2019-2020学年上海市交大附中高一下学期期中数学试卷

合集下载

2019-2020学年上海交大附中高一(下)期末数学试卷

2019-2020学年上海交大附中高一(下)期末数学试卷

2019-2020学年上海交大附中高一(下)期末数学试卷试题数:21.满分:01.(填空题.3分)计算:arcsin (sin 5π6 )=___ .2.(填空题.3分)关于未知数x.y 的方程组对应的增广矩阵为 (2163−20) .则此方程组的解x+y=___ .3.(填空题.3分)设 a ⃗=(32,sinα) . b ⃗⃗=(cosα,13) .且 a ⃗ || b ⃗⃗ .则cos2α=___ . 4.(填空题.3分)已知函数f (x )=asinx+cosx 的一条对称轴为x= π3 .则a=___ . 5.(填空题.3分)已知平面向量 a ⃗ . b ⃗⃗ 满足| a ⃗ |= √3 .| b ⃗⃗ |=2. a ⃗•b ⃗⃗ =-3.则| a ⃗+2b ⃗⃗ |=___ . 6.(填空题.3分)设S 1=12.S 2=12+22+12.S 3=12+22+32+22+12.….S n =12+22+32+…+n 2+…+32+22+12.希望证明S n =n(2n 2+1)3.在应用数学归纳法求证上式时.第二步从k 到k+1应添的项是___ .(不用化简)7.(填空题.3分)已知 a ⃗ + b ⃗⃗ + c ⃗ = 0⃗⃗ .且| a ⃗ |=3.| b ⃗⃗ |=4.| c ⃗ |=5.则 a ⃗ • b ⃗⃗ + b ⃗⃗ • c ⃗ + c ⃗ • a ⃗ =___ . a ⃗ • b⃗⃗ =___ . 8.(填空题.3分)若数列{a n }为无穷等比数列.且 lim n→∞(a 1+a 2+a 3+…+a n-1+a n )=-2.则a 1的取值范围是___ .9.(填空题.3分)设数列{a n }是公比为q 的等比数列.则 |a 1a 2a 3a 4a 5a 6a 7a 8a 9| =___ . 10.(填空题.3分)已知向量 a ⃗ =(5.5). b ⃗⃗ =(λ.1).若 a ⃗ + b ⃗⃗ 与 a ⃗ - b ⃗⃗ 的夹角是锐角.则实数λ的取值范围为___ .11.(填空题.3分)如图.已知O 为矩形ABCD 内的一点.且OA=2.OC=4.AC=5.则 OB ⃗⃗⃗⃗⃗⃗•OD⃗⃗⃗⃗⃗⃗⃗ =___ .12.(填空题.3分)已知平面直角坐标系内定点A (1.1).动点B 满足| AB ⃗⃗⃗⃗⃗⃗ |=2.动点C 满足| CB ⃗⃗⃗⃗⃗⃗ |=3.则点C 在平面直角坐标系内覆盖的图形的面积为___ .13.(单选题.3分)要得到函数y=3sin (2x+ π3 )的图象.只需将函数y=3sin2x 的图象( )A.向左平移 π3 个单位长度 B.向右平移 π3 个单位长度 C.向左平移 π6 个单位长度 D.向右平移 π6 个单位长度14.(单选题.3分)O 是平面上一定点.A 、B 、C 是平面上不共线的三个点.动点P 满足 OP ⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗+λ(AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+AC⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|) .λ∈[0.+∞).则P 的轨迹一定通过△ABC 的( )A.外心B.内心C.重心D.垂心15.(单选题.3分)已知数列{a n }为等差数列.a 1<0且a 1+a 2+a 3+…+a 199=0.设b n =a n a n+1a n+2(n∈N*).当{b n }的前n 项和S n 最小时.n 的值有( ) A.5个 B.4个 C.3个 D.2个16.(单选题.3分)设O 为△ABC 所在平面内一点.满足2 OA ⃗⃗⃗⃗⃗⃗ -7 OB ⃗⃗⃗⃗⃗⃗ -3 OC ⃗⃗⃗⃗⃗⃗ = 0⃗⃗ .则△ABC 的面积与△BOC 的面积的比值为( ) A.6 B. 83 C. 127 D.417.(问答题.0分)解关于x 、y 的一元二次方程组 {ax +3y =−a −3x +(a −2)y =−2 .并对解的情况进行讨论.18.(问答题.0分)已知x∈R .设 m ⃗⃗⃗ =( √3 cosx.sinx-cosx ). n ⃗⃗ =(2sinx.sinx+cosx ).记函数f (x )= m ⃗⃗⃗ •n ⃗⃗ .(1)求函数f (x )的最小值.并求出函数f (x )取最小值时x 的值;(2)设△ABC 的角A.B.C 所对的边分别为a.b.c.若f (C )=2.c=2 √3 .求△ABC 的面积S 的最大值.19.(问答题.0分)已知△ABC 内接于⊙O .AB=c.BC=a.CA=b.⊙O 的半径为r . (1)若 OA ⃗⃗⃗⃗⃗⃗ +2 OB ⃗⃗⃗⃗⃗⃗ + √3 OC ⃗⃗⃗⃗⃗⃗ = 0⃗⃗ .试求∠BOC 的大小; (2)若A 为动点.∠BAC=60°. AO⃗⃗⃗⃗⃗⃗ = λOC ⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ .试求λ+μ的最大值.20.(问答题.4分)已知平方和公式:12+22+…+n 2= n (n+1)(2n+1)6.其中n∈N*. (1)记f (n )=(-3n+1)2+…+(-5)2+(-2)2+12+42+…+(3n-2)2.其中n∈N*.求f (20)的值;(2)已知 12+32+⋯+(2n+1)222+42+⋯+(2n )2 = 4948 .求自然数n 的值;(3)抛物线y=kx 2、x 轴及直线AB :x=a 围成了如图(1)的阴影部分.AB 与x 轴交于点A.把线段OA 分成n 等份.作以 an为底的内接矩形如图(2).阴影部分的面积为S.等于这些内接矩形面积之和.a n×k×( a n)2 +a n×k×( 2a n)2 +a n×k×( 3a n)2+…+ a n×k×( n−1na )2. 当n→+∞时的极限值S=n→∞[k•( 1n)2+k•( 2n)2+k•( 3n)2+…+k•(n−1n )2]2• an= n→∞ 12+22++(n−1)2n 3 •ak= n→∞(n−1)•n•(2n−1)6n 3 •ak= 13 ak .图(3)中的曲线为开口向右的抛物线y2=x.抛物线y= √x、x轴及直线AB:x=4围成了图中的阴影部分.请利用极限、平方和公式、反函数或割补法等知识求出阴影部分的面积(说明:直角积分运算最高得分为4分)21.(问答题.0分)设数列{a n}的前n项和为S n.2S n+a n=3.n∈N*.数列{b n}满足:对于任意的)n-1+3n-3成立.n∈N*.都有a1b n+a2b n-1+a3b n-1+…+a n b1=(13(1)求数列{a n}的通项公式;(2)求数列{b n}的通项公式;(3)设数列c n=a n b n.问:数列{c n}中是否存在三项.使得它们构成等差数列?若存在.求出这三项;若不存在.请说明理由.2019-2020学年上海交大附中高一(下)期末数学试卷参考答案与试题解析试题数:21.满分:01.(填空题.3分)计算:arcsin (sin 5π6 )=___ . 【正确答案】:[1] π6【解析】:由题意利用反正弦函数的定义.特殊角的三角函数值.求得结果.【解答】:解:arcsin (sin 5π6 )=arcsin 12 = π6 . 故答案为: π6 .【点评】:本题主要考查反正弦函数的定义.特殊角的三角函数值.属于基础题. 2.(填空题.3分)关于未知数x.y 的方程组对应的增广矩阵为 (2163−20) .则此方程组的解x+y=___ .【正确答案】:[1] 307【解析】:推导出 {2x +y =63x −2y =0 .由此能求出x+y 的值.【解答】:解:∵关于未知数x.y 的方程组对应的增广矩阵为 (2163−20) . ∴ {2x +y =63x −2y =0 .解得 {x =127y =187 . ∴x+y= 307. 故答案为: 307 .【点评】:本题考查方程的解求法.考查增广矩阵等基础知识.考查运算求解能力.是基础题.3.(填空题.3分)设 a ⃗=(32,sinα) . b ⃗⃗=(cosα,13) .且 a ⃗ || b ⃗⃗ .则cos2α=___ . 【正确答案】:[1]0【解析】:由平面向量的共线定理列方程求出sin2α的值.再求cos2α的值.【解答】:解:由 a ⃗=(32,sinα) . b ⃗⃗=(cosα,13) .且 a ⃗ || b ⃗⃗ . 则sinαcosα- 32 × 13 =0. 所以sinαcosα= 12 . 所以sin2α=1; 所以2α= π2 +2kπ.k∈Z ; 所以cos2α=0. 故选:0.【点评】:本题考查了平面向量的共线定理与三角函数求值问题.是基础题. 4.(填空题.3分)已知函数f (x )=asinx+cosx 的一条对称轴为x= π3 .则a=___ . 【正确答案】:[1] √3【解析】:由题意化简函数f (x ).将函数的对称轴代入可得辅助角的值.进而求出正切值.可得a 的值.【解答】:解:由题意显然a≠0.当a >0时.f (x )= √a 2+1 sin (x+α).且tanα= 1a . 因为函数的一条对称轴为x= π3.所以 π3+α= π2+kπ.k∈Z . 所以α= π6+kπ.k∈Z . 则tanα=tan ( π6+kπ)= √33. 所以 √33= 1a.解得:a= √3 ;当a <0.则f (x )=- √a 2+1 sin (x+α).且tanα= 1a . 下面运算相同. 综上所述.可得a= √3 . 故答案为: √3 .【点评】:本题考查三角函数的化简即正弦函数的性质.属于基础题.5.(填空题.3分)已知平面向量 a ⃗ . b ⃗⃗ 满足| a ⃗ |= √3 .| b ⃗⃗ |=2. a ⃗•b ⃗⃗ =-3.则| a ⃗+2b ⃗⃗ |=___ . 【正确答案】:[1] √7【解析】:求出(a⃗+2b⃗⃗)2.开方即为| a⃗+2b⃗⃗ |.【解答】:解:(a⃗+2b⃗⃗)2= a⃗2+4a⃗•b⃗⃗+4b⃗⃗2 =3-12+16=7.∴| a⃗+2b⃗⃗ |= √7.故答案为:√7.【点评】:本题考查了平面向量的数量积运算.属于基础题.6.(填空题.3分)设S1=12.S2=12+22+12.S3=12+22+32+22+12.….S n=12+22+32+…+n2+…+32+22+12.希望证明S n= n(2n2+1).在应用数学归纳法求证上式时.第二步从k到k+1应添的项是___ .(不用化简)3【正确答案】:[1](k+1)2+k2【解析】:分别写出n=k与n=k+1时S n中的项.然后确定从k到k+1应添的项.【解答】:解:当n=k时.S n=12+22+32+…+k2+…+32+22+12.那么.当n=k+1时.S k+1=12+22+32+…k2+(k+1)2+k2+…+32+22+12.从k到k+1应添的项是(k+1)2+k2.故答案为:(k+1)2+k2.【点评】:本题考查数学归纳法证题的步骤.考查逻辑思维能力与推理论证能力.是基础题.7.(填空题.3分)已知a⃗ + b⃗⃗ + c⃗ = 0⃗⃗ .且| a⃗ |=3.| b⃗⃗ |=4.| c⃗ |=5.则a⃗• b⃗⃗ + b⃗⃗• c⃗ + c⃗• a⃗ =___ . a⃗• b⃗⃗ =___ .【正确答案】:[1]-25; [2]0【解析】:首先.根据a⃗ + b⃗⃗ + c⃗ = 0⃗⃗得到c⃗=−(a⃗+b⃗⃗) .然后.根据| c⃗ |=5.求解a⃗•b⃗⃗=0 .然后.再求解a⃗• b⃗⃗ + b⃗⃗• c⃗ + c⃗• a⃗的值.【解答】:解:∵ a⃗ + b⃗⃗ + c⃗ = 0⃗⃗ .∴ c⃗=−(a⃗+b⃗⃗) .∵| c⃗ |=5.∴(a⃗+b⃗⃗)2=25.∴| a⃗|2+2a⃗•b⃗⃗+|b⃗⃗|2 =25.∵| a⃗ |=3.| b⃗⃗ |=4.∴9+2 a⃗•b⃗⃗ +16=25.a ⃗•b⃗⃗=0 . ∴ a ⃗ • b ⃗⃗ + b ⃗⃗ • c ⃗ + c ⃗ • a ⃗ = a ⃗ • b ⃗⃗ + c ⃗ •( a ⃗ + b ⃗⃗ ) = a ⃗•b ⃗⃗ -( a ⃗+b ⃗⃗ )2 =0-25=-25. 故答案为:-25;0.【点评】:本题重点考查了平面向量的基本运算.数量积的运算性质等知识.属于中档题. 8.(填空题.3分)若数列{a n }为无穷等比数列.且 lim n→∞(a 1+a 2+a 3+…+a n-1+a n )=-2.则a 1的取值范围是___ .【正确答案】:[1](-4.-2)∪(-2.0)【解析】:设公比为q.由题意可得0<|q|<1.且 a11−q =-2.解不等式可得所求范围.【解答】:解:数列{a n }为无穷等比数列.且 lim n→∞(a 1+a 2+a 3+…+a n-1+a n )=-2.设公比为q.可得0<|q|<1.且 a11−q =-2.则q=1+ a12 .由0<|1+ a12 |<1.解得-4<a 1<-2或-2<a 1<0. 故答案为:(-4.-2)∪(-2.0).【点评】:本题考查无穷递缩等比数列的求和公式的运用.考查运算能力.属于基础题. 9.(填空题.3分)设数列{a n }是公比为q 的等比数列.则 |a 1a 2a 3a 4a 5a 6a 7a 8a 9| =___ . 【正确答案】:[1]0【解析】:利用三阶行列式展开法则和等比数列的通项公式直接求解.【解答】:解:∵数列{a n }是公比为q 的等比数列. ∴ |a 1a 2a 3a 4a 5a 6a 7a 8a 9| =a 1a 5a 9+a 4a 8a 3+a 2a 6a 7-a 7a 5a 3-a 8a 6a 1-a 4a 2a 9 = a 13q 12 + a 13q 12 + a 13q 12 - a 13q 12 - a 13q 12 - a 13q 12 =0. 故答案为:0.【点评】:本题考查三阶行列式的值的求法.考查三阶行列式展开法则和等比数列的通项公式等基础知识.考查运算求解能力.是基础题.10.(填空题.3分)已知向量 a ⃗ =(5.5). b ⃗⃗ =(λ.1).若 a ⃗ + b ⃗⃗ 与 a ⃗ - b ⃗⃗ 的夹角是锐角.则实数λ的取值范围为___ .【正确答案】:[1](-7.1)∪(1.7)【解析】:可先求出 a ⃗+b ⃗⃗=(λ+5,6),a ⃗−b ⃗⃗=(5−λ,4) .根据题意即可得出 {(λ+5)(5−λ)+24>04(λ+5)−6(5−λ)≠0.然后解出λ的值即可.【解答】:解: a ⃗+b ⃗⃗=(λ+5,6),a ⃗−b ⃗⃗=(5−λ,4) . ∵ a ⃗+b ⃗⃗ 与 a ⃗−b⃗⃗ 的夹角是锐角. ∴ (a ⃗+b ⃗⃗)•(a ⃗−b ⃗⃗)>0 .且 a ⃗+b ⃗⃗ 与 a ⃗−b ⃗⃗ 不共线. ∴ {(λ+5)(5−λ)+24>04(λ+5)−6(5−λ)≠0 .解得-7<λ<7且λ≠1.∴实数λ的取值范围为(-7.1)∪(1.7). 故答案为:(-7.1)∪(1.7).【点评】:本题考查了向量坐标的加法和减法运算.向量数量积的计算公式.共线向量的坐标关系.考查了计算能力.属于基础题.11.(填空题.3分)如图.已知O 为矩形ABCD 内的一点.且OA=2.OC=4.AC=5.则 OB ⃗⃗⃗⃗⃗⃗•OD ⃗⃗⃗⃗⃗⃗⃗ =___ . 【正确答案】:[1]- 52【解析】:建立坐标系.设O (m.n ).C (a.b ).根据条件得出O.C 的坐标之间的关系.再计算 OB ⃗⃗⃗⃗⃗⃗•OD ⃗⃗⃗⃗⃗⃗⃗ 的值.【解答】:解:以A 为原点.以AB.AD 为坐标轴建立平面直角坐标系. 设O (m.n ).B (a.0).D (0.b ).则C (a.b ). ∵OA=2.OC=4.AC=5.∴ {a 2+b 2=25m 2+n 2=4(m −a )2+(n −b )2=16 .整理可得:am+bn= 132 . 又 OB⃗⃗⃗⃗⃗⃗ =(a-m.-n ). OD ⃗⃗⃗⃗⃗⃗⃗ =(-m.b-n ). ∴ OB ⃗⃗⃗⃗⃗⃗•OD ⃗⃗⃗⃗⃗⃗⃗ =m (m-a )+n (n-b )=m 2+n 2-(am+bn )=4- 132 =- 52 . 故答案为:- 52 .【点评】:本题考查了平面向量的数量积运算.属于中档题.12.(填空题.3分)已知平面直角坐标系内定点A (1.1).动点B 满足| AB ⃗⃗⃗⃗⃗⃗ |=2.动点C 满足| CB ⃗⃗⃗⃗⃗⃗ |=3.则点C 在平面直角坐标系内覆盖的图形的面积为___ . 【正确答案】:[1]24π【解析】:本题先将B 固定.得到C 的轨迹.C 的轨迹随着B 的动点而运动从而形成一个圆环.即C 在平面直角坐标系内覆盖的图形.【解答】:解:因为动点B 满足| AB ⃗⃗⃗⃗⃗⃗ |=2.所以B 点的轨迹是以A 为圆心.2为半径的一个圆. 又因为动点C 满足| CB ⃗⃗⃗⃗⃗⃗ |=3.所以C 点轨迹是以B 为圆心.3为半径的一个圆. 当B 点在圆上运动时.C 点在平面直角坐标系内覆盖的图形如下图所示即C在平面直角坐标系内覆盖的图形为一个圆环.其中大圆的半径为5.小圆的半径是1.所以C在平面直角坐标系内覆盖的图形的面积为52π-12π=24π.【点评】:本题考查根据曲线的轨迹方程求面积.考查学生的直观想象能力和作图能力.易错点是把覆盖的面积看成一整个圆.属于中档题.13.(单选题.3分)要得到函数y=3sin(2x+ π3)的图象.只需将函数y=3sin2x的图象()A.向左平移π3个单位长度B.向右平移π3个单位长度C.向左平移π6个单位长度D.向右平移π6个单位长度【正确答案】:C【解析】:由于函数y=3sin(2x+ π3)=3sin2(x+ π6).故只要将函数y=3sin2x的图象相左平移π6个单位即可实现目标.【解答】:解:由于函数y=3sin(2x+ π3)=3sin2(x+ π6).故只要将函数y=3sin2x的图象相左平移π6个单位.即可得到函数y=3sin(2x+ π3)的图象.故选:C.【点评】:本题主要考查函数y=Asin(ωx+φ)的图象变换.属于中档题.14.(单选题.3分)O 是平面上一定点.A 、B 、C 是平面上不共线的三个点.动点P 满足 OP ⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗+λ(AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+AC⃗⃗⃗⃗⃗⃗|AC⃗⃗⃗⃗⃗⃗|) .λ∈[0.+∞).则P 的轨迹一定通过△ABC 的( )A.外心B.内心C.重心D.垂心【正确答案】:B【解析】:先根据 AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|、 AC⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|分别表示向量 AB ⃗⃗⃗⃗⃗⃗ 、 AC ⃗⃗⃗⃗⃗⃗ 方向上的单位向量.确定 AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+ AC ⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|的方向与∠BA C 的角平分线一致.再由OP ⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗+λ(AB⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+AC⃗⃗⃗⃗⃗⃗|AC⃗⃗⃗⃗⃗⃗|) 可得到 OP ⃗⃗⃗⃗⃗⃗−OA ⃗⃗⃗⃗⃗⃗=AP ⃗⃗⃗⃗⃗⃗ =λ( AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+ AC ⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|).可得答案.【解答】:解:∵ AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|、 AC⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|分别表示向量 AB ⃗⃗⃗⃗⃗⃗ 、 AC⃗⃗⃗⃗⃗⃗ 方向上的单位向量 ∴ AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+ AC⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|的方向与∠BAC 的角平分线一致又∵ OP ⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗+λ(AB⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+AC⃗⃗⃗⃗⃗⃗|AC⃗⃗⃗⃗⃗⃗|) .∴ OP ⃗⃗⃗⃗⃗⃗−OA ⃗⃗⃗⃗⃗⃗=AP ⃗⃗⃗⃗⃗⃗ =λ( AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+ AC⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|) ∴向量 AP ⃗⃗⃗⃗⃗⃗ 的方向与∠BAC 的角平分线一致 ∴一定通过△ABC 的内心 故选:B .【点评】:本题主要考查向量的线性运算和几何意义.属中档题.15.(单选题.3分)已知数列{a n }为等差数列.a 1<0且a 1+a 2+a 3+…+a 199=0.设b n =a n a n+1a n+2(n∈N*).当{b n }的前n 项和S n 最小时.n 的值有( ) A.5个 B.4个 C.3个 D.2个【正确答案】:B【解析】:根据等差数列的性质.可推得a 100=0.进而可得数列{a n }为递增数列.a 99<0.a 101>0.根据题意.b n =a n a n+1a n+2(n∈N*).当n≤97时.b n <0;当n=98.n=99.n=100时.b n =0;当n≥101时.b n >0.所以{b n }的前n 项和S n 最小时.n=97或n=98或n=99或n=100.共4个.【解答】:解:∵数列{a n }为等差数列 ∴a 1+a 199=a 2+a 198=…=a 99+a 101=2a 100. 又∵a 1+a 2+a 3+…+a 199=0. 即199a 100=0. ∴a 100=0.又∵a 1<0.∴数列{a n }为递增数列. ∴a 99<0.a 101>0.∵b n =a n a n+1a n+2(n∈N*).∴{b n }的前n 项和S n =a 1a 2a 3+a 2a 3a 4+…+a n a n+1a n+2. 当n≤97时.b n <0.当n=98.n=99.n=100时.b n =0. 当n≥101时.b n >0.∴{b n }的前n 项和S n 最小时.n=97或n=98或n=99或n=100.共4个. 故选:B .【点评】:本题主要考查等差数列的性质.考查数列的前n 项和的最值.考查学生运算和推理的能力.属于中档题.16.(单选题.3分)设O 为△ABC 所在平面内一点.满足2 OA ⃗⃗⃗⃗⃗⃗ -7 OB ⃗⃗⃗⃗⃗⃗ -3 OC ⃗⃗⃗⃗⃗⃗ = 0⃗⃗ .则△ABC 的面积与△BOC 的面积的比值为( ) A.6 B. 83 C. 127 D.4【正确答案】:D【解析】:先设 OA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗=2OA ⃗⃗⃗⃗⃗⃗,OB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗=−7OB ⃗⃗⃗⃗⃗⃗,OC 1⃗⃗⃗⃗⃗⃗⃗⃗=3OC ⃗⃗⃗⃗⃗⃗ .于是得到点O 是△A 1B 1C 1的重心.则 S △OA 1B 1=S △OA 1C 1=S △OB 1C 1 =k.再结合三角形面积公式即可求出△ABC 的面积与△BOC 的面积.进而得到答案.【解答】:解:不妨设 OA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗=2OA ⃗⃗⃗⃗⃗⃗,OB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗=−7OB ⃗⃗⃗⃗⃗⃗,OC 1⃗⃗⃗⃗⃗⃗⃗⃗=3OC ⃗⃗⃗⃗⃗⃗ .如图所示.根据题意则 OA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗+OB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗+OC 1⃗⃗⃗⃗⃗⃗⃗⃗=0⃗⃗ .即点O 是△A 1B 1C 1的重心.所以有 S △OA 1B 1=S △OA 1C 1=S △OB 1C 1 =k. 又因为 S △OBCS△OB 1C 1=OB•OCOB1•OC 1=121 . S △OABS△OA 1B 1=OA•OB OA1•OB 1=114 . S △OACS△OA 1C 1=OA•OC OA1•OC 1=16 .那么 S △OBC =121k . S △OAB =114k . S △OAC =16k .S △ABC =S △OAB +S △OAC −S △OBC =(114+16−121)k =421k . 故△ABC 的面积与△BOC 的面积的比值为 421k 121k =4 .故选:D .【点评】:本题考查了向量的数乘运算.重心的性质.三角形的面积公式.考查了转化与化归的数学思想.属于难题.17.(问答题.0分)解关于x 、y 的一元二次方程组 {ax +3y =−a −3x +(a −2)y =−2 .并对解的情况进行讨论.【正确答案】:【解析】:(1)若 a1 = 3a−2 = −a−3−2(a-2≠0).解得a.可得方程组有无数个解.(2)若 a1 = 3a−2 ≠−a−3−2(a-2≠0).解得a.可得方程组无解.(3)若a=2时.方程组化为: {2x +3y =−5x =−2 .解出即可判断出结论..若a-2≠0. a1 ≠ 3a−2 .解出可得方程组有唯一解.【解答】:解:(1)若 a1 = 3a−2 = −a−3−2(a-2≠0).则a=3.此时两条直线重合.方程组有无数个解.(2)若 a1 = 3a−2 ≠−a−3−2(a-2≠0).则a=-1.此时两条直线平行.方程组无解.(3)若a=2时.方程组化为: {2x +3y =−5x =−2 .解得 {x =−2y =−13 .若a-2≠0. a 1≠ 3a−2.则a≠3.-1.2.此时两条直线相交.方程组有唯一解 {x =−a−4a+1y =−1a+1.【点评】:本题考查了方程组的解法、分类讨论方法.考查了推理能力与计算能力.属于基础题. 18.(问答题.0分)已知x∈R .设 m ⃗⃗⃗ =( √3 cosx.sinx-cosx ). n ⃗⃗ =(2sinx.sinx+cosx ).记函数f (x )= m ⃗⃗⃗ •n ⃗⃗ .(1)求函数f (x )的最小值.并求出函数f (x )取最小值时x 的值;(2)设△ABC 的角A.B.C 所对的边分别为a.b.c.若f (C )=2.c=2 √3 .求△ABC 的面积S 的最大值.【正确答案】:【解析】:结合平面向量数量积的坐标运算、二倍角公式和辅助角公式将函数化简为f (x )=2sin (2x- π6 ).(1)根据正弦函数的图象可知.当2x- π6= −π2+2kπ时.f (x )可取得最小值. (2)易知C= π3 .由余弦定理得.cosC= a 2+b 2−c 22ab .再利用基本不等式的性质可求出ab 的最大值.然后根据S △ABC = 12 absinC 即可得解.【解答】:解:f (x )= m ⃗⃗⃗ •n ⃗⃗ =2 √3 sinxcosx+(sinx-cosx )(sinx+cosx )= √3 sin2x-cos2x=2sin (2x- π6 ). (1)∵x∈R .∴2x - π6 ∈R .当2x- π6 = −π2 +2kπ.即x= −π6 +kπ.k∈Z 时.f (x )min =2×(-1)=-2. 故f (x )的最小值为-2.此时x= −π6 +kπ.k∈Z .(2)∵f (C )=2.∴2sin (2C- π6 )=2.∴2C - π6 = π2 +2π.k∈Z .即C= π3 +kπ.k∈Z . ∵C∈(0.π).∴C= π3 . 由余弦定理知.cosC= a 2+b 2−c 22ab .即 12 = a 2+b 2−122ab ≥ 2ab−122ab .当且仅当a=b 时.取等号.∴ab≤12.∴S △ABC = 12 absinC≤ 12×12×√32= 3√3 . 故△ABC 的面积S 的最大值为 3√3 .【点评】:本题考查平面向量与解三角形的综合运用.包含平面向量数量积的运算、二倍角公式、余弦定理以及基本不等式的性质等基础考点.考查学生灵活运用知识的能力、逻辑推理能力和运算能力.属于中档题.19.(问答题.0分)已知△ABC 内接于⊙O .AB=c.BC=a.CA=b.⊙O 的半径为r . (1)若 OA ⃗⃗⃗⃗⃗⃗ +2 OB ⃗⃗⃗⃗⃗⃗ + √3 OC ⃗⃗⃗⃗⃗⃗ = 0⃗⃗ .试求∠BOC 的大小; (2)若A 为动点.∠BAC=60°. AO ⃗⃗⃗⃗⃗⃗ = λOC⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ .试求λ+μ的最大值.【正确答案】:【解析】:(1)根据 OA ⃗⃗⃗⃗⃗⃗ +2 OB ⃗⃗⃗⃗⃗⃗ + √3OC ⃗⃗⃗⃗⃗⃗ = 0⃗⃗ .得∴- OA ⃗⃗⃗⃗⃗⃗ =2 OB ⃗⃗⃗⃗⃗⃗ + √3OC ⃗⃗⃗⃗⃗⃗ .等式两边同时平方.即可求得cos∠BOC=- √32 .进而求得∠BOC= 56π .(2)因为⊙O 中.∠BAC=60°.所以∠BOC=120°. AO ⃗⃗⃗⃗⃗⃗ = λOC ⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ .等式两边同时平方.可得λ2+μ2=λμ+1.根据均值不等式.即可求得λ+μ≤2.【解答】:解:(1)∵ OA ⃗⃗⃗⃗⃗⃗ +2 OB ⃗⃗⃗⃗⃗⃗ + √3OC ⃗⃗⃗⃗⃗⃗ = 0⃗⃗ . ∴ AO ⃗⃗⃗⃗⃗⃗ =2 OB ⃗⃗⃗⃗⃗⃗ + √3OC ⃗⃗⃗⃗⃗⃗ . ∴ AO ⃗⃗⃗⃗⃗⃗2=(2 OB ⃗⃗⃗⃗⃗⃗ + √3OC ⃗⃗⃗⃗⃗⃗ )2. ∵AO=OB=OC=r .∴r 2=4r 2+2•2• √3 r 2•cos∠BOC+3r 2. 计算得cos∠BOC=- √32 . 由题.∠BOC∈(0.π). ∴∠BOC= 56π .(2)由题.⊙O 中.∠BAC=60°. ∴∠BOC=120°. AO ⃗⃗⃗⃗⃗⃗ = λOC⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ . ∴ AO⃗⃗⃗⃗⃗⃗2=( λOC ⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ )2. ∴r 2=λ2r 2+2•λ•μr 2•cos120°+μ2r 2. ∴λ2+μ2=λμ+1.根据题意.可知λ>0.μ>0. ∴(λ+μ)2=3λμ+1≤3• (λ+μ)24+1.(当且仅当λ=μ时等式成立).∴(λ+μ)2≤4 ∴λ+μ≤2.∴λ+μ的最大值为2.【点评】:本题考查了平面向量的数量积的应用及基本不等式的应用.考查学生转化的思想.属于中档题.20.(问答题.4分)已知平方和公式:12+22+…+n 2=n (n+1)(2n+1)6.其中n∈N*.(1)记f (n )=(-3n+1)2+…+(-5)2+(-2)2+12+42+…+(3n-2)2.其中n∈N*.求f (20)的值;(2)已知 12+32+⋯+(2n+1)222+42+⋯+(2n )2 = 4948 .求自然数n 的值;(3)抛物线y=kx 2、x 轴及直线AB :x=a 围成了如图(1)的阴影部分.AB 与x 轴交于点A.把线段OA 分成n 等份.作以 an 为底的内接矩形如图(2).阴影部分的面积为S.等于这些内接矩形面积之和.an ×k×( an )2 +an ×k×( 2an )2 +an ×k×( 3an )2+…+ an ×k×( n−1na )2. 当n→+∞时的极限值S=n→∞[k•( 1n )2+k•( 2n )2+k•( 3n )2+…+k•(n−1n )2]2• a n=n→∞12+22++(n−1)2n 3 •ak= n→∞(n−1)•n•(2n−1)6n 3 •ak= 13 ak .图(3)中的曲线为开口向右的抛物线y 2=x .抛物线y= √x 、x 轴及直线AB :x=4围成了图中的阴影部分.请利用极限、平方和公式、反函数或割补法等知识求出阴影部分的面积(说明:直角积分运算最高得分为4分)【正确答案】:【解析】:(1)直接利用关系式的应用求出函数的值. (2)利用合比性质的应用求出n 的值.(2)首先求出被积函数原函数.进一步求出定积分的值.【解答】:解:(1)f (20)=(-59)2+(-56)2+...+(-5)2+(-2)2+12+42+...+(58)2. =12+22+32+...+592-[32+62+92+ (572)=12+22+32+…+592-[(3×1)2+(3×2)2+(3×3)2+…+(3×19)2] =12+22+32+…+592-[9×(12+22+32+…+192)] =59×(59+1)×(2×59+1)6 -9× 19×(19+1)(2×19+1)6=47980; (2) 12+32+⋯+(2n+1)222+42+⋯+(2n )2 = 4948 .由合比性质可知 12+32+⋯+(2n+1)2+22+42+⋯+(2n )222+42+⋯+(2n )2 = 49+4848. 所以(2n+1)[(2n+1)+1][2(2n+1)+1]64×n (n+1)(2n+1)6= 9748 .解得n=72.所以自然数n 的值为72.(3)S= ∫√x 40dx = 23x 32|04=163.【点评】:本题考查的知识要点:数列的求和.合比性质.定积分.主要考查学生的运算能力和转换能力及思维能力.属于中档题.21.(问答题.0分)设数列{a n}的前n项和为S n.2S n+a n=3.n∈N*.数列{b n}满足:对于任意的n∈N*.都有a1b n+a2b n-1+a3b n-1+…+a n b1=(13)n-1+3n-3成立.(1)求数列{a n}的通项公式;(2)求数列{b n}的通项公式;(3)设数列c n=a n b n.问:数列{c n}中是否存在三项.使得它们构成等差数列?若存在.求出这三项;若不存在.请说明理由.【正确答案】:【解析】:(1)将n换为n-1.运用数列的递推式.结合等比数列的定义和通项公式.可得所求通项;(2)a1b n+a2b n-1+a3b n-1+…+a n b1=(13)n-1+3n-3中的n换为n-1.乘以13.相减可得所求通项公式;(3)求得c n=a n b n= 2n−13n−1.讨论单调性.假设存在三项c s.c p.c r成等差数列.其中s.p.r∈N*.运用等差数列中项性质和不等式的性质.推理运算.即可得到所求结论.【解答】:解:(1)由2S n+a n=3. ①得2S n-1+a n-1=3.(n≥2). ②由① - ② 得2a n+a n-a n-1=0.即a n= 13a n-1(n≥2).对① 取n=1得.a1=1≠0.所以a n≠0.所以{a n}为等比数列.首项为1.公比为13.即a n=(13)n-1.n∈N*.(2)由a n=(13)n-1.可得对于任意n∈N*.有b n+ 13 b n-1+(13)2b n-2+…+(13)n-1b1=(13)n-1+3n-3. ③则b n-1+ 13 b n-2+(13)2b n-3+…+(13)n-2b1=(13)n-2+3n-6.n≥2. ④则13 b n-1+(13)2b n-2+(13)3b n-3+…+(13)n-1b1=(13)n-1+n-2.n≥2. ⑤由③ - ⑤ 得b n=2n-1(n≥2).对③ 取n=1得.b1=1也适合上式. 因此b n=2n-1.n∈N*.(3)由(1)(2)可知c n =a n b n = 2n−13n−1 . 则c n+1-c n =2n+13n - 2n−13n−1 = 4(1−n )3n. 所以当n=1时.c n+1=c n .即c 1=c 2.当n≥2时.c n+1<c n .即{c n }在n≥2且n∈N*上单调递减. 故c 1=c 2>c 3>c 4>c 5>….假设存在三项c s .c p .c r 成等差数列.其中s.p.r∈N*. 由于c 1=c 2>c 3>c 4>c 5>….可不妨设s <p <r.则2c p =c s +c r (*). 即2(2p−1)3p−1 = 2s−13s−1 + 2r−13r−1. 因为s.p.r∈N*.且s <p <r.则s≤p -1且p≥2. 由数列{c n }的单调性可知.c s ≥c p-1.即 2s−13s−1 ≥ 2p−33p−2. 因为c r =+ 2r−13r−1 .>0. 所以 2(2p−1)3p−1 = 2s−13s−1 + 2r−13r−1 > 2p−33p−2 . 即以2(2p−1)3p−1 > 2p−33p−2.化简得p < 72 .又p≥2且p∈N*.所以p=2或p=3.当p=2时.s=1.即c 1=c 2=1.由r≥3时.c r <c 2=1. 此时c 1.c 2.c r 不构成等差数列.不合题意.当p=3时.由题意s=1或s=2.即c s =1.又c p =c 3= 59 . 代入(*)式得c r = 19 .因为数列{c n }在n≥2且n∈N*上单调递减.且c 5= 19 . r≥4.所以r=5.综上所述.数列{c n }中存在三项c 1.c 3.c 5或c 2.c 3.c 5构成等差数列.【点评】:本题考查数列的通项公式的求法.注意运用数列的递推式.考查等差数列中项性质.以及分类讨论思想方法.考查运算能力和推理能力.属于中档题.。

