同位素地球化学调查研究方法综述

合集下载

地球化学中的同位素研究及其应用

地球化学中的同位素研究及其应用

地球化学中的同位素研究及其应用地球化学是研究地球上各种化学现象和过程的科学学科。

同位素是元素具有相同的原子序数和化学性质,但质量数不同的不同种类的原子,其在地球化学研究中发挥着重要的作用。

本文将探讨地球化学中的同位素研究以及其在不同领域的应用。

一、同位素的定义和分类同位素是指具有相同原子序数(即原子核中质子的数量相同)但质量数(即原子核中质子和中子的数量之和)不同的原子。

同位素的存在使得地球化学研究可以根据元素的同位素组成来分析物质起源、演化和地球系统中的各种过程。

同位素一般可以分为稳定同位素和放射性同位素两类。

稳定同位素是指在地球化学研究中具有稳定存在状态的同位素,如氢的两种同位素氢-1和氢-2,氧的三种同位素氧-16、氧-17和氧-18。

放射性同位素是指具有不稳定存在状态的同位素,如铀系列的235U和238U以及镭系列的226Ra等。

二、地球化学中的同位素研究方法1. 同位素质谱法同位素质谱法是地球化学研究中常用的分析技术,它可以通过测量元素的同位素比例来获取有关地球物质起源和演化的信息。

该技术基于同位素质量分析仪器,可以对地球系统中的各种物质样品进行同位素组成的测定。

2. 同位素示踪法同位素示踪法是地球化学研究中常用的实验手段,它通过采集含有某种同位素标记的物质,并追踪其在地球系统中的传输和转化过程。

该方法可以帮助科学家们了解物质的迁移路径、生物地球化学循环等过程,为地球系统模型的构建和预测提供重要依据。

三、地球化学中的同位素研究应用1. 地质探测地球化学中的同位素研究可以用于地质探测,例如利用同位素示踪法可以追踪岩石中的放射性同位素衰变过程,从而确定岩石的年代和形成过程。

这对于研究地质构造、地壳运动以及矿床形成等具有重要意义。

2. 古气候研究同位素的组成可以反映地球气候变化的过程。

通过对冰川和海洋沉积物中的同位素比例进行分析,可以了解过去气候变化的规律和机制。

这对于预测未来气候变化趋势以及制定环境保护政策有重要意义。

地球化学中的放射性同位素分析技术

地球化学中的放射性同位素分析技术

地球化学中的放射性同位素分析技术地球化学是科学家们非常重视的一个领域,它研究的是地球化学的本质和地球环境发生变化的原因及其影响。

放射性同位素是其中一个重要的研究对象,它可以帮助研究者了解地球的年代和演化历程。

本文将重点讨论放射性同位素分析技术在地球化学中的应用。

放射性同位素的定义与特性放射性同位素是指具有相同的原子序数但不同的中子数的同位素,它们能够通过放射性衰变来发射电子、中子、伽马射线等粒子,并转化为其他的同位素。

放射性同位素通常具有更长或者更短的半衰期,其分析技术依赖于样品、仪器及运算的条件。

目前常见的放射性同位素分析技术包括放射半衰期法、同位素分离法、同位素稳定示踪法等。

放射性同位素在地球化学中的应用放射性同位素分析技术在地球化学中有着广泛的应用,例如在地球史和地质学研究中,可以通过对核素分析的方法,推断出地球内部分层结构的情况;对地球年龄进行估算;对重要岩石类型的形成、演化、迁移及变化过程进行观测等。

同位素稳定示踪法同位素稳定示踪法是一种先进的放射性同位素分析技术,它应用了同位素的日常变化。

通常来说,自然界中存在着一些稳定的同位素,例如氧元素有氧16和氧18等异构体,研究者可以通过分析样品中同位素变化量的大小来推断它与大气、生物、岩石和水等地质和生物系统的相互作用路径。

