。
12.10 下列级数中发散的是( ).(A) 11(1cos )∞=-∑n n (B)112sin3∞=∑n n n (C) 21(!)(2)!∞=∑n n n (D)1∞=n 解:观察易知∞=n 发散,选取D 。
12.5下列级数中发散的是( )A.∑∞=+-1)1()1(n nn n B.)1|(|)1(1>-∑∞=q qn n nC.∑∞=-1131n nD.∑∞=+1)1ln(n n解:观察易知∑∞=+1)1ln(n n 发散,选取D 。
性质: 12.1 若级数1nn u∞=∑收敛,则下列级数不收敛的是( ).(A)12∞=∑nn u(B)1(2)∞=+∑nn u (C) 12∞=+∑nn u(D)2nn u∞=∑解:由收敛性质易知1(2)∞=+∑nn u 不收敛,所以选B 。
12.9 若级数1n n u ∞=∑收敛,则下列级数不收敛的是( ).(A)110∞=∑nn u(B)1(10)∞=+∑nn u (C) 110∞=+∑nn u(D)10∞=∑nn u解:由收敛性质易知1(10)∞=+∑nn u 不收敛,所以选B 。
12.20 若级数1nn u∞=∑收敛,则下列级数中发散的是( ).(A)110nn u∞=∑ (B)101n n u∞+=∑(C) 110nn u∞=+∑ (D)1(10)nn u ∞=+∑解:由收敛性质易知1(10)∞=+∑nn u 不收敛,所以选D 。
12.4 如果级数∑∞=1n nu条件收敛,则||1∑∞=n nu( ).A .必收敛B. 必发散C. 不一定收敛D. 无法判断解:由定义,∑∞=1n nu条件收敛,则||1∑∞=n nu必发散。
所以选B 。
12.12 如果级数∑∞=1n nu收敛,则极限n n u ∞→lim ( ).A .存在 B. 不存在 C. 等于零 D. 无法判断解:由性质,∑∞=1n nu收敛,则极限lim 0n n u →∞=,所以选C 。
12.16 如果任意项级数∑∞=1n nu绝对收敛,则下列说法正确的是 ( ).A .∑∞=1n nu必发散 B.∑∞=1n nu必收敛 C.||1∑∞=n nu必发散 D.||1∑∞=n nu不一定收敛解:由概念,∑∞=1n nu绝对收敛,则∑∞=1n nu必收敛,所以选B 。
12.18 若级数1nn u∞=∑收敛,则lim(1)n n u →∞-= ( ).(A) 2 (B) 0 (C) 1 ( D) 1- 解:由收敛性质,lim(1)1n n u →∞-=-,所以选D 。
12.25 级数∑∞=1n nu的部分和数列{}n s 有界是该级数收敛的( );(A) 充分非必要条件; (B) 必要非充分条件; (C) 充分必要条件; (D) 非充分非必要条件. 解:级数∑∞=1n nu的部分和数列{}n s 有界是该级数收敛的必要非充分条件,如;1(1)nn ∞=-∑不收敛,但部分和{}n s 有界。
所以选B 。
12.29 若级数1(1)∞=-∑nn u 收敛,则lim →∞=nn u解:由收敛必要条件:lim(1)0n n u →∞-=,所以填lim 1n n u →∞=。
12.36 若级数1∞=∑nn u收敛,则2lim(2013)→∞-+=n n n u u解:由收敛必要条件:lim 0n n u →∞=,所以填2013。
12.42 lim 0n n u →∞=是1nn u∞=∑收敛的 条件.解:lim 0n n u →∞=是1nn u∞=∑收敛的必要条件,所以填“必要”。
绝对收敛、条件收敛还是发散:12.50 下列级数是绝对收敛、条件收敛还是发散,并写出你的理由。
(1)1(1)21∞=-+∑nn n n (2)1(1)2∞=-∑n n n n (3)11(1)21n n n +∞=--∑解:1lim 212n n n →∞=+,1(1)21∞=-+∑n n n n 发散;12n n n ∞=∑收敛,1(1)2∞=-∑n n n n 绝对收敛;11(1)21n n n +∞=--∑ 收敛,但1121n n ∞=-∑发散,所以11(1)21n n n +∞=--∑条件收敛。
12.55 下列级数是绝对收敛、条件收敛还是发散,并写出你的理由。
(1)12(1)31∞=-+∑nn n n (2)1(1)2∞=-∑n n n n (3)11(1)∞=-∑n n n 解:12(1)31∞=-+∑nn n n 发散;1(1)2∞=-∑n n n n 绝对收敛;11(1)∞=-∑n n n 条件收敛。
二. 幂级数的收敛半径,收敛域,和函数12.30 幂级数1nn x n∞=∑的收敛半径为解:11lim 11n n n→∞+=,1n n x n∞=∑的收敛半径为1,填1。
12.37 幂级数11(1)nn n x n∞-=-∑的收敛半径为 解:11lim 11n n n→∞+=,11(1)n n n x n ∞-=-∑的收敛半径为1,填1。
12.40 幂级数12nnn x n ∞=⋅∑的收敛半径R = 解:111(1)2lim 122n n n n n +→∞+⋅=⋅,12n n n x n ∞=⋅∑收敛半径2R =,所以填2。
12.22 幂级数1(1)nnn x n ∞=-∑的收敛域为( ).A .[1,1]- B.(1,1]- C.[1,1)- D. (1,1)-解:11lim 11n n n→∞+=,1(1)n n n x n ∞=-∑的收敛半径为1,又1x =-时,111(1)n n n n x n n ∞∞==-=∑∑发散,1x =时,111(1)(1)n nn n n x n n ∞∞==-=-∑∑收敛 ,所以收敛域为(1,1]-,故选B 。
12.26 幂级数∑∞=1n nn x 的收敛域为( );(A) )1,1(-; (B) )1,1[-; (C) ]1,1(-; (D) ]1,1[-.解:11lim 11n n n→∞+=,∑∞=1n n n x 的收敛半径为1,1x =-,11(1)n n n n x n n ∞∞==-=∑∑收敛,1x =时,111n n n x n n ∞∞===∑∑发散,所以收敛域为)1,1[-,故选B 。