上海市2020届交大附中高一下学期数学4月份期中考试卷

上海市2020届交大附中高一下学期数学4月份期中考试卷

交大附中高一期中数学试卷一. 填空题1. 若52arcsin 243x π-=(),则x =2. 在公差d 不为零的等差数列{}n a 中,617a =,且3a 、11a 、43a 成等比数列,则d =3. 已知等比数列{}n a 中,0n a >,164a a =,则22232425log log log log a a a a +++=4. 前100个正整数中,除以7余数为2的所有数的和是5. 在△ABC 中,2220a b mc +-=(m 为常数),且cos cos cos sin sin sin A B CA B C+=,则m 的值是= 6. 已知等比数列{}n a 的各项都是正数,n S 为其前n 项和,若48S =,824S =,则16S = 7. 已知函数()3sin 4cos f x x x =+,12,[0,]x x π∈,则12()()f x f x -的最大值是 8. 在△ABC 中,角A 、B 、C 所对应边分别为a 、b 、c ,ABC ∠平分线交AC 于点D ,且22BD =,则4a c +的最小值为9. 已知数列{}n a 的前n 项和2212n S n n =-,数列{||}n a 的前n 项和n T ,则nT n的最小值是 10. 在等差数列{}n a 中,若10100S =,100910S =,110S = 11. 设函数|sin |0()20xx x f x x <⎧=⎨≥⎩,函数2lg()0()0x x g x x x -<⎧=⎨≥⎩,则方程()()f x g x =根的 数量为 个12. 已知两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且7362n n S n T n +=+,则使得 2kka b 为整数的正整数k 有 个 13. 设等差数列{}n a 的各项都是正数,公差为d ,前n 项和为n S ,若数列{}n S 也是公差为d 的等差数列,则{}n a 的前6项和为14. 若等差数列{}n a 满足22120110a a +≤,则201202203401M a a a a =++++L 的最大值为二. 选择题15. 已知数列{}n a 为等差数列,若1598a a a π++=,则28cos()a a +的值为( ) A. 12- B. 32- C. 12D. 3216. △ABC 的内角A 、B 、C 所对边分别为a 、b 、c ,若6a =,23b =,B 、A 、C 成等差数列,则B =( ) A.6π B. 56π C. 6π或56π D. 23π17. 若等差数列{}n a 和{}n b 的公差均为(0)d d ≠,则下列数列中不为等差数列的是( ) A. {}n a λ(λ为常数) B. {}n n a b + C. 22{}n n a b - D. {}n n a b ⋅18. 在△ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,若15a =,24b =,60A =︒,则这样的三角形解的个数为( )A. 1B. 2C. 0D. 不确定 19. 已知函数()2tan()23f x x ππ=-+,下列说法中错误的是( ) A. 函数()f x 的定义城是1{|2,}3x x k k ≠+∈ZB. 函数()f x 图象与直线123x k =+,k ∈Z 没有交点C. 函数()f x 的单调增区间是51(2,2)33k k -++,k ∈ZD. 函数()f x 的周期是220. 函数cos(2)3y x π=+,[0,]2x π∈的值域为( )A. [0,1]B. 1[1,]2-C. 31[]2D. 11[,]22-21. 函数sin y x =,3[,]22x ππ∈的反函数是( )A. arcsin y x =,[1,1]x ∈-B. arcsin y x =-,[1,1]x ∈-C. arcsin y x π=+,[1,1]x ∈-D. arcsin y x π=-,[1,1]x ∈- 22. 在△ABC 中,若△ABC 的面积为S ,且2244S b c =+-,2a =,则△ABC 的外接 圆的面积为( ) A.4π B. 2πC. 2πD. 4π 23. 已知曲线1:cos C y x =,22:sin(2)3C y x π=+,则下面结论正确的是( )A. 把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6π个 单位,得到曲线2CB. 把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移12π 个单位,得到曲线2CC. 把1C 上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向右平移12π个 单位,得到曲线2CD. 把1C 上各点的横坐标缩短到原来的12,纵坐标不变,再把得到的曲线向左平移12π个 单位,得到曲线2C24. 已知()2sin()f x x ωϕ=+(0ω>,02πϕ<<)的图象关于直线6x π=对称,若存在12,x x ∈R ,使得对于任意的x 都有12()()()f x f x f x ≤≤,且12||x x -的最小值为2π,则ϕ 等于( ) A.12π B. 6π C. 4πD. 3π25. 若等比数列{}n a 的前n 项和3(2)n n S m =+,则22212n a a a +++=L ( ) A. 413n - B. 41n - C. 3(41)n - D. 无法确定26. 已知等差数列{}n a 的首项为4,公差为4,其前n 项和为n S ,则数列1{}nS 的前n 项和为( ) A.2(1)n n + B. 12(1)n n + C. 2(1)n n + D. 2(1)nn +27. 已知函数()f x 是定义在R 上的单调递减函数,且()f x 为奇函数,数列{}n a 是等差数列,1580a >,则123313314315()()()()()()f a f a f a f a f a f a ++++++L 的值( )A. 恒为负数B. 恒为正数C. 恒为0D. 可正可负 28. 已知函数()sin cos f x a x x =+的一条对称轴为11x π=,则函数()sin cos g x x a x =-的一条对称轴可以为( ) A. 922x π=B. 1322x π=C. 1011x π=D. 1311x π= 29. 《周碑算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,已知一丈为十尺,一尺为十寸.问芒种日影长为( ) A. 一尺五寸 B. 二尺五寸 C. 三尺五寸 D. 四尺五寸 30. 已知等差数列{}n a 、{}n b ,其前n 项和分别为n S 、n T ,2331n n a n b n +=-,则1111S T =( )A.1517 B. 2532C. 1D. 231. 已知n S 是等比数列{}n a 的前n 项和,若存在m *∈N 满足29m m S S =,2511m m a m a m +=-,则 数列{}n a 的公比为( ) A.2 B. 2 C. 22 D. 432. 已知数列{}n a 是等比数列,其前n 项和为n S ,则下列结论正确的是( ) A. 若120a a +>,则130a a +> B. 若130a a +>,则120a a +> C. 若10a >,则20210S > D. 若10a >,则20200S >33. 设等比数列{}n a 的公比为q ,其前n 项之积为n T ,并且满足条件:11a >,201920201a a >,20192020101a a -<-,给出下列结论:① 01q <<;② 2019202110a a ->;③ 2019T 是数列{}n T 中的最大项;④ 使1n T >成立的最大自然数等于4039;其中正确结论的序号为( )A. ①②B. ①③C. ①③④D. ①②③④ 34. 对于无穷数列{}n a ,给出下列命题:① 若数列{}n a 既是等差数列,又是等比数列,则数列{}n a 是常数列; ② 若等差数列{}n a 满足||2020n a ≤,则数列{}n a 是常数列; ③ 若等比数列{}n a 满足||2020n a ≤,则数列{}n a 是常数列;④ 若各项为正数的等比数列{}n a 满足12020n a ≤≤,则数列{}n a 是常数列. 其中正确的命题个数是( )A. 1B. 2C. 3D. 4 三. 解答题35. 已知函数()(|sin ||cos |)4sin 29f x a x x x =+++,满足9()13924f π=-. (1)求a 的值;(2)求()f x 的最小正周期;(3)是否存在正整数n ,使得()0f x =在区间[0,)4n π内恰有2020个根,若存在,求出n 的值,若不存在,请说明理由.36. 已知数列{}n a 、{}n b ,前n 项和分别记为n S 、n T .(1)若{}n a 、{}n b 都是等差数列,且满足2n n b a n -=,4n n T S =,求30S ; (2)若{}n a 是等比数列,{}n b 是等差数列,2n n b a n -=,11a =,求30T ;(3)数列{}n a 、{}n b 都是等比数列,且满足3n ≤时,2n n b a n -=,若符合条件的数列{}n a 唯一,则在数列{}n a 、{}n b 中是否存在相等的项,即(,)k l a b k l *=∈N ,若存在请找出所有对应相等的项,若不存在,请说明理由.。

