2017年春季学期新版人教版七年级数学下册第九章不等式与不等式组全章测试题含答案
人教版七年级下册第九章《不等式与不等式组》全章练习(分层分结典型练习题含答案)

第九章不等式与不等式组9.1不等式9.1.1不等式及其解集基础题知识点1不等式1.给出下面5个式子:①3>0;②4x+3y≠0;③x=3;④x-1;⑤x+2<3,其中不等式有(B)A.2个B.3个C.4个D.5个2.选择适当的不等号填空:(1)2<3;(2)-9>-4;(3)若a为正方形的边长,则a>0;(4)若x≠y,则-x≠-y.3.如图,左边物体的质量为x g,右边物体的质量为50g,用不等式表示下列数量关系是x>50.第3题第4题4.如图,身高为x cm的1号同学与身高为y cm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,那么这个式子可以表示成x<y(用“>”或“<”填空).5.用适当的符号表示下列关系:(1)x是正数:x>0;(2)m大于-3:m>-3;11(3)a-b是负数:a-b<0;(4)a的3比5大:3a>5.116.“b的2与c的和是负数”用不等式表示为2b+c<0.知识点2不等式的解和解集7.用不等式表示如图所示的解集,其中正确的是(A)A.x>-2B.x<-2C.x>2D.x≠-28.下列说法中,错误的是(C)A.x=1是不等式x<2的解;B.-2是不等式2x-1<0的一个解;C.不等式-3x>9的解集是x=-3;D.不等式x<10的整数解有无数个。
229.下列各数:-2,-2.5,0,1,6中,不等式3x>1的解有6;不等式-3x>1的解有-2,-2.5.10.把下列不等式的解集在数轴上表示出来.(1)x>-3;解:(2)x>-1;解:(3)x<3;解:3(4)x<-2.解:中档题11.x与3的和的一半是负数,用不等式表示为(C)1111A.2x+3>0B.2x+3<0C.2(x+3)<0D.2(x+3)>012.实数a,b在数轴上的位置如图所示,则下列不等式成立的是(D)A.a>bB.ab>0C.a+b>0D.a+b<013.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.x+4]=5,则x的取值可以是(C)若[10A.40B.45C.51D.5614.请写出满足下列条件的一个不等式.(1)0是这个不等式的一个解:x<1;(2)-2,-1,0,1都是不等式的解:x<2;(3)0不是这个不等式的解:x>0;(4)与x<-1的解集相同的不等式:x+2<1.15.有如图所示的两种广告牌,其中图1是由两个两直角边相等的直角三角形构成的,图2是一个长方形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a,b 11的不等式表示为2a2+2b2>ab.16.用不等式表示:(1)7x与1的差小于4;(2)x的一半比y的2倍大;1(3)a的9倍与b的2的和是正数.11(3)9a+2b>0.解:(1)7x-1<4.(2)2x>2y.17.直接写出下列各不等式的解集:(1)x+1>0;解:x>-1.(2)3x<6.解:x<2.18.已知一支圆珠笔1.5元,签字笔与圆珠笔相比每支贵2元.小华想要买x支圆珠笔和10支签字笔.若付50元仍找回若干元,则如何用含x的不等式来表示小华所需支付的金额与50元之间的关系?解:列不等式为:1.5x+10×(1.5+2)<50.19.在爆破时,如果导火索燃烧的速度是每秒钟0.8cm,人跑开的速度是每秒钟4m,为了使点导火索的人在爆破时能够跑到100m以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;s解:4×0.8>100.(2)当导火索是下列哪个长度时,人能跑到安全地区(D)A.15cmB.18cmC.20cmD.25cm综合题20.阅读下列材料,并完成填空:你能比较20172018和20182017的大小吗?为了解决这个问题,先把问题一般化,即:比较n n +1和(n+1)n的大小(n>0,且n为整数).从分析n=1,2,3,…的简单情况入手,从中发现规律,经过归纳猜想出结论:(1)通过计算,填“>”或“<”;①12<21;②23<32;③34>43;④45>54.(2)根据(1)的结果,猜想n n+1和(n+1)n的大小关系;(3)根据(2)中的猜想,知20172018>20182017.解:当n=1或2时,n n+1<(n+1)n;当n>2,且n为整数时,n n+1>(n+1)n.4.若 a >b ,则 3a >3b ; > ;ac 2>bc 2(c 为非零实数).