同位素稳定示踪法被广泛应用在地质学、农业、气象学和生态学等多个领域,例如它可以用来研究降雨的来源、检测污染物的来源和传输路径、研究生物的有机食物的来源等等。

利用同位素稳定示踪法可以明确的区分水源、降雨、植物物理和化学过程中的变化,进而了解各种地质生态过程的动态变化。

总之,放射性同位素分析技术在地球化学中的应用已经逐渐成为一个热门话题。

在未来的研究中,随着科学技术的不断发展,相信放射性同位素分析技术将更多的被运用到地球科学中。

稳定同位素地球化学研究进展

稳定同位素地球化学研究进展

稳定同位素地球化学研究进展随着科学技术的进步,稳定同位素地球化学研究日益受到重视。

稳定同位素是某种元素的同位素,其原子核中的中子和质子的数量均相同,但质子数不确定。

与放射性同位素不同,稳定同位素不会衰变,因此能够在地球化学和生物地球化学等领域中广泛应用。

本文将从研究意义、研究方法、应用领域等方面进行探讨。

一、研究意义稳定同位素研究在地球科学、环境科学、生物地球化学等学科领域中有着重要的作用。

其中,稳定同位素地球化学的主要研究内容是掌握地球化学过程和环境演化的规律及机制。

例如,在构造地质学中,稳定同位素可以用于推测岩浆源区的成分和动力学过程;在古环境学中,稳定同位素可以用于重现气候变化和环境演化过程;在地球化学污染评价中,稳定同位素可以用于追踪污染物来源和迁移路径。

另外,在生物地球化学中,稳定同位素也发挥着重要的作用。

例如,在动物和植物的生物地球化学循环中,利用稳定同位素可以探究其食物链和生长状态;在微生物地球化学中,通过稳定同位素的应用,可以研究氮、硫、铁、碳等元素的循环和代谢规律。

综上,稳定同位素地球化学研究的意义在于提高对地球化学过程和环境演变规律的认识,为生态保护和资源管理提供科学依据。

二、研究方法稳定同位素研究主要依靠仪器分析技术和数据统计方法。

目前,应用最广泛的稳定同位素测量仪器为质谱仪,在气体、液体和固体样品的分析中均有广泛应用。

根据不同的研究对象和分析场合,稳定同位素分析方法有以下几种:1. 气体-稳定同位素分析法:适用于大气、水体、土壤及生物样品中的小分子有机化合物、气态元素、气体分子等的同位素分析。

2. 液体-稳定同位素分析法:适用于水体、沉积物、岩石、矿物等大分子有机化合物和元素化合物的同位素分析。

3. 固体-稳定同位素分析法:适用于岩石、矿物、古生物化石等固体样品中的元素同位素分析。

另外,数据统计方法也是稳定同位素研究的重要手段之一,例如稳定同位素分馏和稳定同位素混合模型等。

盐湖硼、锂、锶、氯同位素地球化学研究进展

盐湖硼、锂、锶、氯同位素地球化学研究进展

盐湖硼、锂、锶、氯同位素地球化学研究进展盐湖硼、锂、锶、氯同位素地球化学研究进展盐湖是一类独特的地质环境,以其丰富的地球化学元素和同位素组成而著名。

在盐湖研究中,硼、锂、锶和氯等元素同位素研究在现代地球科学中变得越来越重要。

本文将对盐湖硼、锂、锶和氯同位素地球化学研究的进展进行综述。

盐湖硼同位素地球化学研究的进展盐湖中硼同位素是独特的,同时还被广泛用于岩石圈和生物圈的研究。

硼同位素的成分和分布与年代、成因、大气环境和地质环境密切相关。

通过硼同位素研究,可以了解盐湖的成因、演化过程和地球系统的环境变化。

近年来,盐湖硼同位素的研究工作得到了很大的发展,主要有以下几个方面:1. 盐湖硼同位素地球化学的理论研究:针对盐湖硼同位素地球化学的特点,其物理化学性质和化学成分进行系统的探究和分析,为下一步研究提供了理论基础。