2019-2020学年上海中学高一(下)期中数学试卷

2019-2020学年上海中学高一(下)期中数学试卷

2019-2020学年上海中学高一(下)期中数学试卷试题数:21.满分:01.(填空题.3分)已知点A(2.-1)在角α的终边上.则sinα=___ .2.(填空题.3分)函数y=sin(πx+2)的最小正周期是___ .3.(填空题.3分)设扇形半径为2cm.圆心角的弧度数为2.则扇形的面积为___ .4.(填空题.3分)已知函数f(x)=sinx(x∈[0.π])和函数g(x)= 12tanx的图象交于A.B.C三点.则△ABC的面积为___ .5.(填空题.3分)在平面直角坐标系xOy中.角α与角β均以Ox为始边.它们的终边关于y轴对称.若sinα= 13.则cos(α-β)=___ .6.(填空题.3分)已知sin(x- π4)= 35.则sin2x的值为 ___ .7.(填空题.3分)设x.y∈(0.π).且满足sin2x−cos2x+cos2xcos2y−sin2xsin2ysin(x+y)=1 .则x-y=___ .8.(填空题.3分)我国古代数学家秦九韶在《数学九章》中记述了“三斜求积术”.用现代式子表示即为:在△ABC中.∠A.∠B.∠C所对的边长分别为a.b.c.则△ABC的面积S=√1 4[(ab)2−(a2+b2−c22)2].根据此公式若acosB+(b+3c)cosA=0.且a2-b2-c2=2.则△ABC的面积为___ .9.(填空题.3分)若函数f(x)=2sin(2x+π6)+a−1(a∈R)在区间[0,π2]上有两个不同的零点x1.x2.则x1+x2-a的取值范围是___ .10.(填空题.3分)已知函数f(α)=m−sinαcosα在(0,π2)上单调递减.则实数m的取值范围是___ .11.(单选题.3分)已知cosα=k.k∈R.α∈(π2.π).则sin(π+α)=()A.- √1−k2B. √1−k2C.± √1−k2D.-k12.(单选题.3分)对任意的锐角α.β.下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ13.(单选题.3分)设函数f(x)=Asin(ωx+φ)(A.ω.φ是常数.A>0.ω>0.|φ|<π2).为了得到f(x)的图象.则只需将g(x)=cos2x的图象()A.向右平移π12个单位B.向右平移π6个单位C.向左平移π12个单位D.向左平移π6个单位14.(单选题.3分)若函数f(x)=sin(2x- π3)与 g(x)=cosx-sinx都在区间(a.b)(0<a <b<π)上单调递减.则b-a的最大值为()A. π6B. π3C. π2D. 5π1215.(单选题.3分)已知α.β为锐角且α+β>π2,x∈R,f(x)=(cosαsinβ)|x|+(cosβsinα)|x|.下列说法正确的是()A.f(x)在定义域上为递增函数B.f(x)在定义域上为递减函数C.f(x)在(-∞.0]上为增函数.在(0.+∞)上为减函数D.f(x)在(-∞.0]上为减函数.在(0.+∞)上为增函数16.(单选题.3分)在△ABC中.a.b.c分别为角A.B.C的对边的长.若a2+b2=2020c2.则2tanA•tanBtanC(tanA+tanB)的值为()A.1B.2018C.2019D.202017.(问答题.0分)化简:f(α)=sin(−α)cos(π+α)cos(π2−α)cos(π−α)sin(2π+α)tan(π+α).18.(问答题.0分)已知函数f(x)=√3cos2x−sin2x.(1)用五点法作出f(x)在一个周期内的图象.并写出f(x)的值域.最小正周期.对称轴方程(只需写出答案即可);(2)将f(x)的图象向左平移一个π4单位得到函数y=g(x)的图象.求y=g(x)的单调递增区间.19.(问答题.0分)如图.矩形ABCD中.E.F两点分别在边AB.BC上.∠DEF=90°.设∠ADE=α.∠EDF=β.(1)试用该图中提供的信息证明两角和的余弦公式;(2)若x∈(0,π4),y∈(π4,3π4) .且sin(3π4+x)= 513.cos(π4-y)= 45.求cos(x-y)的值.20.(问答题.0分)某公司要在一条笔直的道路边安装路灯.要求灯柱AB与地面垂直.灯杆BC 与灯柱AB所在的平面与道路垂直.路灯C采用锥形灯罩.射出的光线与平面ABC的部分截面如图中阴影部分所示.已知∠ABC= 23π.∠ACD= π3.路宽AD=24米.设∠BAC=θ (π12≤θ≤π6).(1)求灯柱AB的高h(用θ表示);(2)此公司应该如何设置θ的值才能使制造路灯灯柱AB与灯杆BC所用材料的总长度最小?最小值为多少?(结果精确到0.01米)21.(问答题.0分)设函数f(x)=5cosθsinx-5sin(x-θ)+(4tanθ-3)sinx-5sinθ为偶函数.(1)求tanθ的值;(2)若f(x)的最小值为-6.求f(x)的最大值及此时x的取值;(3)在(2)的条件下.设函数g(x)=λf(ωx)−f(ωx+π2) .其中λ>0.ω>0.已知y=g(x)在x=π6处取得最小值并且点(2π3,3−3λ)是其图象的一个对称中心.试求λ+ω的最小值.2019-2020学年上海中学高一(下)期中数学试卷参考答案与试题解析试题数:21.满分:01.(填空题.3分)已知点A(2.-1)在角α的终边上.则sinα=___ .【正确答案】:[1]- √55【解析】:根据三角函数的坐标法定义.直接计算即可.【解答】:解:设O为坐标原点.因为A(2.-1).由已知得|OA|=√22+(−1)2=√5 .∴ sinα=−1|OA|=−√55.故答案为:−√55.【点评】:本题考查三角函数的坐标法定义.以及学生的运算能力.属于基础题.2.(填空题.3分)函数y=sin(πx+2)的最小正周期是___ .【正确答案】:[1]2【解析】:由题意利用正弦函数的周期性.得出结论.【解答】:解:函数y=sin(πx+2)的最小正周期是2ππ=2.故答案为:2.【点评】:本题主要考查正弦函数的周期性.属于基础题.3.(填空题.3分)设扇形半径为2cm.圆心角的弧度数为2.则扇形的面积为___ .【正确答案】:[1]4cm2【解析】:由已知利用扇形的面积公式即可计算得解.【解答】:解:由已知可得:半径r为2cm.圆心角α的弧度数为2.则扇形的面积S= 12 r2α= 12×22×2 =4cm2.故答案为:4cm2.【点评】:本题主要考查了扇形的面积公式的应用.属于基础题.4.(填空题.3分)已知函数f(x)=sinx(x∈[0.π])和函数g(x)= 12tanx的图象交于A.B.C 三点.则△ABC的面积为___ .【正确答案】:[1] √3π4【解析】:画出两个函数的图象.求出三个点的坐标.然后求解三角形面积.【解答】:解:函数f(x)=sinx(x∈[0.π])和函数g(x)= 12tanx的图象.可得A(0.0).B(π.0).令sinx= 12 tanx.解得C(π3. √32).所以S△ABC= 12× π×√32= √3π4.故答案为:√3π4.【点评】:本题考查三角函数的图象以及三角形的面积的求法.考查转化思想以及计算能力.5.(填空题.3分)在平面直角坐标系xOy中.角α与角β均以Ox为始边.它们的终边关于y轴对称.若sinα= 13.则cos(α-β)=___ .【正确答案】:[1]- 79【解析】:方法一:根据教的对称得到sinα=sinβ= 13.cosα=-cosβ.以及两角差的余弦公式即可求出方法二:分α在第一象限.或第二象限.根据同角的三角函数的关系以及两角差的余弦公式即可求出【解答】:解:方法一:∵角α与角β均以Ox为始边.它们的终边关于y轴对称.∴sinα=sinβ= 13.cosα=-cosβ.∴cos(α-β)=cosαcosβ+sinαsinβ=-cos2α+sin2α=2sin2α-1= 29 -1=- 79方法二:∵sinα= 13.当α在第一象限时.cosα=2√23. ∵α.β角的终边关于y 轴对称.∴β在第二象限时.sinβ=sinα= 13.cosβ=-cosα=- 2√23. ∴cos (α-β)=cosαcosβ+sinαsinβ=- 2√23 × 2√23 + 13 × 13 =- 79:∵sinα= 13 .当α在第二象限时.cosα=-2√23. ∵α.β角的终边关于y 轴对称.∴β在第一象限时.sinβ=sinα= 13 .cosβ=-cosα= 2√23. ∴cos (α-β)=cosαcosβ+sinαsinβ=- 2√23 × 2√23 + 13 × 13 =- 79综上所述cos (α-β)=- 79 .方法三:∵α.β角的终边关于y 轴对称. ∴α+β=π+2kπ.k∈Z .∴cos (α-β)=cos (α-(π+2kπ-α))=cos (2α-π)=-cos2α=2sin²α-1=2×( 13 )²-1=- 79. 故答案为:- 79 .【点评】:本题考查了两角差的余弦公式.以及同角的三角函数的关系.需要分类讨论.属于基础题6.(填空题.3分)已知sin (x- π4 )= 35 .则sin2x 的值为 ___ . 【正确答案】:[1] 725【解析】:利用二倍角的正弦可求得 sin 2(x −π4) = 1−sin2x 2 = 925.从而可得sin2x 的值.【解答】:解:∵sin (x- π4 )= 35. ∴ sin 2(x −π4) = 1−cos[2(x−π4)]2 = 1−sin2x 2 = 925. ∴1-sin2x= 1825. ∴sin2x= 725 . 故答案为: 725 .【点评】:本题考查二倍角的正弦.考查诱导公式的应用.考查转化思想与运算能力.属于中档题.7.(填空题.3分)设x.y∈(0.π).且满足sin2x−cos2x+cos2xcos2y−sin2xsin2ysin(x+y)=1 .则x-y=___ .【正确答案】:[1] π2【解析】:结合已知条件.利用和差角公式.平方关系化简可得sin(x-y)=1.进而得到答案.【解答】:解:∵x.y∈(0.π).且-π<x-y<π.∴ sin2x−cos2x+cos2xcos2y−sin2xsin2ysin(x+y)=1⇒sin2x(1−sin2y)+cos2x(cos2y−1)sin(x+y)=1⇒sin2xcos2y−cos2xsin2ysin(x+y)=(sinxcosy+cosxsiny)(sinxcosy−cosxsiny)sin(x+y)=1⇒sin(x+y)sin(x−y)sin(x+y)=sin(x−y)=1⇒x−y=π2(由于-π<x-y<π).故答案为:π2.【点评】:本题主要考查三角函数的化简求值.考查和差角公式以及同角三角函数基本关系的运用.考查运算能力.属于基础题.8.(填空题.3分)我国古代数学家秦九韶在《数学九章》中记述了“三斜求积术”.用现代式子表示即为:在△ABC中.∠A.∠B.∠C所对的边长分别为a.b.c.则△ABC的面积S=√1 4[(ab)2−(a2+b2−c22)2].根据此公式若acosB+(b+3c)cosA=0.且a2-b2-c2=2.则△ABC的面积为___ .【正确答案】:[1] √2【解析】:直接利用三角函数关系式的恒等变换和余弦定理的应用求出结果.【解答】:解:由于acosB+(b+3c)cosA=0.整理得:acosB+bcosA=-3ccosA.故是sinAcosB+cosAsinB=-3sinCcosA.即sin(A+B)=sinC=-3sinCcosA.故:cosA=−13.由余弦定理得:b2+c2-a2=2bccosA=-2.整理得bc=3.所以:S=√14[(bc)2−(b2+c2−a22)2]=√2.故答案为:√2【点评】:本题考查的知识要点:三角函数关系式的恒等变换.余弦定理的应用.主要考查学生的运算能力和转换能力及思维能力.属于基础题型.9.(填空题.3分)若函数f(x)=2sin(2x+π6)+a−1(a∈R)在区间[0,π2]上有两个不同的零点x1.x2.则x1+x2-a的取值范围是___ .【正确答案】:[1] [π3,π3+1)【解析】:由题意将问题转化为y=2sin(2x+π6)与y=1-a在区间[0,π2]上有两个不同的交点的问题.作出两个函数的图象.可求解.【解答】:解:若函数f(x)=2sin(2x+π6)+a−1(a∈R)在区间[0,π2]上有两个不同的零点x1.x2.即2sin(2x+π6)=1−a在区间[0,π2]上有两个不同的零点x1.x2.也就是y=2sin(2x+π6)与y=1-a区间[0,π2]上有两个不同的交点.横坐标分别为x1.x2.数形结合可知. x1+x22=π6,1−a∈[1,2) .∴ x1+x2=π3,−a∈[0,1)∴ x1+x2−a∈[π3,π3+1).故答案为:[π3,π3+1).【点评】:本题考查三角函数的图象与性质.以及利用数形结合思想解决问题的能力.同时考查了学生的运算能力.属于中档题.10.(填空题.3分)已知函数f(α)=m−sinαcosα在(0,π2)上单调递减.则实数m的取值范围是___ .【正确答案】:[1](-∞.1]【解析】:根据题意.任取0<α<β<π2.由函数单调性的定义分析可得f(α)-f(β)=m(cosβ−cosα)−sin(α−β)cosαcosβ>0 .据此变形可得m<1+tanα2tanβ2tanα2+tanβ2.分析1+tanα2tanβ2tanα2+tanβ2的最小值.即可得答案.【解答】:解:根据题意.任取0<α<β<π2.若函数f(α)=m−sinαcosα在(0,π2)上单调递减.则有f(α)-f(β)>0.即f(α)-f(β)=m(cosβ−cosα)−sin(α−β)cosαcosβ>0则有m•2sinα+β2•sinα−β2>2sinα−β2cosα−β2可得m<cosα−β2sinα+β2=cosα2cosβ2+sinα2sinβ2sinα2cosβ2+cosα2sinβ2=1+tanα2tanβ2tanα2+tanβ2.又由0<α<β<π2 .则0<α2<β2<π4,0<tanα2<tanβ2<1从而1+tanα2tanβ2−(tanα2+tanβ2)=(1−tanα2)(1−tanβ2)>0 .变形可得1+tanα2tanβ2tanα2+tanβ2>1 .必有m≤1.即m的取值范围为(-∞.1];故答案为(-∞.1].【点评】:本题函数的单调性的性质.涉及三角函数的恒等变形以及和差公式的应用.属于基础题11.(单选题.3分)已知cosα=k.k∈R.α∈(π2.π).则sin(π+α)=()A.- √1−k2B. √1−k2C.± √1−k2D.-k【正确答案】:A【解析】:由已知及同角三角函数基本关系的运用可求sinα.从而由诱导公式即可得解.【解答】:解:∵cosα=k.k∈R.α∈(π2.π).∴sinα= √1−cos2α = √1−k2 .∴sin(π+α)=-sinα=- √1−k2.故选:A.【点评】:本题主要考查了同角三角函数基本关系的运用.运用诱导公式化简求值.属于基本知识的考查.12.(单选题.3分)对任意的锐角α.β.下列不等关系中正确的是()A.sin(α+β)>sinα+sinβB.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ【正确答案】:D【解析】:对于A.B中的α.β可以分别令为30°.60°验证即可.对于C中的α.β可以令他们都等于15°.验证即可.对于D我们可以用放缩法给出证明cos(α+β)=cosαcosβ-sinαsinβ<cosα×1+cosβ×1=cosα+cosβ【解答】:解:对于AB中的α.β可以分别令为30°.60°则知道A.B均不成立对于C中的α.β可以令他们都等于15°.则知道C不成立cos(α+β)=cosαcosβ-sinαsinβ<cosα×1+cosβ×1=cosα+cosβ故选:D.【点评】:本题考查了两角和与差的正余弦公式.同时也考查了放缩法对命题的证明.属于基础题.13.(单选题.3分)设函数f(x)=Asin(ωx+φ)(A.ω.φ是常数.A>0.ω>0.|φ|<π).为了2得到f(x)的图象.则只需将g(x)=cos2x的图象()个单位A.向右平移π12个单位B.向右平移π6C.向左平移π个单位12个单位D.向左平移π6【正确答案】:A【解析】:由函数的图象的顶点坐标求出A.由周期求出ω.由五点法作图求出φ的值.可得f(x)的解析式.再根据函数y=Asin(ωx+φ)的图象变换规律.得出结论.【解答】:解:利用函数f(x)=Asin(ωx+φ)(A.ω.φ是常数.A>0.ω>0.|φ|<π2)的图象.可得A=1. 14•2πω= π3- π12.∴ω=2.再根据五点法作图.可得2× π12+φ= π2.∴φ= π3.故f(x)=sin(2x+ π3).将g(x)=cos2x=sin(2x+ π2)的图象向右平移π12个单位.可得y=sin(2x- π6 + π2)=sin(2x+ π3)=f(x)的图象.故选:A.【点评】:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式.由函数的图象的顶点坐标求出A.由周期求出ω.由五点法作图求出φ的值.函数y=Asin(ωx+φ)的图象变换规律.属于基础题.14.(单选题.3分)若函数f(x)=sin(2x- π3)与 g(x)=cosx-sinx都在区间(a.b)(0<a <b<π)上单调递减.则b-a的最大值为()A. π6B. π3C. π2D. 5π12【正确答案】:B【解析】:求出函数f(x)、g(x)在(0.π)上的单调递减区间.从而求得b-a的最大值.【解答】:解:函数f(x)=sin(2x- π3)在(0. 5π12)上单调递增.在(5π12 . 11π12)上单调递减.在(11π12.π)上单调递减;函数g(x)=cosx-sinx= √2 cos(x+ π4)在(0. 3π4)上单调递减.在(3π4.π)上单调递增;∴f(x)、g(x)都在区间(5π12 . 3π4)上单调递减.∴b-a的最大值为3π4 - 5π12= π3.故选:B.【点评】:本题考查了三角函数在某一区间上的单调性问题.是中档题.15.(单选题.3分)已知α.β为锐角且α+β>π2,x∈R,f(x)=(cosαsinβ)|x|+(cosβsinα)|x|.下列说法正确的是()A.f(x)在定义域上为递增函数B.f(x)在定义域上为递减函数C.f(x)在(-∞.0]上为增函数.在(0.+∞)上为减函数D.f(x)在(-∞.0]上为减函数.在(0.+∞)上为增函数【正确答案】:C【解析】:先利用α.β为锐角且α+β>π2结合三角函数的单调性得出cosαsinβ. cosβsinα的取值范围.再对x的值分类讨论.结合指数函数的单调性即可得出答案.【解答】:解:∵α.β为锐角且α+β>π2 .∴ π2>α>π2-β>0.∴cosα<cos(π2 -β).sinα>sin(π2-β).即0<cosα<sinβ.sinα>cosβ>0.∴0<cosαsinβ<1.0<cosβsinα<1.∴在(-∞.0]上. f(x)=(cosαsinβ)−x+(cosβsinα)−x为增函数.在(0.+∞)上. f(x)=(cosαsinβ)x+(cosβsinα)x为减函数.故选:C.【点评】:本题主要考查了指数函数的单调性与特殊点.考查了三角函数的性质.属于基础题.16.(单选题.3分)在△ABC中.a.b.c分别为角A.B.C的对边的长.若a2+b2=2020c2.则2tanA•tanBtanC(tanA+tanB)的值为()A.1B.2018C.2019D.2020【正确答案】:C【解析】:直接利用三角函数关系式的恒等变换和正弦定理余弦定理的应用求出结果.【解答】:解:由于△ABC中.a.b.c分别为角A.B.C的对边的长.若a2+b2=2020c2.所以a2+b2-c2=2019c2.则:2tanA•tanBtanC(tanA+tanB)=2sinAcosAsinBcosBsinCcosC(sinAcosA+sinBcosB).= 2sinAsinBcosCsinC(sinAcosB+cosAsinB)=2sinAsinBcosCsin2C.= 2abcosCc2=a2+b2−c2c2=2019故选:C.【点评】:本题考查的知识要点:三角函数关系式的恒等变换.正弦定理余弦定理和三角形面积公式的应用.主要考查学生的运算能力和转换能力及思维能力.属于基础题型.17.(问答题.0分)化简:f(α)=sin(−α)cos(π+α)cos(π2−α)cos(π−α)sin(2π+α)tan(π+α).【正确答案】:【解析】:利用诱导公式化简要求的式子.再利用同角三角函数的基本关系化简到最简形式.【解答】:解:f(α)=sin(−α)cos(π+α)cos(π2−α)cos(π−α)sin(2π+α)tan(π+α)= (−sinα)(−cosα)sinα(−cosα)sinαtanα=−cosα.【点评】:本题考查同角三角函数的基本关系.诱导公式的应用.要特别注意公式中的符号.18.(问答题.0分)已知函数f(x)=√3cos2x−sin2x.(1)用五点法作出f(x)在一个周期内的图象.并写出f(x)的值域.最小正周期.对称轴方程(只需写出答案即可);(2)将f(x)的图象向左平移一个π4单位得到函数y=g(x)的图象.求y=g(x)的单调递增区间.【正确答案】:【解析】:(1)用五点作图法即可作出函数在一个周期上的图象.利用余弦函数的性质即可求解其值域.最小正周期.对称轴方程.(2)由条件利用y=Asin(ωx+φ)的图象变换规律和正弦函数的图象和性质即可求解y=g (x)的单调递增区间.【解答】:解:(1)f(x)=√3cos2x−sin2x =2cos(2x+ π6).列表如下:2x+ π6π2π3π22πx - π12π65π122π311π12y 2 -2 2 作图:可得:f(x)的值域为[-2.2].最小正周期为π.对称轴方程为x=kπ2−π12,k∈Z.(2)将f(x)=2cos(2x+ π6)的图象向左平移一个π4单位得到函数y=g(x)=2cos(2x+ π2+ π6)=-2sin(2x+ π6)的图象.令2kπ+ π2≤2x+ π6≤2kπ+ 3π2.k∈Z.解得kπ+ π6≤x≤kπ+ 2π3.k∈Z.可得函数的单调递增区间为:[kπ+π6,kπ+2π3],k∈Z.【点评】:本题主要考查用五点法作函数y=Asin(ωx+φ)在一个周期上的图象.y=Asin (ωx+φ)的图象变换规律.考查正弦函数的性质.属于基础题.19.(问答题.0分)如图.矩形ABCD中.E.F两点分别在边AB.BC上.∠DEF=90°.设∠ADE=α.∠EDF=β.(1)试用该图中提供的信息证明两角和的余弦公式;(2)若x∈(0,π4),y∈(π4,3π4) .且sin(3π4+x)= 513.cos(π4-y)= 45.求cos(x-y)的值.【正确答案】:【解析】:(1)根据题意利用直角三角形的边角关系.即可证明cos(α+β)=cosαcosβ-sinαsinβ;(2)利用三角恒等变换化简求值即可.【解答】:解:(1)由已知∠ADE=∠BEF=α.所以cos(α+β)=cos∠DFC= CFDF = BC−BFDF= ADDE• DEDF- BFEF• EFDF=cosαcosβ-sinαsinβ;(2)由已知3π4+x∈(3π4,π),π4−y∈(−π2,0) .从而cos(3π4+x)=−√1−sin2(3π4+x)=−1213.sin(π4−y)=−√1−cos2(π4−y)=−35.所以cos(x−y)=−cos(x−y+π)=−cos[(3π4+x)+(π4−y)]= sin(3π4+x)sin(π4−y)−cos(3π4+x)cos(π4−y)=513•(−35)−(−1213)•45=3365.【点评】:本题考查了直角三角形边角关系应用问题.也考查了三角函数化简求值问题.是中档题.20.(问答题.0分)某公司要在一条笔直的道路边安装路灯.要求灯柱AB与地面垂直.灯杆BC 与灯柱AB所在的平面与道路垂直.路灯C采用锥形灯罩.射出的光线与平面ABC的部分截面如图中阴影部分所示.已知∠ABC= 23π.∠ACD= π3.路宽AD=24米.设∠BAC=θ (π12≤θ≤π6).(1)求灯柱AB的高h(用θ表示);(2)此公司应该如何设置θ的值才能使制造路灯灯柱AB与灯杆BC所用材料的总长度最小?最小值为多少?(结果精确到0.01米)【正确答案】:【解析】:(1)在△ACD中与在△ABC中.分别利用正弦定理即可得出;(2)△ABC中.利用正弦定理可得:BC.再利用和差公式即可得出.【解答】:解:(1)在△ACD中. ∠CDA=θ+π6.由ADsin∠ACD =ACsin∠CDA.得AC=AD•sin∠CDAsin∠ACD=16√3sin(θ+π6) .在△ABC中. ∠ACB=π3−θ .由ABsin∠ACB =ACsin∠ABC.得ℎ=AC•sin∠ACBsin∠ABC=32sin(θ+π6)sin(π3−θ)(π12≤θ≤π6).(2)△ABC中.由BCsin∠BAC =ACsin∠ABC.得BC=AC•sin∠BACsin∠ABC=32sin(θ+π6)sinθ .∴ AB+BC=32sin(θ+π6)sin(π3−θ)+32sin(θ+π6)sinθ = 16sin2θ+8√3 .∵ π12≤θ≤π6.∴ π6≤2θ≤π3.∴当θ=π12时.AB+BC取得最小值8+8√3≈21.86.故制造路灯灯柱AB与灯杆BC所用材料的总长度最小.最小值约为21.86米.【点评】:本题考查了正弦定理余弦定理、和差公式、三角函数求值.考查了推理能力与计算能力.属于中档题.21.(问答题.0分)设函数f(x)=5cosθsinx-5sin(x-θ)+(4tanθ-3)sinx-5sinθ为偶函数.(1)求tanθ的值;(2)若f(x)的最小值为-6.求f(x)的最大值及此时x的取值;(3)在(2)的条件下.设函数g(x)=λf(ωx)−f(ωx+π2) .其中λ>0.ω>0.已知y=g(x)在x=π6处取得最小值并且点(2π3,3−3λ)是其图象的一个对称中心.试求λ+ω的最小值.【正确答案】:【解析】:(1)利用三角函数关系式的恒等变换和函数的性质的应用求出结果.(2)利用函数的关系式的变换和三角函数的性质的应用求出结果.(3)利用分类讨论思想的应用和关系式的变换的应用求出参数的值.【解答】:解:(1)f(x)=5cosxsinθ+(4tanθ-3)sinx-5sinθ.f(x)是偶函数. ∴(4ta nθ-3)sinx=0对一切x∈R恒成立.∴ tanθ=34(2)f(x)=5sinθ(cosx-1).其最小值为-6.此时sinθ=35,cosx=−1 .∴f(x)=3(cosx-1).从而f(x)的最大值为0.此时x的取值为x=2kπ.k∈Z;(3)g(x)=λf(ωx)−f(ωx+π2)=3λcosωx−3λ−3cos(ωx+π2)+3=3λcosωx-3λ+3sinωx+3由g(x)在x=π6处取最小值.知g(x)的图象关于x=π6对称.有g(−π3)=g(2π3)=3−3λ故3λcos(−ωπ3)+3sin(−ωπ3)=0 .且3λcos2ωπ3+3sin2ωπ3=0 .从而λ=tanωπ3=−tan2ωπ3=tan(kπ−2ωπ3) .则ωπ3=kπ−2ωπ3.即ω=k(k∈Z)又ω>0.则ω是正整数.∵λ>0.ω是正整数.∴ ω=3l−2(l∈N∗),λ=√3 .当ω=1时. g(x)=3√3cosx+3sinx+3−3√3显然.g(x)在x=π6处有最大值.而不是最小值.矛盾.当ω=4时. g(x)=3√3cos4x+3sin4x+3−3√3 .显然.g(x)在x=π6处有最大值.而不是最小值.矛盾.当ω=7时. g(x)=3√3cos7x+3sin7x+3−3√3 .显然.g(x)g(x)在x=π6处有最小值.且y=g(x)的图象关于点(2π3,3−3√3)中心对称.∴λ+ω的最小值为√3+7.【点评】:本题考查的知识要点:三角函数关系式的恒等变换.正弦型函数的性质的应用.分类讨论思想的应用.主要考查学生的运算能力和转换能力及思维能力.属于基础题型.。