(填“>”“=”或“<”)5.如果 2m <3n ,那么不等式两边同时乘 (或除以 6),可变为 m< n.2 3 3第九章 不等式与不等式组9.1 不等式9.1.2不等式的性质第 1 课时 不等式的基本性质基础题知识点 1 不等式的性质 11.若 a >b ,则 a -3>b -3.(填“>”“<”或“=”)2.若 a -4<b -4,则 a <b.(填“>”“<”或“=”)3.已知实数 a ,b 在数轴上的对应点的位置如图所示,则 a -2<b -2.知识点 2 不等式的性质 2a b5 51 1 16 3 2知识点 3 不等式的性质 316.若- a≥b,则 a≤-2b ,其根据是(C)A.不等式的两边加(或减)同一个数(或式子),不等号的方向不变B.不等式的两边乘(或除以)同一个正数,不等号的方向不变C.不等式的两边乘(或除以)同一个负数,不等号的方向改变D.以上答案均不对7.若 a >b ,am <bm ,则一定有(B)A.m =0B.m <0C.m >0D.m 为任何实数中档题8.若 x >y ,则下列式子中错误的是(D)x y A.x -3>y -3B. >C.x +3>y +3D.-3x >-3y9.(2017·株洲)已知实数 a ,b 满足 a +1>b +1,则下列选项错误的为(D)A.a >bB.a +2>b +2C.-a <-bD.2a >3bc b12.已知关于x的不等式(1-a)x>2的解集为x<210.下列说法不一定成立的是(C)A.若a>b,则a+c>b+c;B.若a+c>b+c,则a>b;C.若a>b,则ac2>bc2;D.若ac2>bc2,则a>b11.若实数a,b,c在数轴上对应点的位置如图所示,则下列不等式成立的是(B)A.a-c>b-cB.a+c<b+ca cC.ac>bcD.<1-a,则a的取值范围是a>1.13.如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为B<A<D<C.14.张华在进行不等式变形时遇到不等式b<-b,他将不等式两边同时除以b得1<-1,这显然是不成立的,你能解释这是为什么吗?你能求出b的取值范围吗?解:∵不知道b的正负,∴将不等式两边同时除以b,不等号的方向不知道改变不改变.张华把b看成大于0,所以才得出错误的结论.不等式两边同时加上b,得2b<0.不等式两边同时除以2,得b<0.3 6 3 6 7 44第 2 课时 不等式的基本性质的运用基础题知识点 1 利用不等式的性质解不等式1.不等式 x -2>1 的解集是(C)A.x>1B.x>2C.x>3D.x>42.(2016·临夏)在数轴上表示不等式 x -1<0 的解集,正确的是(C)3.利用不等式的基本性质求下列不等式的解集,并写出变形的依据.(1)若 x +2 016>2 017,则 x>1;(不等式两边同时减去 2__016,不等号方向不变)1 1(2)若 2x>- ,则 x>- ;(不等式两边同时除以 2,不等号方向不变)1 1(3)若-2x>- ,则 x< ;(不等式两边同时除以-2,不等号方向改变)x(4)若- >-1,则 x<7.(不等式两边同时乘-7,不等号方向改变)4.根据不等式的性质,将下列不等式化成“x>a”或“x<a”的形式.3(1)8x >7x +1;(2)-3x <-4x - .3解:(1)不等式两边都减 7x ,得 x >1.(2)不等式两边都加 4x ,得 x <- .知识点 2 不等式的简单应用5.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月 1 500 元租金外,每千米收 1 元;出租车公司规定每千米收 2 元,不收其他费用.设该单位每月用车 x 千米时,乘坐出租车划算,请写出 x 的取值范围.解:根据题意,得1 500+x>2x ,解得 x<1 500.∵单位每月用车 x(千米)是正数,∴x 的取值范围是 x >0 并且 x <1 500.33336.若式子3x+4的值不大于0,则x的取值范围是(D)4444A.x<-B.x≥C.x<D.x≤-7.如图是关于x的不等式2x-a≤-1的解集,则a的取值是(C)A.a≤-1B.a≤-2C.a=-1D.a=-28.利用不等式的性质解下列不等式.(1)5x≥3x-2;解:不等式两边同时减去3x,得2x≥-2.不等式两边同时除以2,得x≥-1.(2)8-3x<4-x.解:不等式两边同时加上x,得8-2x<4.不等式两边同时减去8,得-2x<-4.不等式两边同时除以-2,得x>2.9.已知一台升降机的最大载重量是1200kg,在一名体重为75kg的工人乘坐的情况下,它最多能装载多少件25kg重的货物?