2. 盐湖硼同位素应用于环境和气候变化:硼同位素可以间接记录大气二氧化碳浓度、环境变化及过去气候变化的历史。

硼同位素在盐湖研究中的应用也在逐渐扩大,以探究地球系统的环境变化和气候变化过程。

3. 盐湖中硼同位素与盐生生物的研究:盐湖是一种充满活力和独特性的生态系统,硼同位素记录了盐湖中不同生物形态的进化和生态系统的形成及演化过程。

盐湖锂同位素地球化学研究的进展盐湖中的锂同位素是表征盐湖成因、演化和环境变化的重要指标。

锂同位素对环境变化、大气二氧化碳浓度和岩浆过程有很强的响应性,因此在盐湖研究中有着广泛的应用。

近年来,盐湖锂同位素的研究工作主要集中在以下几个方面:1. 盐湖锂同位素的分析方法:随着技术的发展,越来越多的研究者使用了新的分析方法,如热离子化质谱技术、电感耦合等离子体质谱技术等。

2. 盐湖锂同位素的地球化学特征和环境变化:研究表明,盐湖锂同位素组成和形成环境和历史、盐湖深度、微生物作用等因素都有关系。

因此,盐湖锂同位素在探究盐湖成因、演化和环境变化过程中具有重要意义。

盐湖锶同位素地球化学研究的进展盐湖中的锶同位素是记录盐湖成因、演化过程以及与其他构造单元的联系的重要指标。

U-Pb同位素测年方法及应用综述

U-Pb同位素测年方法及应用综述

U-Pb同位素测年方法及应用综述U-Pb同位素测年方法是一种重要的地球科学测年方法,它是基于铀和钍系放射性衰变序列的原理,利用锆石等矿物中的铀和钍元素与其衰变产物的比值来确定矿物的年龄。

本文将对U-Pb同位素测年方法及其应用进行综述。

铀和钍元素的衰变系列分别为:U-238到Pb-206,U-235到Pb-207和Th-232到Pb-208。

这些元素的衰变产物中的铅同位素是非常稳定的,因此可以用来测定矿物的年龄。

通常使用的是含有铀和钍的晶体矿物,如锆石、独居石和黑云母等。

在这些矿物中,铀和钍元素的比值通常很小,但是它们的衰变产物——铅元素的量却很大,因此可以测定矿物中的铀和钍元素浓度、铅元素浓度和铀、钍元素与其衰变产物铅元素的比例,以确定矿物的年龄。