上海市交大附中2020-2021学年高一下学期期中数学试题

上海市交大附中2020-2021学年高一下学期期中数学试题
10.在锐角 中, , ,则 的取值范围为____________.
11.函数 的值域是_______
12.设函数 ,其中 、 为已知实常数, .
下列所有正确命题的序号是____________.
①若 ,则 对任意实数 恒成立;
②若 ,则函数 为奇函数;
③若 ,则函数 为偶函数;
④当 时,若 ,则 .
17.在 ,角A,B,C所对的边分别为 ,b,c,已知 , ,且 .
(1)当 , 时,求 ,c的值;
(2)若B为锐角,求实数 的取值范围.
18.已知函数 , .
(1)若直线 是函数 的图像的一条对称轴,求 的值;
(2)若 ,求 的值域.
19.如图,摩天轮上一点P在时刻t(单位:分钟)距离地面的高度y(单位:米)满足 ,已知该摩天轮的半径为50米,圆心O距地面的高度为60米,摩天轮做匀速转动,每3分钟转一圈,点P的起始位置在摩天轮的最低点处.
5.函数 的单调递增区间是________
6.已知 ,将 从小到大排列___________
7.若 是偶函数,则有序实数对( )可以
是.
8.若函数 的图像与直线 有且仅有四个不同的交点,则 的取值范围是______
9.将 图像上所有点向右平移 个单位,再把所得的图像上各点横坐标扩大到原来的3倍(纵坐标不变),这样得到的图像对应的函数解析式为________
本题考查余弦定理的应用,考查基本运算求解能力,属于基础题.
4.
【分析】
利用诱导公式化简所给的式子,即可得答案.
【详解】
因为 ,
故答案为: .
【点睛】
本题考查诱导公式应用,求解时注意函数名和符号问题,属于基础题.
5.
【分析】

2019-2020学年上海市交大附中高一(下)期中数学试卷(附答案解析)

2019-2020学年上海市交大附中高一(下)期中数学试卷(附答案解析)

2019-2020学年上海市交大附中高一(下)期中数学试卷一、填空题(本大题共14题,每题4分,满分56分)1.(4分)若2arcsin(x﹣2)=,则x=.2.(4分)在公差d不为零的等差数列{a n}中,a6=17,且a3,a11,a43成等比数列,则d =.3.(4分)已知等比数列{a n}中,a n>0,a1a6=4,则log2a2+log2a3+log2a4+log2a5=.4.(4分)前100个正整数中,除以7余数为2的所有数的和是.5.(4分)在△ABC中,a2+b2﹣mc2=0(m为常数),且+=,则m的值是.6.(4分)已知等比数列{a n}的各项都是正数,S n为其前n项和,若S4=8,S8=24,则S16=.7.(4分)已知函数f(x)=3sin x+4cos x,x1,x2∈[0,π],则f(x1)﹣f(x2)的最大值是.8.(4分)在△ABC中,角A、B、C所对应边分别为a、b、c,∠ABC=90°,∠ABC的平分线交AC于点D,且BD=2,则a+4c的最小值为9.(4分)已知数列{a n}的前n项和S n=2n2﹣12n,数列{|a n|}的前n项和T n,则的最小值.10.(4分)在等差数列{a n}中,若S10=100,S100=910,S110=.11.(4分)设函数f(x)=,函数g(x)=,则方程f (x)=g(x)根的数量为个.12.(4分)已知两个等差数列{a n}和{b n}的前n项和分别为S n和T n,且=,则使得为整数的正整数k有个.13.(4分)设等差数列{a n}的各项都是正数,公差为d,前n项和为S n,若数列也是公差为d的等差数列,则{a n}的前6项和为.14.(4分)若等差数列{a n}满足a12+a2012≤10,则M=a201+a202+a203+…+a401的最大值为.二、选择题(本大题共20题,每题3分,满分60分)15.(3分)已知{a n}为等差数列,若a1+a5+a9=5π,则cos(a2+a8)的值为()A.﹣B.﹣C.D.16.(3分)△ABC的内角A,B,C所对边分别为a,b,c,若a=6,b=2,B,A,C 成等差数列,则B=()A.B.C.或D.17.(3分)若等差数列{a n}和{b n}的公差均为d(d≠0),则下列数列中不为等差数列的是()A.{λa n}(λ为常数)B.{a n+b n}C.{a n2﹣b n2}D.{{a n•b n}}18.(3分)在△ABC中,角A,B,C所对的边长分别为a,b,c,若a=15,b=24,A=60°,则这样的三角形解的个数为()A.1B.2C.0D.不确定19.(3分)已知函数,下列说法中错误的是()A.函数f(x)的定义域是B.函数f(x)图象与直线没有交点C.函数f(x)的单调增区间是D.函数f(x)的周期是220.(3分)函数y=cos(2x+),x∈[0,]的值域为()A.[0,1]B.[﹣1,]C.[﹣,]D.[﹣,] 21.(3分)函数y=sin x,x的反函数为()A.y=arcsin x,x∈[﹣1,1]B.y=﹣arcsin x,x∈[﹣1,1]C.y=π+arcsin x,x∈[﹣1,1]D.y=π﹣arcsin x,x∈[﹣1,1]22.(3分)在△ABC中,内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且4S=b2+c2﹣4,a=2,则△ABC外接圆的面积为()A.B.C.2πD.4π23.(3分)已知曲线,则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C224.(3分)已知f(x)=2sin(ωx+φ)(ω>0,0<φ<)的图象关于直线x=对称,若存在x1,x2∈R,使得对于任意x都有f(x1)≤f(x)≤f(x2),且|x1﹣x2|的最小值为,则φ等于()A.B.C.D.25.(3分)若等比数列{a n}的前n项和S n=3(2n+m),则a12+a22+…+a n2=()A.B.4n﹣1C.3(4n﹣1)D.无法确定26.(3分)已知等差数列{a n}的首项为4,公差为4,其前n项和为S n,则数列{}的前n项和为()A.B.C.D.27.(3分)已知函数f(x)是定义在R上的单调递减函数,且f(x)为奇函数,数列{a n}是等差数列,a158>0,则f(a1)+f(a2)+f(a3)+…+f(a313)+f(a314)+f(a315)的值()A.恒为负数B.恒为正数C.恒为0D.可正可负28.(3分)已知函数f(x)=a sin x+cos x的一条对称轴为x=,则函数g(x)=sin x﹣a cos x 的一条对称轴可以为()A.x=B.x=C.x=D.x=。

上海市交通大学附属中学2019-2020学年高一下学期数学期中考试卷(word,简答)

上海市交通大学附属中学2019-2020学年高一下学期数学期中考试卷(word,简答)

上海交通大学附属中学2019-2020学年度第二学期高一数学期中考试试卷(满分150分,120分钟完成.答案一律写在答题纸上)一、填空题(本大题共14题,每题4分,满分56分)1、若52arcsin(2),43xπ-=则x=____.2、在公差d不为零的等差数列{}n a中,617,a=且31143,,a a a成等比数列,则d=____3、已知等比数列{}n a中,160,4,na a a>=则22232425log log log loga a a a+++=____4、前100个正整数中,除以7余数为2的所有数的和是____5、在△ABC中,2220a b mc+-=(m为常数),且cos cos cos,sin sin sinA B CA B C+=则m的值是____6、已知等比数列{}n a的各项都是正数,n S为其前n项和,若488,24,S S==则16S=___7、已知函数f(x)=3sinx+4cosx12,[0,],x xπ∈则12()()f x f x-的最大值是_____8、在△ABC中,角A、B、C所对应边分别为a、b、c,∠ABC=90°,∠ABC的平分线交AC于点D,且22,BD=则a+4c的最小值为____9、已知数列{}n a的前n项和2212,nS n n=-数列{||}na的前n项和,nT则nTn的最小值____10、在等差数列{}n a中,若10100110100,910,S S S===___11、设函数|sin|,0(),2,0xx xf xx<⎧=⎨≥⎩函数2lg(),0(),0x xg xx x-<⎧=⎨≥⎩则方程f(x)=g(x)根的数量为___个.12、已知两个等差数列{}n a和{}n b的前n项和分别为n S和,n T且736,2nnS nT n+=+则使得2kkab为整数的正整数k有_____个.13、设等差数列{}n a的各项都是正数,公差为d,前n项和为,n S若数列{}n S也是公差为d的等差数列,则{}na的前6项和为_____14、若等差数列{}n a满足22120110,a a+≤则201202203401M a a a a=++++L的最大值为_____二、选择题(本大题共20题,每题3分,满分60分)15、已知数列{}n a为等差数列,若1598,a a aπ++=则28cos()a a+的值为()1.2A -.2B -1.2C2D16、△ABC 的内角A,B,C 所对应边分别为a,b,c 若a 6,,b B A ==,C 成等差数列,则B=().6A π5.6B π.6C π或56π2.3D π 17、若等差数列{}{}n n a b 和的公差均为d(d≠0),则下列数列中不为等差数列的是().{}n A a λ(λ为常数) .{}n n B a b +22.{}n n C a b -.{}n n D a b ⋅18、在△ABC 中,角A,B,C 所对的边长分别为a,b,c,若a=15,b=24,A=60°,则这样的三角形解的个数为()A.1B.2C.0D.不确定19、已知函数()2tan().23f x x ππ=-+下列说法中错误的是()A.函数f(x)的定义域是1{|2,}3x x k k Z ≠+∈ B.函数f(x)图象与直线12,3x k =+k ∈Z 没有交点 C.函数f(x)的单调增区间是51(2,2),33k k k -++∈Z D.函数f(x)的周期是2 20、函数cos(2),[0,]32y x x ππ=+∈的值域为()A.[0,1]1.[1,]2B -1.[]22C -11.[,]22D -21、函数y=sinx,3[,]22x ππ∈的反函数是()A.y=arcsinx,x ∈[-1,1]B.y=-arcsinx,x ∈[-1,1]C.y=π+arcsinx,x ∈[-1,1]D.y=π-arcsinx,x ∈[-1,1]22、在△ABC 中,若△ABC 的面积为S,且2244,S b c =+-a=2,则△ABC 的外接圆的面积为()4Aπ.2B πC.2πD.4π23、已知曲线122:cos ,:sin(2),3C y x C y x π==+则下面结论正确的是() A.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6π个单位,得到曲线2C B.把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移12π个单位,得到曲线2CC.把1C 上各点的横坐标缩短到原来的1,2纵坐标不变,再把得到的曲线向右平移12π个单位,得到曲线2C D.把1C 上各点的横坐标缩短到原来的1,2纵坐标不变,再把得到的曲线向左平移12π个单位,得到曲线2C 24、已知()2sin()(0,0)2f x x πωϕωϕ=+><<的图象关于直线6x π=对称,若存在12,,x x R ∈使得对于任意x 都有12()()(),f x f x f x ≤≤且12||x x -的最小值为,2π则φ等于().12A π.6B π.4C π.3D π25、若等比数列{}n a 的前n 项和3(2),nn S m =+则22212n a a a +++=L () 41.3n A - B.4n -1.3(41)n C -D.无法确定26、已知等差数列{}n a 的首项为4,公差为4,其前n 项和为,n S 则数列1{}nS 的前n 项和为() .2(1)nA n +1.2(1)B n n +2.(1)C n n +2.1nD n + 27、已知函数f(x)是定义在R 上的单调递减函数,且f(x)为奇函数,数列{}n a 是等差数列,1580,a >则123313314315()()()()()()f a f a f a f a f a f a ++++++L 的值()A.恒为负数B.恒为正数C.恒为0D.可正可负28、已知函数f(x)=asinx+cosx 的一条对称轴为,11x π=则函数g(x)=sinx-acosx 的一条对称轴可以为()9.22A x π=13.22B x π=10.11C x π=13.11D x π=29、《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,已知一文为十尺,一尺为十寸.问芒种日影长为()A.一尺五寸B.二尺五寸C.三尺五寸D.四尺五寸30、已知等差数列{},{},n n a b 其前n 项和分别为23,,,31n n n n a n S T S n +=-则1111ST =() 15.17A25.32B C.1D.231、已知n S 是等比数列{}n a 的前n 项和,若存在m ∈N *满足22519,1m m m m S a m S a m +==-,则数列{}n a 的公比为()B.2CD.432、已知数列{}n a 是等比数列,其前n 项和为,n S 则下列结论正确的是() A.若120,a a +>则130a a +> B.若130,a a +>则120a a +> C.若a>0,则20210S >D.若10,a >则20200S >33、设等比数列{}n a 的公比为q,其前n 项之积为,n T 并且满足条件:2019120192020202011,1,0,1a a a a a ->><-给出下列结论:①02019202120191;10;q a a T <<->②③是数列{}n T 中的最大项;④使1n T >成立的最大自然数等于4039;其中正确结论的序号为()A.①②B.①③C.①③④D.①②③④34、对于无穷数列{},n a 给出下列命题:①若数列{}n a 既是等差数列,又是等比数列,则数列{}n a 是常数列. ②若等差数列{}n a 满足||2020,n a ≤则数列{}n a 是常数列. ③若等比数列{}n a 满足||2020,n a ≤则数列{}n a 是常数列.④若各项为正数的等比数列{}n a 满足12020,n a ≤≤则数列{}n a 是常数列. 4.1B.2C.3D.4三、解答题(本大题共2题,满分34分)35、(本题满分16分,第(1)小题4分,第(2)小题6分,第(3)小题6分) 已知函数f(x)=a(|sinx|+|cosx|)+4sin2x+9,满足9()134f π=- (1)求a 的值;(2)求f(x)的最小正周期;(3)是否存在正整数n,使得f(x)=0在区间[0,)4n π内恰有2020个根.若存在,求出n 的值,若不存在,请说明理由.36、(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分) 已知{},{},n n a b 前n 项和分别记为,.n n S T(1)若{},{}n n a b 都是等差数列,且满足2,4,n n n n b a n T S -==求30S ; (2)若{}n a 是等比数列,{}n b 是等差数列,1302,1,n n b a n a T -==求(3)数列{},{}n n a b 都是等比数列,且满足n≤3时,2,n n b a n -=若符合条件的数列{}n a 唯一,则在数列{}n a 、{}n b 中是否存在相等的项,即*1(,),k a b k l N =∈若存在请找出所有对应相等的项,若不存在,请说明理由.。