解:设能载x件25kg重的货物,因为升降机最大载重量是1200kg,所以有75+25x≤1200,解得x≤45.因此,升降机最多载45件25kg重的货物.a b10.已知关于 x 的不等式 ax <-b 的解集是 x >1,求关于 y 的不等式 by >a 的解集.解:∵不等式 ax <-b 的解集是 x >1,b∴a<0,- =1.∴b=-a ,b >0.a∴不等式 by >a 的解集为 y > =-1,即不等式 by >a 的解集为 y >-1.第九章 不等式与不等式组9.1 不等式9.2 一元一次不等式第 1 课时 一元一次不等式的解法基础题知识点 一元一次不等式及其解法1.下列不等式中,属于一元一次不等式的是(B)1 A.4>1B.3x -16<4C.x<2.4x -3<2y -712.(2017· 眉山)不等式-2x >2的解集是(A)11A.x <-4B.x <-1C.x >-4D.x >-13.(2017· 吉林)不等式 x +1≥2 的解集在数轴上表示正确的是(A)4.(2016· 六盘水)不等式 3x +2<2x +3 的解集在数轴上表示正确的是(D)x x -15.不等式2- 3 ≤1 的解集是(A)A.x ≤4B.x ≥4C.x ≤-1D.x ≥-16.(2017· 遵义)不等式 6-4x ≥3x -8 的非负整数解有(B)A.2 个B.3 个C.4 个D.5 个77.已知 y 1=-x +3,y 2=3x -4,当 x >4时,y 1<y 2.8.解不等式,并把解集在数轴上表示出来:(1)5x-2≤3x;解:移项,得5x-3x≤2.合并同类项,得2x≤2.系数化为1,得x≤1.其解集在数轴上表示为:(2)2(x-1)+5<3x;解:去括号,得2x-2+5<3x.移项,得2x-3x<2-5.合并同类项,得-x<-3.系数化为1,得x>3.其解集在数轴上表示为:x-27-x.(3)2≤3解:去分母,得3(x-2)≤2(7-x).去括号,得3x-6≤14-2x.移项、合并同类项,得5x≤20.解得x≤4.其解集在数轴上表示为:1+x 2x +19.(2017· 舟山)小明解不等式 2 - 3 ≤1 的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.解:去分母,得 3(1+x)-2(2x +1)≤1.①去括号,得 3+3x -4x +1≤1.②移项,得 3x -4x ≤1-3-1.③合并同类项,得-x ≤-3.④两边都除以-1,得 x ≤3.⑤解:错误的是①②⑤,正确的解答过程如下:去分母,得 3(1+x)-2(2x +1)≤6.去括号,得 3+3x -4x -2≤6.移项,得 3x -4x ≤6-3+2.合并同类项,得-x ≤5.两边都除以-1,得 x ≥-5.中档题10.(2017· 丽水)若关于 x 的一元一次方程 x -m +2=0 的解是负数,则 m 的取值范围是(C)A.m ≥2B.m >2C.m <2 D .m ≤2111.不等式3(x -m)>2-m 的解集为 x >2,则 m 的值为(B)31 A.4 B.2C.2D.2312.要使 4x -2的值不大于 3x +5,则 x 的最大值是(B)A.4B.6.5C.7D.不存在x +1 2x +213.(2016· 南充)不等式 2 > 3 -1 的正整数解的个数是(D)A.1B.2C.3D.414.(2017·大庆)若实数3是不等式2x-a-2<0的一个解,则a可取的最小正整数为(D)A.2B.3C.4D.515.(2017·烟台)运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作.若输入x后程序操作仅进行了一次就停止,则x的取值范围是x<8.16.解不等式,并把解集在数轴上表示出来:(1)2(x+1)-1≥3x+2;解:去括号,得2x+2-1≥3x+2.移项,得2x-3x≥2-2+1.合并同类项,得-x≥1.系数化为1,得x≤-1.其解集在数轴上表示为:1(2)(2017·晋江月考)3(x-1)<4(x-2)-3;解:去括号,得3x-3<4x-2-3.移项,得3x-4x<3-2-3.合并同类项,得-x<-2.系数化为1,得x>2.其解集在数轴上表示为:(3)2x-19x+2323=23-6≤1;解:去分母,得2(2x-1)-(9x+2)≤6.去括号,得4x-2-9x-2≤6.移项,得4x-9x≤6+2+2.合并同类项,得-5x≤10.系数化为1,得x≥-2.其解集在数轴上表示为:x+1(4)2≥3(x-1)-4.