1. 从样品中提取含有铀和钍元素的晶体矿物;2. 测定矿物中铀、钍和铅元素的浓度;4. 利用铀和钍元素与其衰变产物铅元素之间的关系,计算出矿物的年龄。

U-Pb同位素测年方法广泛应用于地球科学中的各个领域,包括地质学、古生物学、构造地质学、矿床学等。

地质学中,U-Pb同位素测年方法是研究岩石和矿物年龄的重要方法。

它可以用来确定岩浆岩、变质岩和沉积岩的形成年龄,以及变质、岩浆作用的时代和历史,从而揭示地球的演化。

此外,U-Pb同位素测年方法也可以用于研究地球化学过程,比如地球的演化和作用,岩石圈和地幔的构成等。

古生物学中,U-Pb同位素测年方法可以用于确定化石的年龄,特别是对于古生物学研究中的发掘和分类很有帮助。

古生物学家可以根据化石的年龄对不同时期的生物群落做出更准确的判断。

例如,古生物学家可以基于U-Pb同位素测年方法确定某一古生物时期的地质年龄,从而推断该时期的生物分布和生态环境。

构造地质学中,U-Pb同位素测年方法可以用于确定岩石的形成和变形的时间,为地壳和板块构造演化提供重要的证据。

它不仅可以确定岩石和构造事件的年代,还可以研究不同形态的岩石和构造作用的组合和关系。

地球化学中的同位素地球化学研究

地球化学中的同位素地球化学研究

地球化学中的同位素地球化学研究同位素地球化学研究作为地球化学的一个重要分支,已经成为了地球科学领域的一个重要组成部分。

同位素地球化学研究的历史可以追溯到上世纪四十年代,当时科学家在分析地球中的不同元素时发现了这些元素存在着同位素的现象。

这些同位素具有与其它元素不同的质量,因而可以用来对自然界和人造体系中不同的地理化学过程进行精确的追踪、探究和解释。

同位素地球化学研究的应用范围非常广泛,包括了地质学、气象学、海洋学、生物学、环境科学和矿物学等多个领域,并且已经被证明是一种非常有力的工具。

而可以被用来研究的同位素也非常的丰富,可以包括氢、碳、氮、氧、硫、铅、锶等几乎所有的元素。

同位素地球化学研究的主要优势在于其可以检测地球环境中非常低的含量元素,这些元素往往难以用其它手段进行检测,但是却是准确推断地球化学过程的关键。

此外,同位素地球化学研究可以提供非常准确的时间信息,这对于研究地球历史上的重大事件,如气候变化、环境演变和地球内部动力学的活动,都是非常重要的。

同位素地球化学研究的一个重要方面是利用同位素比例来研究元素的循环、转换和分配。

在地球化学的过程中,元素的比例和同位素的分布往往扮演着非常重要的角色。

相反,另外一个常用的方法是以研究大气中的同位素比例为基础来研究地球历史上的气候变化和环境演变。

以氢、碳、氧同位素为例,我们可以利用它们之间的比例来进行一系列的研究。

氢同位素的变化可以反映出水的来源和循环,如研究降水中氢同位素的变化可以推断季风气候的演变。

碳同位素的变化可以反映出生物和地球化学条件的变化,如气候条件、极端环境的来源、生物地位变化等,我们可以利用其在环境恶化过程 ("酸雨"和温室气体排放)中的反应和修复过程 ("碳汇"和吸收)中的变化来分析全球碳循环的变化趋势。