上海市上海交通大学附属中学2019-2020学年高一下学期期中考试数学试题含解析

上海交通大学附属中学2019-2020学年度第二学期高一数学期中考试试卷(满分150分,120分钟完成.答案一律写在答题纸上)一、填空题(本大题共14题,每题4分,满分56分) 1.若52arcsin(2),43x π-=则x =____.【答案】2 【解析】 【分析】由反三角函数的定义得5sin (2)64x π=-,即可求解x . 【详解】由题意,52arcsin(2)43x π-=,所以5arcsin(2)46x π-=,由反三角函数的定义,5sin 264x π=-,即15224x =-,解得2x =. 故答案为:2【点睛】本题主要考查反三角函数的应用,属于基础题. 2.在公差d 不为零的等差数列{}n a 中,617,a =且31143,,a a a 成等比数列,则d =____【答案】3 【解析】 【分析】由数列{}n a 是等差数列得61517a a d =+=,由31143,,a a a 成等比数列,所以234311a a a =,联立两式求出1a 和d 即可.【详解】由题意,数列{}n a 是等差数列,所以61517a a d =+=①, 又31143,,a a a 成等比数列,所以234311a a a =,即()()()211124210a d a d a d ++=+②, 联立①②式,解得,12a =,3d =. 故答案为:3【点睛】本题主要考查等差数列的通项公式和等比中项的应用,考查学生计算能力,属于基础题.3.已知等比数列{}n a 中,160,4,n a a a >=则22232425log log log log a a a a +++=____【答案】4 【解析】 【分析】由对数的运算性质,()2223242522345log log log log log a a a a a a a a +++=,再由等比数列的下标性质,1623454a a a a a a ===,即可得到答案.【详解】由对数的运算性质,()2223242522345log log log log log a a a a a a a a +++=, 由等比数列下标性质,1623454a a a a a a ===, 所以()222425234lo log g 4log 24a a a a ===,即22232425log log log log 4a a a a +++=. 故答案为:4【点睛】本题主要考查等比数列的性质和对数的运算性质,属于基础题. 4.前100个正整数中,除以7余数为2的所有数的和是______. 【答案】765 【解析】 【分析】前100个正整数中,除以7余数为2的所有数为:2,9,…,100,此数列是公差为7的等差数列,利用求和公式即可得出.【详解】解:前100个正整数中,除以7余数为2的所有数为:2,9,…,100,此数列是公差为7的等差数列.令()100271n =+-,解得15n =.∴前100个正整数中,除以7余数为2的所有数的和为()1521007652⨯+=.故答案为:765.【点睛】本题考查了等差数列的求和,重点考查了等差数列的定义,属基础题.5.在ABC ∆中,2220a b mc +-=(m 为常数),且cos cos cos sin sin sin A B CA B C+=,则m 的值是______. 【答案】3 【解析】 【分析】由已知等式可得2sin sin sin cos C A B C =,再由正弦定理将角化边得到2cos c ab C =,最后由余弦定理求出cos C 代入化简,即可求出参数的值. 【详解】解:cos cos cos sin sin sin A B CA B C+= ()cos sin cos sin sin sin sin cos A B B A C A B C ∴+= ()sin sin sin sin cos A B C A B C ∴+=2sin sin sin cos C A B C ∴=由正弦定理可得2cos c ab C =①根据余弦定理可知222cos 2a b c C ab+-=②由①②得2223a b c += 又因为2220a b mc +-= 所以3m = 故答案为:3【点睛】本题考查正弦定理、余弦定理的应用,两角和的正弦公式,属于基础题. 6.已知等比数列{}n a 的各项都是正数,n S 为其前n 项和,若488,24,S S ==则16S =___【答案】120 【解析】 【分析】设等比数列{}n a 的公比为()0q q >,利用等比数列求和公式分别表示出4S 和8S ,再计算16S 即可.【详解】由题意,设等比数列{}n a 的公比为()0q q >且1q ≠,则()441811a q S q--==,()8814112a q Sq-=-=,所以48413S q S =+=,解得42q =, 又()41118a q q--=,所以181a q=--, ()()16141618121201a q S q-==-⨯-=-.故答案为:120【点睛】本题主要考查等比数列的前n 项和公式,考查学生的计算能力,属于基础题. 7.已知函数()3sin 4cos f x x x =+,[]12,0,x x ∈π,则()()12f x f x -的最大值是________. 【答案】9 【解析】 【分析】先将函数()f x 转化成正弦函数的形式,然后结合正弦函数的图象判断出函数()f x 在区间[]0,π上的最大值和最小值,从而得出结果.【详解】由题意可得:()()343sin 4cos 5sin cos 5sin 55f x x x x x x ϕ⎛⎫=+=+=+ ⎪⎝⎭,其中4sin 5ϕ=,3cos 5ϕ=,且0,2πϕ⎛⎫∈ ⎪⎝⎭.由[0,]x π∈,[,]x ϕϕπϕ+∈+,3,2ππϕπ⎛⎫∴+∈ ⎪⎝⎭, 4()5sin()5sin 545min f x πϕϕ∴=+=-=-⨯=-,()5sin 52max f x π==, 当12,[0,]x x π∈时,()()()12()5)49(max min f x f x f x f x -=-=--=. 故答案为:9【点睛】本题考查了三角函数的恒等变化,以及正弦函数图象的性质,正弦函数的最值,把函数化简()()5sin f x x ϕ=+是解题的关键,属于中档题.8.在△ABC 中,角A 、B 、C 所对应边分别为a 、b 、c ,∠ABC =90°,∠ABC 的平分线交AC 于点D ,且22,BD =则a +4c 的最小值为____【答案】18 【解析】 【分析】根据三角形的面积公式找到a 和c 的关系,再结合基本不等式即可求得最小值. 【详解】根据题意,90ABC ∠=,所以12ABC S ac =△, 因为BD 是ABC ∠的平分线,所以45ABD CBD ∠=∠=, 由三角形面积公式,112sin 22222ABDSBD c ABD c c =⨯⨯⨯∠=⨯⨯=, 112sin 22222CBDSBD a CBD c a =⨯⨯⨯∠=⨯⨯=, 因为ABCABD CBD S SS=+,所以12ac a c =+, 化简得,221a c+=, 所以()222828*********a c a c a c a c a c c a c a ⎛⎫+=++=++≥+⋅= ⎪⎝⎭,当且仅当28a cc a=,即2a c =,即6a =,3c =时,等号成立, 故答案为:18【点睛】本题主要考查三角形面积公式的应用和基本不等式求最值的应用,考查学生分析转化能力,属于中档题.9.已知数列{}n a 的前n 项和2212,n S n n =-数列{||}n a 的前n 项和,n T 则nT n的最小值____ 【答案】5 【解析】由n S 和1n S -的关系求出数列{}n a 的通项公式,再根据正负表示出数列{||}n a 的通项公式为144,13414,4n n n a n n -≤≤⎧=⎨-≥⎩,求出n T ,并表示出n T n ,再分别求出13n ≤≤和4n ≥时的最小值,即可判断nT n的最小值. 【详解】由题意,数列{}n a 的前n 项和2212n S n n =-()n N*∈,所以1121210a S ==-=-,当2n ≥时,()()12221221121414n n n n n n n S n a S -⎡⎤-----=-⎣⎦=-=,当1n =时,1411410a ⨯-=-=, 所以414n a n =-,当13n ≤≤时,0n a <,当4n ≥时,0n a >,所以144,13414,4n n n a n n -≤≤⎧=⎨-≥⎩,数列{||}n a 的前n 项和n T ,所以22212,1321236,4n n n n T n n n ⎧-+≤≤=⎨-+≥⎩,当13n ≤≤时,212n T n n =-+,当3n =时,n Tn 的最小值为6; 当4n ≥时,36212n n T n n=+-, 由对勾函数的性质,当4n =时,n Tn有最小值5;综上所述,n Tn的最小值为5故答案为:5【点睛】本题主要考查由n S 求数列通项公式的求法、等差数列前n 项和公式、对勾函数的应用,是一道综合性很强的题目,考查学生分析转化能力和计算能力,属于难题. 10.在等差数列{}n a 中,若10100110100,910,S S S ===___【答案】990【分析】由等差数列前n 项和公式,利用1a 、d 来表示10S 和100S ,求出1a 和d ,再计算110S 即可. 【详解】由题意,设数列{}n a 公差为d , 由等差数列前n 项和公式,101109101002S a d ⨯=+=, 1100109099100021a S d ⨯==+,解得,11009100a =,150d =-,所以11010091101091110990100250S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭. 故答案为:990【点睛】本题主要考查等差数列的前n 项和公式,考查学生计算能力,属于基础题.11.设函数sin ,0(),2,0x x x f x x ⎧<=⎨≥⎩函数2lg(),0(),0x x g x x x -<⎧=⎨≥⎩则方程f (x )=g (x )根的数量为___个. 【答案】7 【解析】 【分析】作函数()f x 和()g x 的图象,利用数形结合的方法求解即可.【详解】由题意,作函数sin ,0()2,0x x x f x x ⎧<=⎨≥⎩和2lg(),0(),0x x g x x x -<⎧=⎨≥⎩的图象,当0x <时,0sin 1x ≤≤,()lg 101--=⎡⎤⎣⎦,所以10x <-时,()f x 和()g x 没有交点,100x -<<时,结合图像,()f x 和()g x 有5个交点;当0x ≥时,()2x f x =和2()g x x =有两个交点,分别为()2,4和()4,16;所以()()f x g x =根的数量为7个. 故答案为:7【点睛】本题主要考查方程的根的求法,涉及分段函数的表示,考查学生数形结合的能力,属于中档题.12.已知两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和,n T 且736,2n n S n T n +=+则使得2k ka b 为整数的正整数k 有_____个. 【答案】3 【解析】 【分析】由等差数列前n 项和公式和7362n n S n T n +=+,设出n S ,求出n a ,设出n T ,求出n b ,再得到2k ka b 的表达式,即可求出2kka b 为整数的正整数k 的个数.【详解】由7362n n S n T n +=+,设()736n S mn n =+, 当1n =时,1143S a m ==,当2n ≥时,()11429n n n a S S m n -=-=+,1143S a m ==符合上式,所以()11429n n n a S S m n -=-=+;设()2n T mn n =+, 当1n =时,113T b m ==,当2n ≥时,()121n n n b T T m n -=-=+,113T b m ==符合上式,所以()121n n n b T T m n -=-=+;则()()2282915142121k k m k a b m k k +==+++, 当1,2,7k =时,2k ka b 为整数,所以使得2kka b 为整数的正整数k 有3个.故答案为:3【点睛】本题主要考查等差数列的通项公式和前n 项和公式,考查学生分析转化能力和计算能力,属于中档题.13.设等差数列{}n a 的各项都是正数,公差为d ,前n 项和为,n S若数列也是公差为d 的等差数列,则{}n a 的前6项和为_____ 【答案】9 【解析】 【分析】由题意,等差数列的前n 项和公式()112n n n S na d -=+,由数列为等差数列,表示出数列()1n d =-,联立两式求解出1a 和d ,即可计算{}n a 的前6项和.【详解】由题意,等差数列{}n a 的前n 项和公式()112n n n S na d -=+,又数列()1n d =-,所以)()22111n S a n d n d =+-+-,所以)()()22111112n n a n d n d na d -+-+-=+, 解得,()2112na n d d =-+-, 当2n =时,21a d d =+-,当3n =时,21322a d d =+-,联立两式,解得114a =,12d =, 所以{}n a 的前6项和6165169422S ⨯=⨯+⨯= 故答案为:9【点睛】本题主要考查等差数列通项公式的应用和前n 项和公式,考查学生分析转化能力和计算能力,属于中档题.14.若等差数列{}n a 满足22120110,a a +≤则201202203401M a a a a =++++的最大值为_____【答案】1000 【解析】 【分析】由题意,()221120010a a d ++≤,令1x a =,1200y a d =+,则公差200y xd -=,再由等差数列前n 项和公式得301200a M =,则3011322a x y =-+,当301a 取最大值时,直线301320x y a -+=与圆相切,由点到直线的距离公式求出301a 的最大值,即可求出M 的最大值.【详解】由题意,22120110a a +≤,即()221120010a a d ++≤,令1x a =,1200y a d =+,则等差数列{}n a 的公差200y xd -=, 则()2014012012022301034012002002a a M a a a a a+⨯===++++,30111330030020022y x a a d x x y -=+=+⨯=-+,即301320x y a -+=, ()221120010a a d ++≤为半径的圆内(包含圆周), 所以301a 取最大值时,直线301320x y a -+=与圆相切,=301a 的最大值为5,所以max 20051000M =⨯=. 故答案为:1000【点睛】本题主要考查等差数列前n 项和公式的应用、直线与圆的位置关系,考查学生分析转化能力,综合性较强,属于难题.二、选择题(本大题共20题,每题3分,满分60分)15.已知数列{}n a 为等差数列,若1598a a a ++=π,则()28cos a a +的值为( ) A. -12B. C.12【答案】A 【解析】 【分析】利用等差数列的性质可知,1952a a a += ,求出5a ,再由2852a a a +=即可求解. 【详解】∵数列{}n a 为等差数列,1598a a a ++=π, ∴由等差数列的性质可得,1952a a a +=, 所以538a π=,即583a π=, 因为2852a a a +=,所以28163a a π+=, ∴281621cos()cos cos 332a a ππ+===-. 故选:A【点睛】本题考查等差数列的性质和三角函数的诱导公式;属于基础题. 16.ABC ∆的内角,,A B C 所对边分别为,,a b c若6,a b ==,,,B A C 成等差数列,则B =( ) A.6πB.56πC.6π或56π D.23π【答案】A 【解析】 【分析】B ,A ,C 成等差数列,可得2A =B +C =π﹣A ,解得A .利用正弦定理可得sin B bsinAa=,即可得出.【详解】∵B ,A ,C 成等差数列,∴2A =B +C =π﹣A , 解得A 3π=.则sinB1332sinbsinAaπ===, 又a >b ,∴B 为锐角. ∴B 6π=.故选:A .【点睛】本题考查了正弦定理、三角函数求值、等差数列的性质、三角形内角和定理,考查了推理能力与计算能力,属于中档题.17.若等差数列{}n a 和{}n b 的公差均为()0d d ≠,则下列数列中不为等差数列的是( ) A. {}n a λ(λ为常数) B. {}n n a b + C. {}22n n a b - D. {}n n a b ⋅【答案】D 【解析】 【分析】利用等差数列的定义对选项逐一进行判断,可得出正确的选项. 【详解】数列{}n a 和{}n b 是公差均为()0d d ≠的等差数列,则()11n a a n d +-=,()11n b b n d =+-,11n n a b a b ∴-=-.对于A 选项,()11n n n n a a a a d λλλλ++-=-=,数列{}n a λ(λ为常数)是等差数列; 对于B 选项,()()()()11112n n n n n n n n a b a b a a b b d +++++-+=-+-=,数列{}n n a b +是等差数列; 对于C 选项,()()()()222222221111n n n n n n n n ab a b a a b b ++++---=---()()()()()()111111112n n n n n n n n n n n n a a a a b b b b d a b a b d a b ++++++=-+--+=-+-=-,所以,数列{}22n n a b -是等差数列;对于D 选项,()()()211n n n n n n n n n n a b a b a d b d a b d d a b ++-=++-=++,不是常数,所以,数列{}n n a b 不是等差数列. 故选:D .【点睛】本题考查等差数列的定义和通项公式,注意等差数列定义的应用,考查推理能力,属于中等题.18.在ABC 中,角,,A B C 所对的边长分别为,,a b c ,若15a =,24b =,60A =︒,则这样的三角形解的个数为( ) A. 1B. 2C. 0D. 不确定【答案】C 【解析】 【分析】由正弦定理求出sin B 即可判断出解的个数 【详解】因为15a =,24b =,60A =︒所以由正弦定理得:sin sin a b A B= 即1524sin 60sin B=︒解得sin 1B =>,故无解 故选:C【点睛】本题考查的是正弦定理的运用,较简单. 19.已知函数()2tan 23f x x ππ⎛⎫=-+⎪⎝⎭.下列说法中错误的是( )A. 函数()f x 的定义域是12,3x x k k Z ⎧⎫≠+∈⎨⎬⎩⎭.B. 函数()f x 图象与直线12,3x k k Z =+∈没有交点C. 函数()f x 的单调增区间是5232,3,1k k k Z ⎛⎫-++∈⎪⎝⎭D. 函数()f x 的周期是2 【答案】C 【解析】 【分析】根据正切函数的性质逐个判定即可. 【详解】对A,()2tan 23f x x ππ⎛⎫=-+ ⎪⎝⎭的定义域满足122323x k x k ππππ+≠+⇒≠+,k Z ∈. 故A 正确.对B,由A 可知B 正确. 对C, ()2tan 23f x x ππ⎛⎫=-+ ⎪⎝⎭的单调递增区间即tan 23x ππ⎛⎫+⎪⎝⎭的单调递减区间.即3,2232k x k k Z ππππππ+<+<+∈,化简得1722,33k x k k Z +<<+∈.故C 错误. 对D, ()f x 的周期是22ππ= ,故D 正确.故选:C【点睛】本题主要考查了正切型函数的性质判定.属于基础题.20.函数cos 23y x π⎛⎫=+ ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦的值域为( ). A. []0,1 B. 11,2⎡⎤-⎢⎥⎣⎦C. 122⎡⎤-⎢⎥⎣⎦ D. 11,22⎡⎤-⎢⎥⎣⎦ 【答案】B 【解析】 【分析】 由0,2x π⎡⎤∈⎢⎥⎣⎦,得到42333x πππ≤+≤,现利用余弦函数的的图象和性质求解. 【详解】因为0,2x π⎡⎤∈⎢⎥⎣⎦所以42333x πππ≤+≤所以11cos 232x π⎛⎫-≤+≤ ⎪⎝⎭ 所以cos 23y x π⎛⎫=+ ⎪⎝⎭的值域是11,2⎡⎤-⎢⎥⎣⎦故选:B【点睛】本题主要考查了余弦函数的图象和性质,还考查了运算求解的能力,属于中档题. 21.函数y =sinx ,3[,]22x ππ∈的反函数是( )A. y =arcsinx ,x ∈[-1,1]B. y =-arcsinx ,x ∈[-1,1]C. y =π+arcsinx ,x ∈[-1,1]D. y =π-arcsinx ,x ∈[-1,1]【答案】D 【解析】 【分析】先由诱导公式得到()sin ,,22y x x πππ⎡⎤=-∈-⎢⎥⎣⎦,再根据反函数的定义求解即可. 【详解】由题意,3sin ,,22y x x ππ⎡⎤=∈⎢⎥⎣⎦,则[]1,1y ∈- 所以()sin ,,22y x x πππ⎡⎤=-∈-⎢⎥⎣⎦, 所以arcsin x y π-=,[]1,1y ∈-, 所以arcsin x y π=-,[]1,1y ∈-,即3sin ,,22y x x ππ⎡⎤=∈⎢⎥⎣⎦的反函数是arcsin y x π=-,[]1,1x ∈- 故选:D【点睛】本题主要考查反函数的求法,属于基础题.22.在ABC 中,若ABC 的面积为S ,且2244,2S b c a =+-=,则ABC 的外接圆的面积为( )A.4π B.2π C. 2πD. 4π【答案】C 【解析】 【分析】利用2244,2S b c a =+-=求得A ,由此利用正弦定理求得ABC ∆外接圆的半径,进而求得外接圆的面积. 【详解】由2244,2S b c a =+-=得2222sin bc A b c a ⋅=+-,所以222sin cos 2b c a A A bc+-==,由于A 是三角形的内角,所以π4A =.设三角形ABC 外接圆半径为r,由正弦定理得2sin a r r A ====,所以外接圆的面积为2π2πr ⋅=. 故选:C【点睛】本小题主要考查正弦定理、余弦定理解三角形,考查三角形的面积公式,属于基础题.23.已知曲线122:cos ,:sin(2),3C y x C y x π==+则下面结论正确的是( ) A. 把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移6π个单位,得到曲线2CB. 把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移12π个单位,得到曲线2CC. 把1C 上各点的横坐标缩短到原来的1,2纵坐标不变,再把得到的曲线向右平移12π个单位,得到曲线2CD. 把1C 上各点的横坐标缩短到原来的1,2纵坐标不变,再把得到的曲线向左平移12π个单位,得到曲线2C 【答案】D【解析】 【分析】由诱导公式将cos y x =化为sin 2y x π⎛⎫=+⎪⎝⎭,再根据图像变换规律,即可得到答案. 【详解】由题意,1C :cos sin 2y x x π⎛⎫==+⎪⎝⎭, 故将1C 上各点的横坐标缩短为原来的12,纵坐标不变,得到sin 22y x π⎛⎫=+ ⎪⎝⎭; 再把得到的曲线向左平移12π个单位,得到2sin 2sin 21223y x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 即曲线2C 的图像. 故选:B【点睛】本题主要考查诱导公式的应用和三角函数图像变换规律,属于基础题. 24.已知()()2sin (0,0)2f x x πωϕωϕ=+><<的图象关于直线6x π=对称,若存在12,x x R ∈,使得对于任意的x 都有()()()12f x f x f x ≤≤,且12x x -的最小值为2π,则ϕ等于( ) A.12π B.6π C.4π D.3π 【答案】B 【解析】 【分析】根据()f x 的最大值和最小值对应的横坐标的距离,求得()f x 的半周期,由此求得ω的值,结合根据()f x 的对称轴列方程,求得ϕ的值.【详解】依题意存在12,x x R ∈,使得对于任意的x 都有()()()12f x f x f x ≤≤,所以()()12,f x f x 分别是()f x 的最小值和最大值,而12x x -的最小值为2π,所以π,π22T T ==,由()2ππ0T ωω==>解得2ω=,所以()()2sin 2f x x ϕ=+.由于()f x 的图象关于直线6x π=对称,所以ππ2sin 63f ϕ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭的值为2或2-,即πsin 3ϕ⎛⎫+ ⎪⎝⎭的值为1或1-,由于ππ50,2336ππϕϕ<<<+<,所以πππ,326ϕϕ+==. 故选:B【点睛】本小题主要考查三角函数的周期性和对称性,考查化归与转化的数学思想方法,属于基础题.25.若等比数列{}n a 的前n 项和3(2),n n S m =+则22212n a a a +++=( )A.413n - B. 4n -1C. 3(41)n-D. 无法确定【答案】C 【解析】 【分析】利用1n =时,11a S =;2n ≥时,1n n n a S S -=-,以及数列{}n a 为等比数列求出m 的值,再得到数列2{}n a 是等比数列,再由等比数列前n 项和公式求解即可.【详解】当1n =时,1113(2)63m m a S =⨯+=+=,当2n ≥时,1113(2)3(2)32n n n n n n m S S m a ---+-+⨯-===,因为数列{}n a 为等比数列,所以当1n =时,13632n m -⨯+=,解得1m =-, 所以数列{}n a 是以3为首项,2为公比的等比数列,当2n ≥时,()()212222132432n n n n aa---⨯==⨯,数列2{}n a 是以239=为首项,4为公比的等比数列, 所以()()2221291434114n n n a a a ⨯-+++==--.故选:C【点睛】本题主要考查等比数列的定义、通项公式和前n 项和公式的应用,考查学生的计算能力,属于基础题.26.已知等差数列{}n a 的首项为4,公差为4,其前n 项和为n S ,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为( )A. 2(1)n n +B. 12(1)n n +C. 2(1)n n +D.21nn + 【答案】A 【解析】 【分析】由题得出数列前n 项和n S ,再用裂项相消法即可求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和.【详解】等差数列前n 项和公式为()112n n n S na d -=+,又14a =,4d =,所以()242122=+-=+n n n n n S n ,所以()2111111=22212+1⎛⎫==- ⎪++⎝⎭n n n n n n S n ,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和()111111111+12122312121⎛⎫⎛⎫=--++-=-= ⎪ ⎪+++⎝⎭⎝⎭n nT n n n n . 故选:A【点睛】本题主要考查求数列前n 项和,解题的关键是会用裂项相消求数列前n 项和. 27.已知函数f (x )是定义在R 上的单调递减函数,且f (x )为奇函数,数列{}n a 是等差数列,1580,a >则123313314315()()()()()()f a f a f a f a f a f a ++++++的值( )A. 恒为负数B. 恒为正数C. 恒为0D. 可正可负【答案】A 【解析】 【分析】函数f (x )是定义在R 上的单调递减函数,且f (x )为奇函数,所以(0)0f =,当0x >时,()0f x <,所以可得158()0a f <,由等差数列{}n a 的性质可得131515820a a a +=>,即1315()()0f a f a +<,同理可以得到2314()()0f a f a +<,3313()()0f a f a +<,⋅⋅⋅,进而可以得到所求式子的符号.【详解】由题意,函数f (x )是定义在R 上的单调递减函数,且f (x )为奇函数, 所以(0)0f =,当0x >时,()0f x <;因为数列{}n a 是等差数列,且1580a >,所以158()0a f <, 又131515820a a a +=>,所以1315()()0f a f a +<, 同理,2314()()0f a f a +<,3313()()0f a f a +<,⋅⋅⋅, 所以123313314315()()()()()()0f a f a f a f a f a f a ++++++<故选:A【点睛】本题主要考查等差数列的性质,函数的奇偶性和单调性的综合应用,属于中档题. 28.已知函数f (x )=asinx +cosx 的一条对称轴为,11x π=则函数g (x )=sinx -acosx 的一条对称轴可以为( ) A. 922x π=B. 1322x π=C. 1011x π=D. 1311x π=【答案】B 【解析】 【分析】由辅助角公式化简()()f x x α=+,其中1tan aα=,由()f x 的一条对称轴是11x π=求出α,再根据辅助角公式化简()()g x x β=-,其中tan a β=,利用tan tan 1αβ⋅=,求出α和β的关系,即可求出()g x 的一条对称轴.【详解】由题意,()()sin cos f x a x x x α=+=+,其中1tan aα=, 因为()f x 的一条对称轴是11x π=,所以1,112ππαπ+=+∈k k Z ,解得119,22αππ=+∈k k Z ,函数()()sin cos g x x a x x β=-=-,其中tan a β=, 所以()g x 的对称轴是22,2πβπ=++∈x k k Z ,因为1tan tan 1a aαβ⋅=⋅=,所以sin sin 1cos cos αβαβ=, 即()cos cos sin sin cos 0αβαβαβ-=+=, 所以33,2παβπ+=+∈k k Z ,所以()()33131,211ππβπαπ=+-=+--∈k k k k k Z ,所以()g x 的一条对称轴()()3123121313,2112222πππππππ=++-+=+-+=+∈x k k k k k k k k Z , 当0k =时,1322x π=. 故选:B【点睛】本题主要考查辅助角公式的应用,两角和差的余弦公式和三角函数的性质,考查学生的分析转化能力,属于中档题.29.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A. 一尺五寸 B. 二尺五寸C. 三尺五寸D. 四尺五寸【答案】B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解.【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。

上海市交通大学附属中学2019-2020学年高一下学期数学期中考试(答案)

上海交通大学附属中学2019-2020学年度第二学期高一数学期中考试试卷(满分150分,120分钟完成.答案一律写在答题纸上)一、填空题(本大题共14题,每题4分,满分56分)(5 、霏1、若2arcsin —工一2 二一,则工二〔4 )3【答案】:22、在公差d不为零的等差数列{%}中,气=】7,且%, %,七3成等比数列,则〃= 【答案】:33、己知等比数列{□"}中,a n>Q f a^a6 =4, KO log2a2+ log2a3 + log2a4 + log2a5 = 【答案】:44、前100个正整数中,除以7余数为2的所有数的和是.【答案】:7655、在AABC中,a2 + b2-mc2= 0为常数),且竺4 +竺旦=竺£,则小的值是一sin/ sing sinC【答案】:36、已知等比数列{%}的各项都是正数,%为其前〃项和,若$4 = 8, 58 = 24 ,则Sy=【答案】:1207、已知函数,(x)= 3sinx + 4cosK , \x2e[0,^]» 则f(x l)~f(x2)的最大值是_______ .【答案】:98、在AABC中,角处、8、C所对应边分别为1、b、c , ZABC=9Q°, ZAB C的平分线交0C于点O,且BD^2^2,则a + 4c的最小值为.【答案】;18T9、已知数列{%}的前&项和S H=2«2-12n,数列{|%|}的前〃项和L,则土的最小值是. 4【答案】:510、在等差数列{%}中,若二100, A。

二910, S“Q=【答案】:990lg (—x ),x<0 ,、 ,、' 7则方程/(x ) = g (X )根的数量为个.x 2,x > 0【答案】:712、己知两个等差数列{%}和{如}的前此项和分别为S,,和,,且?=芸;6,则使得芒为整数的正整数左有.个• 【答案】:313、设等差数列{a,,}的各项都是正数,公差为d,前弗项和为S”,若数列{属}也是公差为d 的等差数列,则{a,,}的前6项和为.【答案】:914、若等差数列{%}满足a ; + a ;oiWl 。