氧同位素可以反映出水的循环和气候变化趋势,我们可以在深海沉积中通过氧同位素来进行气候的变化。

地球化学研究中的同位素测年技术

地球化学研究中的同位素测年技术

地球化学研究中的同位素测年技术地球化学研究中的同位素测年技术被广泛应用于地质学、地球科学、考古学等领域,为我们揭示了地球历史的面纱。

同位素测年技术是通过分析地质物质中不同同位素的比例来确定物质的年龄,其原理基于同位素在自然界中的稳定性和放射性衰变的特性。

本文将介绍同位素测年技术的原理、应用领域及其在地球化学研究中的重要性。

一、同位素测年技术的原理同位素是同一个元素中具有相同原子序数但质量数不同的核素。

同位素的稳定性是同位素测年技术有效应用的基础,而放射性同位素的衰变性质则被用于测定物质的年龄。

同位素测年技术的核心原理是根据衰变速率和父母同位素与子女同位素之间的比例关系来计算样品的年龄。

放射性同位素的衰变速率是稳定的,衰变过程中父母同位素的逐渐减少,而子女同位素的比例逐渐增加。

通过测量样品中父母同位素和子女同位素的含量,可以计算出样品的年龄。

二、同位素测年技术的应用领域同位素测年技术广泛应用于地质学、地球科学和考古学等领域,为研究地球历史和人类活动提供了重要的依据。

在地质学中,同位素测年技术可以用于确定岩石和矿石的形成时间,揭示地球地质演化的过程。

例如,铀系同位素测年方法可以用于测定岩石的年龄,帮助我们了解地球各个时期的构造变化和地球表面的历史。

在地球科学中,同位素测年技术被用于研究地球大气和海洋的循环过程,揭示气候变化的规律。

通过分析大气和海洋中的同位素比例,可以推断过去的气候环境,为预测未来的气候变化提供参考依据。

在考古学中,同位素测年技术被用于确定考古遗址中文物和生物化石的年代,揭示人类活动的发展历程。

通过测定遗址中的有机物的同位素比例,可以推断人类定居和活动的时间,帮助我们了解古代文明的兴衰和民族迁徙的历史。

三、同位素测年技术在地球化学研究中的重要性同位素测年技术在地球化学研究中具有重要的地位和作用。

首先,同位素测年技术是地球化学研究的重要方法之一,通过分析样品中同位素的比例,可以确定样品的年龄和形成过程,从而揭示地球的演化历史。

地球化学研究中的稳定同位素地球化学

地球化学研究中的稳定同位素地球化学

地球化学研究中的稳定同位素地球化学地球化学研究旨在了解我们的行星是如何以及为什么形成的,包括地壳、大气、水体和生物。

地球化学家使用各种方法和技术来研究这些过程,而稳定同位素地球化学是其中之一。

本文将介绍稳定同位素地球化学的基本概念,以及它如何应用于了解地球化学过程的早期历史和现代系统。

稳定同位素是指具有相同原子核数的元素,但具有不同的中性子数。

同位素地球化学是研究这些同位素在地球化学中的分布和交换过程的学科。

由于同位素的数目非常相似,因此它们的化学性质也非常相似。

这使得它们在地球化学和生物学中的应用非常广泛。

稳定同位素地球化学的应用广泛,仅举几例。

首先,它可以用于了解过去的气候和环境条件。

例如,钋同位素比研究表明,过去的气候变化和气候区域变化对全球生态系统和人类社会造成了深远的影响。

其次,它可以用于研究物质循环和生态系统中的动态变化。

例如,地球上的水循环和生态系统中碳、氮、硫等元素的循环和利用,可以用稳定同位素技术进行研究和监测。

此外,它还可以用于了解矿床和石油等地下资源的形成和演化过程。

除了稳定同位素外,同位素地球化学也包括放射性同位素地球化学。

与稳定同位素不同,放射性同位素衰变会导致元素发生变化,而稳定同位素只涉及元素内部中性子数量的变化。

两类同位素地球化学研究可以相互补充。

稳定同位素地球化学的应用有赖于其具有高精度、多重标记和非破坏性等特点。

例如,一些同位素的比例测量可以用极高的精度实现,达到1/1000万或更高的精度。

这在研究少量物质的分布和交换过程时非常有用。

稳定同位素还可以用于多个化学物种的标记。

其中,氢、氧、碳、氮和硫等元素的同位素标记被广泛应用于研究生态系统和地壳环境中的物质循环。

最后,稳定同位素技术是一种非破坏性的分析方法。

这使得它能够在不影响样品的情况下分析地球化学系统的动态变化。

鉴于稳定同位素地球化学的广泛应用,地球科学家使用许多技术和方法来进行稳定同位素分析。

其中一种最常用的技术是质谱仪。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同位素地球化学调查研究方法综述摘要:同位素地球化学可以分成稳定同位素地球化学和放射性同位素地球化学两类。

根据两类同位素的不同特性,继而各自发挥所长,为地球化学研究作出卓越的贡献。

例如稳定同位素地球化学是根据自然过程中发生同位素分馏现象的原理,探讨地质过程物质来源与环境条件等问题;[1]放射性同位素地球化学为研究地球或宇宙体的成因与演化,为地球科学从定性研究到定量研究的发展作出了重要贡献。

[2]关键词:同位素地球化学;稳定同位素;放射性同位素;成岩成矿1放射性同位素地球化学凡是原子能稳定存在的时间小于10 17年的核素就是放射性同位素或放射成因同位素,这些同位素多半是原子质量小于83,质量数小于209的核素.1.1放射性同位素的特性①衰变作用是发生在原子核内部的反应,反应结果由一种核素变成另一种核素;②衰变不断的自发地进行,并有恒定的衰变比例;③衰变反应不受温度、压力、电磁场和原子核存在的形式等物理化学条件的影响;④衰变前和衰变后核素的原子数只是时间的函数。

1.2同位素地质年代学基础同位素年代学,是同位素地质学分支之一。

利用自然界放射性衰变规律研究测定各种地质体的形成时代的同位素计时方法。

它根据放射性同位素衰变规律确定地质体形成时间和地质事件发生的时代,以研究地球和行星物质的形成历史和演化规律[3]。

根据(一)中的同位素特性,由Rutherford总结出放射性同位素衰变定理,即单位时间内衰变的原子数与现存放射性母体的原子数成正比,数学表达式为: -dN/dt=λN ㈠(注释:式中N为在t时刻存在的母体原子数;dN/dt为t时的衰败速率,负号表示N随时间减少;λ为衰败常数,表示单位时间内发生衰败的原子数的比例数。

)放射性同位素的衰变定律是同位素地质年代学的基础。

还有一个公式是t=1/λ㏑{[(D/Ds)- (D/Ds)0]/(N/Ds)+1}㈡(注释:N为在t时刻存在的母体原子数;λ为衰败常数;D和D0分别是t时和t=0时的同位素的与原子数;DS是参照同位素;D/Ds代表样品现今的同位素原子数比值,用质谱仪直接测定获得;(D/Ds)0样品初始同位素原子数比值;N/Ds是母体同位素与参照子体同位素原子数比值,一般通过同位素稀释法分析计算获得;)满足(二)式有几个条件:①应当选择适当半衰期的放射性同位素体系;②准备测定衰变常数;③高精度的同位素制样和质谱测定技术;④测定对象处于封闭体系中。