2020-2021学年上海市交大附中高一下学期期中考数学试卷含详解

上海交通大学附属中学2020-2021学年度第二学期高一数学期中试卷(本试卷共4页,满分150分,120分钟完成.答案一律写在答题纸上)一、填空题(本题满分54分,其中1~6每题4分,7~12每题5分)1.已知平面直角坐标系中,角α的顶点与坐标原点重合,始边与x 轴的正半轴重合,其终边上有一点()512P -,,则=αtan .2.计算:=+)31arctan 21tan(arctan ____________. 3.若53sin =α,且)2,0(πα∈,则tan α= .4.已知2tan =α,则=+αααcos sin sin 22___________.5.把ααcos 3sin -化为)),(,0)(sin(ππϕϕα-∈>+A A 其中的形式:_________.6.函数⎪⎭⎫⎝⎛+=62sin 2πx y 的最小正周期为___________. 7.已知:32)3sin(-=+πθ,则 tan(5)cos(2)sin(3)2tan(6)cos()7tan()sin(4)cot()22πθθππθπθπθππθπθθ--⋅-⋅--+-⋅-++⋅-+⋅--=______.8.若54)sin(=+βα,43)sin(=-βα,则=βαtan tan . 9.小瑗在解决问题“已知锐角α与锐角β的值,求βα+的正弦值”时误将两角和的正弦公式错记成了“βαβαβαsin sin cos cos )sin(+=+ ”,解得的结果为426+ . 发现恰好与标准答案一致. 那么原题中的锐角α的值为__________(写出所有的可能值). 10.如右图,平面上有一条走廊宽为3米,夹角为120°,地面是水平的,走廊两端足够长. 那么能够通过走廊的钢筋(看作线段,不考虑粗细)的最大长度为_________米. 11.设对任意]2,0[πθ∈,不等式046cos 3sin 2<--+m m θθ恒成立,则实数m 的范围是____________.12.如右图,已知等腰三角形ABC 的顶角7π=A ,D 是腰AB 上一点. 若1=AD ,2=CD ,则=BC ____________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个结论是正确的,必须把正确结论的代号写在答题纸相应的空格中. 每题选对得5分.13.一个扇形的面积是1平方厘米,它的周长是4厘米,则它的圆心角是 ( ) A.2弧度B.3弧度C.4弧度D.5弧度 14.方程2tan =x 的解集是( )A.},2arctan 2|{Z k k x x ∈+=πB. },2arctan 2|{Z k k x x ∈±=πC.},2arctan |{Z k k x x ∈+=πD. },2arctan )1(|{Z k k x x k∈⋅-+=π 15.角α的终边属于第一象限,那么3α的终边不可能属于的象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限16.已知定义域是全体实数的函数()y f x =满足(2)()f x f x π+=,且()g x =()()2f x f x +-,()()()2f x f x h x --=,现定义函数(),()y p x y q x ==为:()p x =()()()()()()2cos 22sin 22,(),0()0()22g x g x h x h x k x k x x x q x k x k x ππππππππ-+++⎧⎧≠+≠⎪⎪⎪⎪=⎨⎨⎪⎪=+=⎪⎪⎩⎩其中k Z ∈,那么下列关于(),()y p x y q x ==叙述正确的是( )A.都是偶函数且周期为πB.都是奇函数且周期为πC.都是周期函数但既不是奇函数又不是偶函数D.都不是周期函数三、解答题(本大题满分76分)17.(本题满分14分,第(1)小题6分,第(2)小题8分)设(0,)3πα∈,(,)62ππβ∈,且,αβ满足5cos 82ααββ⎧+=⎪+=,(1)求cos()6πα+的值;(2)求cos()αβ+的值.18.(本题满分14分,第(1)小题6分,第(2)小题8分)如图,一条河的两岸相互平行. 两岸边各有一个小镇A与B,它们的直线距离为2千米,河宽AC为1千米.根据规划需在线段BC上选择一个点D,沿AD铺设水下电缆,沿BD 铺设地下电缆.建立数学模型寻找如何铺设电缆费用最低.(1)模型建立:我们假设:1. B、D之间的地下电缆沿________铺设,每千米地下电缆的铺设费用不变,不妨设为1;2. A、D之间的水下电缆沿________铺设,每千米水下电缆的铺设费用不变,根据调查为每千米地下电缆铺设费用的两倍;∠=;则θ的取值范围为_____________.可以将该项工程的总费用如果设ADCθy表示为θ的函数,这个函数的解析式为_____________.因此,原实际问题的数学模型为:求___________,该项工程的总费用y最低.(2)模型求解:请求解上述模型.AC D B19.(本题满分14分,第(1)小题4分,第(2)小题10分)已知三角形ABC 中,A tan 、B tan 是方程042=++ax x 的两个实数根.(1)若8-=a ,求C tan 的值;(2)求C tan 的最小值,并指出此时对应的实数a 的值.20.(本题满分16分,第(1)小题4分,第(2)小题4分,第(3)小题8分) 某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中D C B A ,,,是抛物线2x y =上的四个不同的点,且BD AC ⊥(点A 、B 在第二象限,且点A 在点B 的左上方).AC 、BD 交于点1(0,)4F .点E 为y 轴上一点,记α=∠EFA ,其中α为锐角.设线段AF 的长为m . (1) 用m 与α表示点A 的横坐标; (2) 将m 表示为α的函数;(3) 求“蝴蝶形图案”面积的最小值,并指出取最小值时α的大小?21.(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分) 设()y f x =是定义在D 上的函数,若对任何实数(0,1)α∈以及D 中的任意两数1x 、2x ,恒有()1212(1)()(1)()fx x f x f x αααα+-≤+-,则称()f x 为定义域上的C 函数.(1)判断函数1,(,0)y x x=∈-∞是否为定义域上的C 函数,请说明理由; (2)函数3,(,)y x x M =∈+∞是定义域上的C 函数,求实数M 的最小值;(3)若()y f x =是定义域为R 的周期函数,且最小正周期为T .试判断()y f x =是否可能为定义域上的C 函数.如果可能,请给出至少一个符合条件的函数()y f x =;如果不可能,请说明理由.上海交通大学附属中学2020-2021学年度第二学期高一数学期中试卷(本试卷共4页,满分150分,120分钟完成.答案一律写在答题纸上)一、填空题(本题满分54分,其中1~6每题4分,7~12每题5分)1.【答案】512-2.计算:=+)31arctan 21tan(arctan ____________.【解析】1111tan arctan tan arctan 112323tan arctan arctan 111112311tan arctan tan arctan 2323⎛⎫⎛⎫++⎪ ⎪⎛⎫⎝⎭⎝⎭+=== ⎪⎛⎫⎛⎫⎝⎭-⋅- ⎪ ⎪⎝⎭⎝⎭. 3.【答案】434.已知2tan =α,则=+αααcos sin sin22___________.【解析】2222222sin sin cos 2tan tan 2sin sin cos 2sin cos tan 1ααααααααααα+++===++. 5.【答案】)3sin(2πα-6.【答案】π7.已知:2sin(3)3θπ+=-,则 tan(5)cos(2)sin(3)2tan(6)cos()7tan()sin(4)cot()22πθθππθπθπθππθπθθ--⋅-⋅--+-⋅-++⋅-+⋅--=______.【解析】由2sin(3)3θπ+=-得2sin 3θ=,所以原式tan cos sin 2(tan )(cos )3sin 2cot sin tan θθθθθθθθθ-⋅⋅=+--==-⋅⋅.8.若54)sin(=+βα,43)sin(=-βα,则=βαtan tan . 【解析】由题意得3sin cos cos sin ,sin cos cos sin 544αβαβαβαβ+=-=, 解得1sin cos ,cos 31sin 4040αβαβ==,所以tan sin cos 31tan cos sin ααββαβ==. 9.小瑗在解决问题“已知锐角α与锐角β的值,求βα+的正弦值”时误将两角和的正弦公式错记成了“βαβαβαsin sin cos cos )sin(+=+”,解得的结果为426+. 发现恰好与标准答案一致. 那么原题中的锐角α的值为__________(写出所有的可能值). 【解析】由题意得sin cos cos sin cos cos sin sin αβαβαβαβ+=+, 所以sin cos cos cos sin sin cos sin αβαβαβαβ-=-, 所以(sin cos )(sin cos )0ααββ--=,又α和β为锐角,所以4πα=或4πβ=,若4πα=,满足题意; 若4πβ=,则6257sin sin sin441212πππα+⎛⎫+=== ⎪⎝⎭,所以6πα=或3π, 综上,原题中的锐角α的值为6π或4π或3π. 10.如右图,平面上有一条走廊宽为3米,夹角为120°,地面是水平的,走廊两端足够长. 那么能够通过走廊的钢筋(看作线段,不考虑粗细)的最大长度为_________米. 【解析】如图,设能通过走廊的钢筋的长度为AB ,设0,60BAQ ABQ αα∠=∠=-, 则033sin sin(60)AB AP PB αα=+=+- 0001166sin sin(60)1[cos(260)cos60]2ααα≥=⋅---2612112≥=-,当且仅当030α=时取等号,故能够通过走廊的钢筋(看作线段,不考虑粗细)的最大长度为12米.11.设对任意]2,0[πθ∈,不等式046cos 3sin 2<--+m m θθ恒成立,则实数m 的范围是__________.【解析】由题意得21cos3cos 640m m θθ-+--<对任意20,πθ⎡⎤∈⎢⎥⎣⎦恒成立,所以2cos 373cos 24cos 2cos 2m θθθθ+>=-++--恒成立, 令[]cos 22,1t θ=-∈--,因为7()4f t t t=++在[2,1]--上严格减, 所以max3()2f t =-,所以332m >-,故21->m .12.如右图,已知等腰三角形ABC 的顶角7π=A ,D 是腰AB 上一点. 若1=AD ,2=CD ,则=BC ____________.【解析】设ACD α∠=,则7sin 21sin πα=BCD ∆中,ααπ3sin )7sin(+=CD BC ,按计算器得=BC 1.证明;因为7A π=,设14πα=,则2A α=,且72πα=,即342παα=-,所以ααπα4cos )42sin(3sin =-=(1),设,,AD m AC n BC a ===,则m CD 2=, 在ACD ∆中由余弦定理得22222)2cos 2cos 22n m m n mn mnαα-=+-⇒=(2)在等腰三角形ABC 中,na AC BC221sin ==α (3)将(1)整理为()22321sin 213sin 4sin ααα--=-,展开得4328sin 4sin 8sin 3sin 10αααα+--+=,()32(sin 1)8sin 4sin 10ααα+-+=,所以24sin cos 24sin10ααα--+=,将(2),(3)代入上式得()222220()0am an ma mn m a am n m a --+=⇒-+=⇒=,即AD BC =. 二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个结论是正确的,必须把正确结论的代号写在答题纸相应的空格中. 每题选对得5分.13.一个扇形的面积是1平方厘米,它的周长是4厘米,则它的圆心角是 ( A ) A.2弧度B.3弧度C.4弧度D.5弧度【解析】设半径为r ,圆心角为θ,弧长为l , 由题意得224lr l r =⎧⎨+=⎩,解得21l r =⎧⎨=⎩,所以2lr θ==,故选A.14.方程2tan =x 的解集是( C )A.},2arctan 2|{Z k k x x ∈+=πB. },2arctan 2|{Z k k x x ∈±=πC.},2arctan |{Z k k x x ∈+=πD. },2arctan )1(|{Z k k x x k∈⋅-+=π15.角α的终边属于第一象限,那么3α的终边不可能属于的象限是 ( D )A.第一象限B.第二象限C.第三象限D.第四象限【解析】根据等分象限法,得3α的终边在第一、二、三象限,故选D. 16.已知定义域是全体实数的函数()y f x =满足(2)()f x f x π+=,且()g x =()()2f x f x +-,()()()2f x f x h x --=,现定义函数(),()y p x y q x ==为:()p x =()()()()()()2cos 22sin 22,(),0()0()22g x g x h x h x k x k x x x q x k x k x ππππππππ-+++⎧⎧≠+≠⎪⎪⎪⎪=⎨⎨⎪⎪=+=⎪⎪⎩⎩其中k Z ∈,那么下列关于(),()y p x y q x ==叙述正确的是( A )A.都是偶函数且周期为πB.都是奇函数且周期为πC.都是周期函数但既不是奇函数又不是偶函数D.都不是周期函数【解析】因为()()()2f x f x g x +-=,所以()()()()2f x f xg x g x -+-==, 且()()()()()()22f x f x f x f xg x g x ππππππ++---+-++===-, 即()g x 的一个周期为2π, 当2x k ππ≠+时,()()()()()2cos()2cos g x g x g x g x p x x xππ---+---==-()()2cos g x g x xπ-+=()p x =,且()(2)()2cos()g x g x p x x ππππ+-++=+()()()2cos g x g x p x x π+-==-,当2x k ππ=+时,()0p x =,所以()y p x =是偶函数且周期为π;同理,()()()2f x f x h x --=,所以()()()()2f x f x h x h x ---==-,且()()()()()()22f x f x f x f x h x h x ππππππ+------++===-,即()h x 的一个周期为2π, 当2x k ππ≠+时,()()()()()2sin 2()2sin 2h x h x h x h x q x x xππ---+-+--==--()()()()()2sin 22sin 2h x h x h x h x q x x xππ---+===,且()(2)()()()()2sin 2()2sin 2h x h x h x h x q x q x x xπππππ++++++===+,当2x k ππ=+时,()0q x =,所以()y q x =是偶函数且周期为π;综上所述,选A.三、解答题(本大题满分76分)17.(本题满分14分,第(1)小题6分,第(2)小题8分)设(0,)3πα∈,(,)62ππβ∈,且,αβ满足5cos 82ααββ⎧+=⎪+=,(1)求cos()6πα+的值;(2)求cos()αβ+的值.【解析】(1)因为,所以 因为,所以,所以.5cos 8αα+=4sin()65πα+=(0,)3πα∈(,)662πππα+∈3cos()65πα+=(2,所以,因为,所以,所以所以sin cos cos sin 636310ππππαβαβ⎛⎫⎛⎫⎛⎫⎛⎫=+++++=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以 18.(本题满分14分,第(1)小题6分,第(2)小题8分)如图,一条河的两岸相互平行. 两岸边各有一个小镇A 与B ,它们的直线距离为2千米,河宽AC 为1千米.根据规划需在线段BC 上选择一个点D ,沿AD 铺设水下电缆,沿BD 铺设地下电缆.建立数学模型寻找如何铺设电缆费用最低. (1)模型建立:我们假设:1. B 、D 之间的地下电缆沿________铺设,每千米地下电缆的铺设费用不变,不妨设为1;2. A 、D 之间的水下电缆沿________铺设,每千米水下电缆的铺设费用不变,根据调查为每千米地下电缆铺设费用的两倍;如果设ADC θ∠=;则θ的取值范围为_____________. 可以将该项工程的总费用y 表示为θ的函数,这个函数的解析式为_____________.因此,原实际问题的数学模型为:求___________,该项工程的总费用y 最低.2ββ+=sin()32πβ+=(,)62ππβ∈5(,)326πππβ+∈cos()3πβ+=cos()sin[()]sin[()()]263πππαβαβαβ+=++=+++cos()αβ+=(2)模型求解:请求解上述模型.【解析】(1)由题设cot CD θ=,1sin AD θ=,223CB AB AC =-=,3cot DB θ=- 所以θθθθsin cos 23)cot 3(sin 212-+=-+=⋅+=BD AD y (]2,6[ππθ∈)1. B 、D 之间的地下电缆沿线段BD (直线)铺设,每千米地下电缆的铺设费用不变,不妨设为1;2. A 、D 之间的水下电缆沿线段AD (直线)铺设,每千米水下电缆的铺设费用不变,根据调查为每千米地下电缆铺设费用的两倍; 如果设ADC θ∠=;则θ的取值范围为]2,6[ππθ∈. 可以将该项工程的总费用y 表示为θ的函数,这个函数的解析式为θθsin cos 23-+=y .因此,原实际问题的数学模型为:求θ,该项工程的总费用y 最低. (2)设tan2t θ=(tan151)t ︒≤≤,则22sin 1t t θ=+,22tan 1tt θ=-代入(1)的结论,得ACDB222121123sin cos 23t t t t y ++--+=-+=θθ32321232122322≥++=+-++=tt t t t当且仅当3122t t=时取等号,即t =时,32min =y再由tan 2t θ=得3πθ=答:当3πθ=时,工程总费用y 最低为32.19.(本题满分14分,第(1)小题4分,第(2)小题10分)已知三角形ABC 中,A tan 、B tan 是方程042=++ax x 的两个实数根.(3)若8-=a ,求C tan 的值;(4)求C tan 的最小值,并指出此时对应的实数a 的值. 【解析】(1)8tan tan =-=+a B A ,4tan tan =B A .所以38418tan tan 1tan tan )tan())(tan(tan =--=-+-=+-=+-=B A B A B A B A C π(2)因为方程有两个实数根,所以0162≥-=∆a ,又因为4tan tan =B A ,所以A tan 与B tan 同号,而三角形中不可能有两个钝角. 所以A tan 与B tan 都大于0,所以0tan tan >-=+a B A . 解得4-≤a .34341tan tan 1tan tan )tan())(tan(tan ≥-=---=-+-=+-=+-=a a B A B A B A B A C π当且仅当4-=a ,即2tan tan ==B A 时,C tan 取到最小值为34. 20.(本题满分16分,第(1)小题4分,第(2)小题4分,第(3)小题8分) 某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中D C B A ,,,是抛物线2x y =上的四个不同的点,且BD AC ⊥(点A 、B 在第二象限,且点A 在点B 的左上方).AC 、BD 交于点1(0,)4F .点E 为y 轴上一点,记α=∠EFA ,其中α为锐角.设线段AF 的长为m . (1)用m 与α表示点A 的横坐标; (2)将m 表示为α的函数;(3)求“蝴蝶形图案”面积的最小值,并指出取最小值时α的大小? 【解析】(1)作AH 垂直y 轴于H ,则αsin m AH =,所以点A 的纵坐标为αsin m -(2)点)41cos ,sin (+-ααm m A所以)cos 41()sin (2ααm m +=-,即041cos sin 22=--ααm m ,解得αα2sin 21cos ±=m ,由于0m >, 所以))2,0((sin 21cos 2πααα∈+=m(3)同理αα2cos 2sin 1-=BF ,αα2cos 2sin 1+=DF ,αα2sin 2cos 1-=CF “蝴蝶形图案”的面积:))2,0(()cos (sin 4cos sin 121212πααααα∈-=⋅+⋅=+=∆∆DF CF BF AF S S S CFD AFB 令]21,0(,cos sin ∈=t t αα, 所以),2[1+∞∈t则161211414122-⎪⎭⎫ ⎝⎛-=-=t t t S ,所以21=t ,即4πα=时,“蝴蝶形图案”的面积取最大值为21. 21.(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分) 设是定义在D 上的函数,若对任何实数()y f x =(0,1)α∈以及D 中的任意两数1x 、2x ,恒有()1212(1)()(1)()f x x f x f x αααα+-≤+-,则称()f x 为定义域上的C 函数. (1)判断函数1,(,0)y x x=∈-∞是否为定义域上的C 函数,请说明理由; (2)函数3,(,)y x x M =∈+∞是定义域上的C 函数,求实数M 的最小值;(3)若()y f x =是定义域为R 的周期函数,且最小正周期为T .试判断()y f x =是否可能为定义域上的C 函数.如果可能,请给出至少一个符合条件的函数()y f x =;如果不可能,请说明理由. 【解析】(1)()()210f x x x=<不是C 函数, 说明如下(举反例): 取13x =-,21x =-,12α=, 则()()()()()121211f x x f x f x αααα+----()()()11111231022262f f f =-----=-++>, 即()()()()()121211f x x f x f x αααα+->+-, 所以()()210f x x x=<不是C 函数; (2)0M =时,对任何实数(0,1)α∈以及(0,)+∞中的任意两数1x 、2x ,有33311x x αα<,33311(1)(1)x x αα-<-,所以()33322223312112122(1)3(1)3(1)(1)x x x x x x x x αααααααα+-=+-+-+-3333331212(1)(1)x x x x αααα<+-<+-即()1212(1)()(1)()f x x f x f x αααα+-≤+-, 所以3,(,)y x x M =∈+∞是定义域上的C 函数; 而0M <时,取12M x =,20x =,12α=, 则311(1)022264M M f ⎛⎫⋅+-⋅= ⎪⎝⎭,311()(1)(0)22216M M f f +-=,由于0M <,所以336416M M >,故3,(,)y x x M =∈+∞不是定义域上的C 函数;综上,实数M 的最小值为0. (3)假设()y f x =是R 上的C 函数,若存在m n <且[),0,m n T ∈,使得()()f m f n ≠. (i )若()()f m f n <,记1x m =,2x m T =+,1n mTα-=-,则01α<<,且()121n x x αα=+-,那么()()()()()()121211f n f x x f x f x αααα=+-≤+-()()()()1f m f m T f m αα=+-+=,这与()()f m f n <矛盾; (ii )若()()f m f n >, 记1x n =,2x n T =-,1n mTα-=-,同理也可得到矛盾; 所以()f x 在[)0,T 上是常数函数, 又因为()f x 是周期为T 的函数,所以()f x 在R 上是常数函数,这与()f x 的最小正周期为T 矛盾.f x不是R上的C函数.所以()。

2019-2020学年上海市交大附中高一下学期期末数学试题(解析版)

2019-2020学年上海市交大附中高一下学期期末数学试题一、单选题1.要得到函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数3sin 2y x =的图象( ) A .向左平移3π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向右平移6π个单位长度 【答案】C【解析】将所给函数化为3sin 26y x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,根据三角函数相位变换原则可得结果. 【详解】3sin 23sin 236y x x ππ⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴只需将3sin 2y x =的图象向左平移6π个单位长度即可得到3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象 故选:C 【点睛】本题考查三角函数的相位变换,关键是明确相位变换是针对x 的变化量的变换,遵循“左加右减”原则.2.O 是平面上一定点,,,A B C 是平面上不共线的三个点,动点P 满足AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭,[)0,μ∈+∞,则P 点的轨迹一定经过ABC ∆的( )A .外心B .内心C .重心D .垂心【答案】B 【解析】先根据||AB AB →→、||AC AC →→分别表示向量AB →、AC →方向上的单位向量,确定||||A AB A AC CB →→→→+的方向与BAC ∠的角平分线一致,再由AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭可得到AB AC OP OA AP AB AC μ→→→→→→→⎛⎫ ⎪ ⎪-==+ ⎪ ⎪⎝⎭,可得答案.【详解】 解:||AB AB →→、||AC AC →→分别表示向量AB →、AC →方向上的单位向量,∴||||A AB A AC C B →→→→+的方向与BAC ∠的角平分线一致,又AB AC OP OA AB AC μ→→→→→→⎛⎫ ⎪ ⎪=++ ⎪ ⎪⎝⎭,∴AB AC OP OA AP AB AC μ→→→→→→→⎛⎫ ⎪ ⎪-==+ ⎪ ⎪⎝⎭,∴向量AP →的方向与BAC ∠的角平分线一致∴P 点的轨迹一定经过ABC 的内心.故选:B . 【点睛】本题考查平面向量的线性运算和向量的数乘,以及对三角形内心的理解,考查化简运算能力.3.已知数列{}n a 为等差数列,10a <且1231990a a a a +++⋅⋅⋅+=,设()*12n n n n b a a a n N ++=∈,当{}n b 的前n 项和n S 最小时,n 的值有( )A .5个B .4个C .3个D .2个【答案】B【解析】根据等差数列的性质可知1000a ,从而判断数列{}n a 是单调递增数列,即可判断当{}n b 的前n 项和n S 最小时,n 可取的值.【详解】数列{}n a 为等差数列,119921981002a a a a a ,1231990a a a a +++⋅⋅⋅+=,则1001990a ,即1000a ,10a <,可以判断数列{}n a 是单调递增数列,991010,0a a ,12n n n n b a a a ++=, 12323412nn n n S a a a a a a a a a ,当{}n b 的前n 项和n S 最小时,n 可取的值为97,98,99,100共4个. 故选:B. 【点睛】本题主要考查等差数列的性质,属于中档题.4.设O 为ABC 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与BOC 的面积的比值为( ) A .6 B .83C .127D .4【答案】A【解析】作2OA OA '=,7OB OB '=,3OC OC '=,由已知可得O 是'''A B C 的重心,由重心性质可得所求面积比. 【详解】作2OA OA '=,7OB OB '=,3OC OC '=,如图,∵2730OA OB OC ++=,∴O 是'''A B C 的重心,则''''''OA B OB C OC A S S S ==△△△,设''''''OA B OB C OC A S S S t ===△△△, 设,,OAB OAC y OBC S x S S z ===△△△,∵2OA OA '=,7OB OB '=,3OC OC '=,∴''1''sin ''2141sin 2OA B OABOA OB A OB S S OA OB AOB ⋅∠==⋅∠△△,即114x t =,同理16y t =,121z t =,11161462121ABCS x y z t t t t=++=++=△,∴6216121ABCOBCtSS t==△△.故选:A.【点睛】本题考查三角形面积的计算,考查向量的加法与数乘法则,体现了向量在解决平面图形问题中的优越性.二、填空题5.计算:5arcsin sin6π⎛⎫=⎪⎝⎭______;【答案】6π【解析】用诱导公式把5sin6π中的角化到,22ππ⎡⎤-⎢⎥⎣⎦中即可由反正弦函数定义得出结论.也可直接计算.【详解】5arcsin sin arcsin sin666πππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭.或者51arcsin sin arcsin626ππ⎛⎫==⎪⎝⎭故答案为:6π.【点睛】本题考查反正弦函数,掌握反正弦函数定义是解题关键,注意反正弦函数的值域是,22ππ⎡⎤-⎢⎥⎣⎦.6.关于未知数x ,y 的方程组对应的增广矩阵为216320⎛⎫⎪-⎝⎭,则此方程组的解x y +=______;【答案】307【解析】由增广矩阵写出原二元线性方程组,根据方程的解x ,y ,最后求x y +的值. 【详解】由二元线性方程组的增广矩阵为216320⎛⎫⎪-⎝⎭,得到二元线性方程组的表达式2+6320x y x y =⎧⎨-=⎩, 解得127187x y ⎧=⎪⎪⎨⎪=⎪⎩,所以x y +=307. 故答案为: 307. 【点睛】此题主要考查二元线性方程组的增广矩阵的含义,属于基础题. 7.设3,sin 2a α⎛⎫=⎪⎝⎭,1cos ,3b α⎛⎫= ⎪⎝⎭,且//a b ,则cos2=α__________.【答案】0【解析】根据平面向量共线定理可以得到等式,用二倍角的正弦公式以及特殊角的三角函数,求出2α的值,最后计算出它的余弦值即可. 【详解】 因为//a b ,所以31sin cos sin 2122()232k k Z πααααπ⨯=⇒=⇒=+∈, 因此cos 2cos(2)0()2k k Z παπ=+=∈.故答案为:0 【点睛】本题考查了两个平面向量共线定理,考查了二倍角的正弦公式,考查了特殊角的三角函数值,考查了数学运算能力.8.已知函数()sin cos f x a x x =+的一条对称轴为3xπ=,则a =______;【解析】根据三角函数的性质可知()f x 在3x π=取得最大值或最小值,建立方程即可求解. 【详解】()()sin cos f x a x x x ϕ=+=+,其中ϕ是辅助角, 3x π=是()f x 的一条对称轴,231()1322f a a ,整理得230a -+=,解得a =【点睛】本题考查三角函数性质得应用,利用在对称轴的函数值是最大或最小是解题的关键,属于中档题.9.已知平面向量,a b 满足3a =,2b =,3a b ⋅=-,则2a b += .【解析】试题分析:因为222|2|44316127a b a b a b +=++⋅=+-=,所以27a b +=【考点】向量数量积,向量的模10.设211S =,2222121S =++,22222312321S =++++,…,222221221n S n =++++++,希望证明()2213nn n S +=,在应用数学归纳法求证上式时,第二步从k 到1k +应添的项是______. 【答案】()221k k ++【解析】写出1,k k S S +的表达式,通过比较可以知道第二步从k 到1k +应添的项. 【详解】当n k =时,222222212(1)(1)21k S k k k =+++-++-+++,当1n k =+时,2222222122(12(1)()21)11k k S k k k k +=+++-+++++-+++,通过对比可以发现,第二步从k 到1k +应添的项是()221k k ++.故答案为:()221k k ++ 【点睛】本题考查了数学归纳法证明过程中添项问题,属于基础题.11.已知0a b c ++=,3a =,4b =,5c =,则a b b c c a ⋅+⋅+⋅=______; 【答案】25-【解析】由已知得()c a b =-+,再两边平方22+2+25a a b b ⋅=,求得0a b ⋅=,代入可求得答案. 【详解】因为0a b c ++=,所以()c a b =-+,又因为5c =, 所以()225a b+=,即22+2+25a a b b ⋅=,又3a =,4b =,所以9+2+1625a b ⋅=,所以0a b ⋅=,所以()()20+25a b b c c a a b c b a c c c ⋅+⋅+⋅=⋅+⋅+=⋅-=-=-, 故答案为:25-. 【点睛】本题考查向量的线性运算,向量的数量积,以及向量的模的计算,属于中档题.12.若数列{}n a 为无穷等比数列,且()1231lim 2n n n a a a a a -→∞+++⋅⋅⋅++=-,则1a 的取值范围是______; 【答案】()()4,22,0--⋃-【解析】根据无穷等比数列的前n 项和的极限求解. 【详解】设数列{}n a 公比是q ,在1q <且0q ≠时,()11231lim 21n n n a a a a a a q-→∞+++⋅⋅⋅++==--, ∴12(1)a q =-,又11q -<<且0q ≠,210q -<-<且11q -≠-,∴142a -<<-或120a -<<.故答案为:()()4,22,0--⋃- 【点睛】本题考查无穷等比数列的和,数列{}n a 是公比为q 的无穷等比数列,其前n 项和为n S ,在1q <时,1lim 1n n a S q→∞=-.若1q ≥,则lim n n S →∞不存在. 13.设数列{}n a 是公比为q 的等比数列,则123456789a a a a a a a a a =______; 【答案】0;【解析】根据行列式计算法则和等比数列性质计算即可. 【详解】数列{}n a 是公比为q 的等比数列123456159483726753429186789a a a a a a a a a a a a a a a a a a a a a a a a a a a ∴=++--- 33548372654837260a a a a a a a a a a a a a a .故答案为:0. 【点睛】本题考查等比数列的性质,以及行列式的相关计算,属于中档题.14.已知向量()5,5a =,(),1b λ=,若a b +与a b -的夹角是锐角,则实数λ的取值范围为______; 【答案】()()7,11,7-⋃【解析】利用()()0a b a b +⋅->去掉同向的情形即得. 【详解】由题意()()0a b a b +⋅-> ,即220a b ->,2222551λ+>+,∴77λ-<<,若()a b k a b +=-,则5(5)51(51)k k λλ+=-⎧⎨+=-⎩,解得321k λ⎧=⎪⎨⎪=⎩,综上λ的范围是()()7,11,7-⋃. 故答案为:()()7,11,7-⋃. 【点睛】本题考查向量的夹角与向量的数量积的关系,,a b 是两个非零向量,则,a b 夹角是锐角时,0a b⋅>,,a b夹角是钝角时,0a b⋅<,反之要注意,a b可能同向也可能反向.15.如图,已知O为矩形ABCD内的一点,且OA2=,OC4=,AC5=,则OB OD⋅=______.【答案】52-【解析】建立坐标系,设()O m,n,()C a,b,根据条件得出O,C的坐标之间的关系,再计算OB OD⋅的值.【详解】以A为原点,以AB,AD 为坐标轴建立平面直角坐标系,设()O m,n,()B a,0,()D0,b,则()C a,b,OA2=,OC4=,AC5=,222222a b25m n4()()16m a n b⎧+=⎪∴+=⎨⎪-+-=⎩,整理可得:13am bn2+=.又()OB a m,n=--,()OD m,b n=--,()()()22135OB OD m m a n n b m n am bn422∴⋅=-+-=+-+=-=-.故答案为52-.【点睛】本题考查了平面向量的数量积运算,建立坐标系是突破点,准确计算是关键,属于中档题.16.已知平面直角坐标系内定点()1,1A ,动点B 满足2AB →=,动点C 满足3CB →=,则点C 在平面直角坐标系内覆盖的图形的面积为______; 【答案】24π【解析】本题先将B 固定,得到C 的轨迹,C 的轨迹随着B 的动点而运动从而形成一个圆环,即C 在平面直角坐标系内覆盖的图形. 【详解】因为动点B 满足2AB →=,所以B 点的轨迹是以A 为圆心,2为半径的一个圆, 又因为动点C 满足3CB →=,所以C 点轨迹是以B 为圆心,3为半径的一个圆,当B 点在圆上运动时,点C 的轨迹是以点A 为圆心、以5为半径的圆, C 点在平面直角坐标系内覆盖的图形如下图所示,即C 在平面直角坐标系内覆盖的图形为一个圆环,其中大圆的半径为5,小圆的半径是1,所以点C 在平面直角坐标系内覆盖的图形的面积为22=5124S πππ⋅-⋅=. 故答案为:24π 【点睛】本题考查根据曲线的轨迹方程求面积,考查学生的直观想象能力和作图能力,易错点是把覆盖的面积看成整个圆,属于中档题.三、解答题17.解关于x .y 的一元二次方程组()3322ax y a x a y +=--⎧⎨+-=-⎩,并对解的情况进行讨论.【答案】3a =,无数个解;1a =-,无解;3a ≠且1a ≠-,4111a x a y a --⎧=⎪⎪+⎨-⎪=⎪+⎩.【解析】分情况讨论即可知道解的情况. 【详解】 (1)当33122aa a 时,方程组有无数个解, 解得3a =; (2)当33122a a a 时,方程组无解, 解得1a =-;(3)当312a a 时,方程组只有一组解为4111a x a y a --⎧=⎪⎪+⎨-⎪=⎪+⎩,解得3a ≠且1a ≠-,综上,3a =,无数个解;1a =-,无解;3a ≠且1a ≠-,4111a x a y a --⎧=⎪⎪+⎨-⎪=⎪+⎩.【点睛】本题考查二元一次方程组的解的情况,可以利用直线系数的比例关系讨论,属于基础题. 18.已知x ∈R ,设()3cos ,sin cos m x x x =-,()2sin ,sin cos n x x x =+,记函数()f x m n =⋅.(1)求函数()f x 的最小值,并求出函数()f x 取最小值时x 的值;(2)设ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若()2f C =,c =,求ABC 的面积S 的最大值.【答案】(1)min 2y =-,,6x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭;(2)【解析】(1)先根据向量的数量积的运算,以及二倍角公式和两角和的正弦公式化简得到f (x )=2sin 26x π⎛⎫-⎪⎝⎭,再根据正弦函数的性质即可求出答案; (2)先求出C 的大小,再根据余弦定理和基本不等式,即可求出3ab ≤,根据三角形的面积公式即可求出答案. 【详解】(1)()2223sin cos sin cos f x m n x x x x =⋅=+-2cos 22sin 26x x x π⎛⎫=-=- ⎪⎝⎭,令2262x k ππ-=π-,k ∈Z ,即()6x k k Z ππ=-∈时,sin 216x π⎛⎫-=- ⎪⎝⎭,()f x 取最小值2-,所以,()f x 的最小值为2-,所求x 的取值集合是,6x x k k Z ππ⎧⎫=-∈⎨⎬⎩⎭; (2)由()2f C =,得sin 216C π⎛⎫-= ⎪⎝⎭, 因为0C π<<,所以112666C πππ-<-<,所以262C ππ-=,3C π=,在ABC 中,由余弦定理2222cos c a b ab C =+-,得223a b ab ab =+-≥,即3ab ≤,当且仅当a b =时取等号,所以ABC 的面积11sin 32224S ab C =≤⨯⨯=,因此ABC 的面积S 【点睛】本题考查了向量的数量积的运算和二倍角公式,两角和的正弦公式,余弦定理和基本不等式,三角形的面积公式,属于中档题. 19.已知ABC 内接于O ,AB c =,BC a =,=CA b ,O 的半径为r .(1)若230OA OB OC ++=,试求BOC ∠的大小;(2)若A 为动点,60BAC ∠=︒,AO OC OB λμ=+,试求λμ+的最大值. 【答案】(1)56π;(2)2. 【解析】(1)由230OA OB OC ++=可得2223OB OCOA ,解得3cos BOC,即可求出56BOC ; (2)由60BAC ∠=︒可得120BOC ∠=︒,再由AO OC OB λμ=+平方后得221λμλμ+-=,利用基本不等式可求出λμ+的最大值.【详解】 (1)230OA OB OC ++=, 23OBOCOA ,则2223OBOCOA ,即2224433OBOB OC OCOA ,2222443cos 3r r BOC r r ,解得3cos 2BOC, 56BOC; (2)60BAC ∠=︒,120BOC ∴∠=︒,AO OC OB λμ=+,()()22AOOC OB λμ∴=+,即222222AO OC OC OB OB λλμμ=+⋅+,2222222cos120r r r r ,整理得221λμλμ+-=,即231,22,22132,解得24,即2λμ+≤,当且仅当1λμ==时等号成立,∴λμ+的最大值为2.【点睛】本题考查向量数量积的应用,以及利用基本不等式求最大值,属于综合题. 20.已知平方和公式:()()222121126n n n n ++++⋅⋅⋅+=,其中*n N ∈.(1)记()()()()()22222231521432f n n n =-++⋅⋅⋅+-+-+++⋅⋅⋅+-,其中*n N ∈,求()20f 的值;(2)已知()()22222213214948242n n ++⋅⋅⋅++=++⋅⋅⋅+,求自然数n 的值; (3)抛物线2y kx =.x 轴及直线:AB x a =围成了如图(1)的阴影部分,AB 与x 轴交于点A ,把线段OA 分成n 等份,作以an为底的内接矩形如图(2),阴影部分的面积为S ,n 等于这些内接矩形面积之和.2222231a a a a a a a n k k k k a n n n n n n n n -⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯+⨯⨯+⨯⨯+⋅⋅⋅+⨯⨯ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,当n →+∞时的极限值.图(3)中的曲线为开口向右的抛物线2y x =,抛物线y x =x 轴及直线:4AB x =围成了图中的阴影部分,请利用极限平方和公式.反函数或割补法等知识求出阴影部分的面积.【答案】(1)47980;(2)72;(3)163. 【解析】(1)将(20)f 化为2222222222221234565758593657,即可结合公式求解;(2)分别转化()()222222242412n n ++⋅⋅⋅+=+++和()()()()222222222221321123221242n n n n ⎡⎤++⋅⋅⋅++=++++++-+++⎣⎦,然后根据公式求解,建立方程即可求出n ; (3)线段AB 分成n 等份,作以2n为底的内接矩形,则阴影部分的面积可看作是这些内接矩形的面积之和,利用极限即可求出. 【详解】 (1)()()()()()22222231521432f n n n =-++⋅⋅⋅+-+-+++⋅⋅⋅+-,22222222(20)595652145558f2222222212457858592222222222221234565758593657222259601199123196192039702109479806;(2)()()()()22222221212424123n n n n n ++++⋅⋅⋅+=+++=,()()()()222222222221321123221242n n n n ⎡⎤∴++⋅⋅⋅++=++++++-+++⎣⎦212112122122436333n n n n n n n n n ,()()22222213212349248242n n n n ++⋅⋅⋅+++∴==++⋅⋅⋅+, 解得72n =;(3)由题可知,2AB =,如图,把线段AB 分成n 等份,作以2n为底的内接矩形,设阴影部分的面积为S ,则S 可看作是这些内接矩形的面积之和, 则222222242622(1)4444n Snnnnnnnn22222222411231n n nn n328112181644633n n n n nn n n ,当n →+∞时,163S, 所以阴影部分的面积为163. 【点睛】本题考查根据所给公式化简求值,以及用极限求面积,属于较难题.21.设数列{}n a 的前n 项和为n S ,23n n S a +=,*n N ∈,数列{}n b 满足:对于任意的*n N ∈,都有11213211333n n n n n a b a b a b a b n ---⎛⎫+++⋅⋅⋅+=+- ⎪⎝⎭成立.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的通项公式;(3)设数列n n n c a b =,问:数列{}n c 中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.【答案】(1)113n n a -⎛⎫= ⎪⎝⎭;(2)21n b n =-;(3)存在,1c ,2c ,5c 或2a ,3c ,5c .【解析】(1)当2n ≥时,类比写出1123n n S a --+=,两式相减整理得113n n a a -=,当1n =时,求得10a ≠,从而求得数列{}n a 的通项公式.;(2)将113n n a -⎛⎫= ⎪⎝⎭代入已知条件,用与(1)相似的方法,变换求出数列{}n b 的通项公式;(3)由n c 的通项公式分析,得12345c c c c c =>>>>…,假设存在三项s c ,p c ,r c 成等差数列,且s p r <<,则2p s r c c c =+,即()1112212121333p s r p s r ------=+,根据数列{}n c 的单调性,化简得722p ≤<,将2p =或3p =代入已知条件,即可得到结论. 【详解】(1)由23n n S a +=, ① 得()11232n n S a n --+=≥, ② 由①-②得120n n n a a a -+-=,即()1123n n a a n -=≥, 对①取1n =得,110a =≠,所以0n a ≠,所以113n n a a -=为常数, 所以{}n a 为等比数列,首项为1,公比为13, 即113n n a -⎛⎫= ⎪⎝⎭,*n N ∈;(2)由113n n a -⎛⎫= ⎪⎝⎭,可得对于任意*n N ∈有2111211111333333n n n n n b b b b n ----⎛⎫⎛⎫⎛⎫++++=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ③则()()2221231111131323333n n n n n b b b b n n -----⎛⎫⎛⎫⎛⎫++++=+--≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ④则()23111231111112233333n n n n n b b b b n n -----⎛⎫⎛⎫⎛⎫⎛⎫++++=+-≥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ⑤由③-⑤得()212n b n n =-≥,对③取1n =得,11b =也适合上式,因此21n b n =-,*n N ∈, (3)由(1)(2)可知1213n n n n n c a b --==, 则()11412121333n n n n n n n n c c +--+--=-=, 所以当1n =时,1n n c c +=,即12c c =,当2n ≥时,1n n c c +<,即{}n c 在2n ≥且*n N ∈上单调递减, 故12345c c c c c =>>>>…,假设存在三项s c ,p c ,r c 成等差数列,其中s ,p ,*r N ∈,由于12345c c c c c =>>>>…,可不妨设s p r <<,则2p s r c c c =+(),即()1112212121333p s r p s r ------=+, 因为s ,p ,*r N ∈且s p r <<,则1s p ≤-且2p ≥, 由数列{}n c 的单调性可知,1s p c c -≥,即12212333s p s p ----≥, 因为12103r r r c --=>,所以()11122212121233333p s r p p s r p --------=+>, 即()122212333p p p p ---->,化简得72p <, 又2p ≥且*∈p N ,所以2p =或3p =,当2p =时,1s =,即121c c ==,由3r ≥时,21r c c <=,此时1c ,2c ,r c 不构成等差数列,不合题意,当3p =时,由题意1s =或2s =,即1s c =,又359p c c ==,代入()式得19r c =, 因为数列{}n c 在2n ≥且*n N ∈上单调递减,且519c =,4r ≥,所以=5r , 综上所述,数列{}n c 中存在三项1c ,3c ,5c 或2c ,3c ,5c 构成等差数列. 【点睛】本题考查了数列递推关系、等比数列与等差数列的定义、通项公式,涉及到等差和等比数列的判断,数列的单调性等知识的综合运用,考查分类讨论思想与逻辑推理能力,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试题一、填空题(本大题共14题,每题4分,满分56分) 1.若2arcsin (54x ﹣2)=π3,则x = .2.在公差d 不为零的等差数列{a n }中,a 6=17,且a 3,a 11,a 43成等比数列,则d = . 3.已知等比数列{a n }中,a n >0,a 1a 6=4,则log 2a 2+log 2a 3+log 2a 4+log 2a 5= . 4.前100个正整数中,除以7余数为2的所有数的和是 . 5.在△ABC 中,a 2+b 2﹣mc 2=0(m 为常数),且cosA sinA+cosB sinB=cosC sinC,则m 的值是 .6.已知等比数列{a n }的各项都是正数,S n 为其前n 项和,若S 4=8,S 8=24,则S 16= . 7.已知函数f (x )=3sin x +4cos x ,x 1,x 2∈[0,π],则f (x 1)﹣f (x 2)的最大值是 .8.在△ABC 中,角A 、B 、C 所对应边分别为a 、b 、c ,∠ABC =90°,∠ABC 的平分线交AC 于点D ,且BD =2√2,则a +4c 的最小值为9.已知数列{a n }的前n 项和S n =2n 2﹣12n ,数列{|a n |}的前n 项和T n ,则T n n的最小值 .10.在等差数列{a n }中,若S 10=100,S 100=910,S 110= . 11.设函数f (x )={|sinx|,x <02x ,x ≥0,函数g (x )={lg(−x),x <0x 2,x ≥0,则方程f (x )=g (x )根的数量为 个.12.已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且S n T n=7n+36n+2,则使得a 2kb k为整数的正整数k 有 个.13.设等差数列{a n }的各项都是正数,公差为d ,前n 项和为S n ,若数列{√S n }也是公差为d 的等差数列,则{a n }的前6项和为 .14.若等差数列{a n }满足a 12+a 2012≤10,则M =a 201+a 202+a 203+…+a 401的最大值为 . 二、选择题(本大题共20题,每题3分,满分60分)15.已知{a n }为等差数列,若a 1+a 5+a 9=5π,则cos (a 2+a 8)的值为( ) A .−12B .−√32C .12D .√3216.△ABC 的内角A ,B ,C 所对边分别为a ,b ,c ,若a =6,b =2√3,B ,A ,C 成等差数列,则B =( ) A .π6B .5π6C .π6或5π6D .2π317.若等差数列{a n }和{b n }的公差均为d (d ≠0),则下列数列中不为等差数列的是( ) A .{λa n }(λ为常数)B .{a n +b n }C .{a n 2﹣b n 2}D .{{a n •b n }}18.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若a =15,b =24,A =60°,则这样的三角形解的个数为( ) A .1B .2C .0D .不确定19.已知函数f(x)=−2tan(π2x +π3),下列说法中错误的是( ) A .函数f (x )的定义域是{x|x ≠2k +13,k ∈Z} B .函数f (x )图象与直线x =2k +13,k ∈Z 没有交点 C .函数f (x )的单调增区间是(−53+2k ,13+2k),k ∈Z D .函数f (x )的周期是220.函数y =cos (2x +π3),x ∈[0,π2]的值域为( )A .[0,1]B .[﹣1,12]C .[−√32,12]D .[−12,12]21.函数y =sin x ,x ∈[π2,3π2]的反函数为( ) A .y =arcsin x ,x ∈[﹣1,1] B .y =﹣arcsin x ,x ∈[﹣1,1] C .y =π+arcsin x ,x ∈[﹣1,1]D .y =π﹣arcsin x ,x ∈[﹣1,1]22.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且4S =b 2+c 2﹣4,a =2,则△ABC 外接圆的面积为( ) A .π4B .π2C .2πD .4π23.已知曲线C 1:y =cosx ,C 2:y =sin(2x +2π3),则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 224.已知f (x )=2sin (ωx +φ)(ω>0,0<φ<π2)的图象关于直线x =π6对称,若存在x 1,x 2∈R ,使得对于任意x 都有f (x 1)≤f (x )≤f (x 2),且|x 1﹣x 2|的最小值为π2,则φ等于( )A .π12B .π6C .π4D .π325.若等比数列{a n }的前n 项和S n =3(2n +m ),则a 12+a 22+…+a n 2=( ) A .4n−13B .4n ﹣1C .3(4n ﹣1)D .无法确定26.已知等差数列{a n }的首项为4,公差为4,其前n 项和为S n ,则数列{1S n}的前n 项和为( ) A .n 2(n+1)B .12n(n+1)C .2n(n+1)D .2nn+127.已知函数f (x )是定义在R 上的单调递减函数,且f (x )为奇函数,数列{a n }是等差数列,a 158>0,则f (a 1)+f (a 2)+f (a 3)+…+f (a 313)+f (a 314)+f (a 315)的值( ) A .恒为负数B .恒为正数C .恒为0D .可正可负28.已知函数f (x )=a sin x +cos x 的一条对称轴为x =π11,则函数g (x )=sin x ﹣a cos x 的一条对称轴可以为( ) A .x =9π22B .x =13π22C .x =10π11D .x =13π1129.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( ) A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸30.已知等差数列{a n }、{b n },其前n 项和分别为S n 、T n ,a n b n=2n+33n−1,则S 11T 11=( )A .1517B .2532C .1D .2 31.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N +满足S 2m S m=9,a 2m a m=5m+1m−1,则数列{a n }的公比为( ) A .√2B .2C .3D .432.已知数列{a n }是等比数列,其前n 项和为S n ,则下列结论正确的是( ) A .若a 1+a 2>0,则a 1+a 3>0 B .若a 1+a 3>0,则a 1+a 2>0 C .若a 1>0,则S 2021>0D .若a 1>0,则S 2020>033.设等比数列{a n }的公比为q ,其前n 项之积为T n ,并且满足条件:a 1>1,a 2019a 2020>1,a 2019−1a 2020−1<0,给出下列结论:①0<q <1;②a 2019a 2021﹣1>0;③T 2019是数列{T n }中的最大项;④使T n >1成立的最大自然数等于4039,其中正确结论的序号为( ) A .①②B .①③C .①③④D .①②③④34.对于无穷数列{a n },给出下列命题:( )①若数列{a n }既是等差数列,又是等比数列,则数列{a n }是常数列. ②若等差数列{a n }满足|a n |≤2020,则数列{a n }是常数列. ③若等比数列{a n }满足|a n |≤2020,则数列{a n }是常数列.④若各项为正数的等比数列{a n }满足1≤a n ≤2020,则数列{a n }是常数列. 其中正确的命题个数是( ) A .1B .2C .3D .4三、解答题(本大题共2题,满分34分)35.已知函数f (x )=a (|sin x |+|cos x |)+4sin2x +9,满足f (9π4)=13﹣9√2.(1)求a 的值;(2)求f (x )的最小正周期;(3)是否存在正整数n ,使得f (x )=0在区间[0,nπ4)内恰有2020个根.若存在,求出n 的值,若不存在,请说明理由.36.(18分)已知{a n },{b n },前n 项和分别记为S n ,T n .(1)若{a n },{b n }都是等差数列,且满足b n ﹣a n =2n ,T n =4S n ,求S 30; (2)若{a n }是等比数列,{b n }是等差数列,b n ﹣a n =2n ,a 1=1,求T 30(3)数列{a n },{b n }都是等比数列,且满足n ≤3时,b n ﹣a n =2n ,若符合条件的数列{a n }唯一,则在数列{a n }、{b n }中是否存在相等的项,即a k =b 1(k ,l ∈N *),若存在请找出所有对应相等的项,若不存在,请说明理由.。

相关文档
最新文档