1.3具体实例说明同位素在岩石成因研究中的应用目前在地球科学研究中对新生代前的地质事件应用最广泛的同位素年代学方法有U-Th-Pb 体系、Sm-Nb体系、Rb-Sr体系、K-Ar体系、Ar-Ar体系、Re-Os体系、Lu-Hf体系、14C等1.3.1锆石U-Pb年龄、Sr-Nd-Hf同位素地球化学与岩石成因对赣东北鹅湖岩体进行了SHRIMP 锆石U-Pb 年代学、元素和Sr-Nd-Hf同位素地球化学及岩石成因研究。

SHRIMP 锆石U-Pb 定年结果表明,鹅湖岩体形成于早白垩世的(121.7±2.9) Ma;岩相学及元素和Sr-Nd-Hf同位素特征表明鹅湖花岗岩属于S 型,主要是由地壳深处(至少40 km)的古元古代变质沉积岩发生部分熔融形成的,成岩过程中并没有发生强烈的分离结晶作用和幔源岩浆混合作用,赣东北地区早白垩世伸展构造背景造成的软流圈地幔上涌可能是下地壳岩石发生部分熔融的诱因[4]1.3.2 H f- N d 同位素岩石成因意义H f- N d 同位素的解祸现象很可能反映了花岗岩浆形成过程经历过石榴石与熔体的分离过程, 从而导致熔体相富放射成因H f 和高的εhf(t)值, 而这一过程对岩石的Nd 同位素组成不产生明显影响。

结合岩石常量、微量和稀土元素地球化学研究, 该区印支期花岗岩很可能来自中下地壳中元古代变质岩系的部分熔融, 这为深人研究华南早中生代构造演化提供了重要依据[5]。

1.3.3 Rb、Sr同位素组成及岩石成因的意义西华山花岗岩为一多阶段复式岩体。

不同阶段花岗岩的钩德含量及同位素组成有显著差异。

其中R b 和Sr , 趋向于在晚阶段花岗岩中富集。

Sr 的变化趋势与此相反。

Rb、Sr 的行为指示该岩体的主体是由岩浆作用形成, 而第一阶段似斑状花岗岩可能和岩浆前锋流体相的交代作用有关。

岩体的Rb 一S r 等时线年令为场161.03M a , Sr 被触合比为0.7193属典型的壳源花岗岩[6]1.4同位素封闭温度及冷却年龄大多数同位素体系并不能记录样品的形成你年龄,而只能记录样品演化到某一阶段的年龄,具体对应样品的哪个演化阶段,则取决于样品中同位素体系的封闭温度。

封闭温度是同位素时钟开始启动时的温度,他取决于元素在样品中扩散的快慢,扩散快,封闭温度越低。

封闭温度获得方法有三个:地质样品计算、实验法、理论计算法。

2稳定同位素地球化学凡是原子能稳定存在的时间小于10 17年的核素就是稳定同位素。

有81种元素有稳定同位素,稳定核素的总数为274种(包括半衰期>1015年的放射性核素)。

通常以原子核的比结合能(每个核子的平均结合能)ε=E B/A作为稳定性的量度;E B为核的结合能,A为核子数。

ε越大,体系的能量越低,也就越稳定。

2.1稳定同位素地质温度计2.1.1同位素分馏指由物理、化学以及生物作用所造成的某一元素的同位素在两种物质或两种物相间分配上的差异现象。

引起同位素分馏的主要机制有:①同位素交换反应。

是不同化合物之间、不同相之间或单个分子之间发生同位素分配变化的反应,是可逆反应。

反应前后的分子数、化学组分不变,只是同位素浓度在分子组分间重新分配。

②同位素动力学效应。

是指物理或化学反应过程中同位素质量不同所引起的反应速率的差异。

在不可逆反应中,结果总是导致轻同位素在反应产物中富集。

2.1.2同位素分馏系数分馏系数α表示同位素的分馏程度,反映了两种物质或两种物相之间同位素相对富集或亏损程度。

在自然界,分馏系数是指两种矿物或两种物相之间的同位素比值之商。

其表达式为αA-B=R A/R B式中A和B表示两种物质(物相),R代表重同位素对轻同位素的比值,如18O/16O,13C/12C等。

α值偏离1愈大,说明两种物质之间的同位素分馏程度也就愈大;α =1时,物质间没有同位素分馏。

2.1.3 δ值稳定同位素组成常用δ值表示,δ值指样品中某元素的稳定同位素比值相对标准(标样)相应比值的千分偏差。

δ值能清楚地反映同位素组成的变化,样品的δ值愈高,反映重同位素愈富集。

样品的δ值总是相对于某个标准而言的,同一个样品,对比的标准不同得出的δ值各异。

所以必须采用同一标准;或者将各实验室的数据换算成国际公认的统一标准,这样获得的δ值才有实际应用价值。

比较普遍的国际公认标准为:①SMOW,即标准平均海洋水,作为氢和氧的同位素的国际统一标准;② PDB,是美国南卡罗来纳州白垩系皮狄组地层内的似箭石,一种碳酸钙样品,用作碳同位素的国际统一标准,有时也作为沉积碳酸盐氧同位素的标准;③CDT,是美国亚利桑纳州迪亚布洛峡谷铁陨石中的陨硫铁,用作硫同位素的国际统一标准[7]。

2.1.4在地质学中的应用稳定同位素实验研究表明,大多数矿物对体系(矿物-矿物)或矿物-水体系,在有地质意义的温度范围内,103lnα值与T2成反比,T为绝对温度。

103lnα值可以近似地用两种物质的δ差值表示,即δ-δB=ΔA-B≈103lnαA-B。

因此,只要测得样品的δ值,就可直接计算出103lnα值。

它同样表示物质间同位素分馏程度的大小,利用它可绘制同位素分馏曲线,拟合同位素分馏方程式和计算同位素平衡温度.在稳定同位素地球化学研究中,H、C、O、S等研究较深入。

它们在天然物质中分布广泛,可形成多种化合物,由于它们的同位素质量数都比较小,相对质量差别大,因而同位素分馏更明显,这对确定地质体的成因及其物质来源和判明地质作用特征具有重要意义[8]。

3 总结本文先后从放射性同位素地球化学和稳定同位素地球化学的基本概念、基本理论、定律方面阐述了同位素地球化学在岩石研究中的应用,同时也从先辈的例子给以说明放射性同位素地球化学为研究岩石的成因与演化,为地球科学从定性研究到定量研究的发展作出了重要贡献。

稳定同位素地球化学是根据自然过程中发生同位素分馏现象的原理,探讨地质过程岩石来源与环境条件等问题。

总的来说同位素地球化学在岩石研究中作出了卓越的贡献,让岩石成因研究更加前进了一大步。

主要参考文献。

[1]高山,张宏飞.放射成因同位素地球化学[M].地球化学,2012年8月,第五章:152-156[2]高山,张宏飞.稳定同位素地球化学[M].地球化学,2012年8月, 第六章:202-210[3] /view/2375329.htm[4] 赵鹏,周清,靳国栋. 赣东北鹅湖岩体SHRIMP锆石U-Pb年龄、Sr-Nd-Hf同位素地球化学与岩石成因[J]. 高校地质学报,2010 年 6 月,第 16 卷,第 2 期,218-225页[5] 赵葵东. 南岭西段印支期花岗岩H f- N d 同位素解藕现象及岩石成因意义[J]. 岩石学与地球动力学研讨会,20 06 年,435.[6] 叶瑛. 西华山花岗岩伽银同位素组成及岩石成因的意义[J].浙江大学报,1989 年5 月第3 期第23卷 451-453[7] 魏菊英、王关玉编:《同位素地球化学》,科学出版社,北京,1988。

[8]G.福尔著,潘曙兰、乔广生译:《同位素地质学原理》,科学出版社,北京1983。

地球化学题目同位素地球化学调查研究方法综述班级专业学生姓名学号指导教师。

相关文档
最新文档