解:去分母,得x+1≥6(x-1)-8.去括号,得x+1≥6x-6-8.移项,得x-6x≥-6-1-8.合并同类项,得-5x≥-15.系数化为1,得x≤3.其解集在数轴上表示为:综合题17.已知关于x的方程4(x+2)-2=5+3a的解不小于方程(3a+1)x a(2x+3)=的解,试求a的取值范围.3a-1解:解方程4(x+2)-2=5+3a,得x=4.(3a+1)x a(2x+3)9a解方程,得x=2.3a-19a11依题意,得4≥2.解得a≤-15.故a的取值范围为a≤-15.第九章不等式与不等式组9.2一元一次不等式第2课时一元一次不等式的应用基础题知识点1一元一次不等式的简单应用1.(2017·齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买(A)A.16个B.17个C.33个D.34个2.某校举行关于“保护环境”的知识竞赛,共有25道题,答对一题得10分,答错(或不答)一题倒扣5分,小明参加本次竞赛,得分超过了100分,则他至少答对的题数是(B)A.17B.16C.15D.123.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计).某人打车从甲地到乙地经过的路程是x千米,出租车费为21元,那么x的最大值是(B)A.11B.8C.7D.54.(2016·西宁)某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有(C)A.103块B.104块C.105块D.106块5.为了举行班级晚会,孔明准备去商店购买20个乒乓球作道具,并买一些乒乓球拍作奖品,已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?解:设孔明应该买x个球拍,根据题意,得81.5×20+22x≤200,解得x≤711.由于x取整数,故x的最大值为7.答:孔明应该买7个球拍.知识点2利用一元一次不等式设计方案6.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?解:(1)120×0.95=114(元).答:实际应支付114元.(2)设购买商品的价格为x元,由题意得0.8x+168<0.95x,解得x>1120.答:当购买商品的价格超过1120元时,采用方案一更合算.7.某景区售出的门票分为成人票和儿童票,成人票每张100元,儿童票每张50元,若干家庭结伴到该景区旅游,成人和儿童共30人.售票处规定:一次性购票数量达到30张,可购买团体票,每张票均按成人票价的八折出售,请你帮助他们选择花费最少的购票方式.解:设参加旅游的儿童有m人,则成人有(30-m)人.根据题意,得按团体票购买时,总费用为100×80%×30=2400(元).分别按成人票、儿童票购买时,总费用为100(30-m)+50m=(3000-50m)元.①若3000-50m=2400,解得m=12.即当儿童为12人时,两种购票方式花费相同.②若选择购买团体票花费少,则有3000-50m>2400,解得m<12.即当儿童少于12人时,选择购买团体票花费少.③若选择分别按成人票、儿童票购票花费少,则有3000-50m<2400,解得m>12.即当儿童多于12人时,选择分别按成人票、儿童票购票花费少.中档题8.(2016·雅安)“一方有难,八方支援”,雅安芦山4·20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为(C)A.60B.70C.80D.909.(2017·牡丹江)某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打8折.10.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为30cm,长与宽的比为3∶2,则该行李箱的长的最大值为78cm.11.2017年的5月20日是第28个全国学生营养日,某市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?信息1.快餐成分:蛋白质、脂肪、碳水化合物和其他.2.快餐总质量为400克.3.碳水化合物质量是蛋白质质量的4倍.解:设这份快餐含有x克的蛋白质,则这份快餐含有4x克的碳水化合物,根据题意,得x+4x≤400×70%,解得x≤56.答:这份快餐最多含有56克的蛋白质.12.某蔬菜加工厂承担出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由蔬菜加工厂租赁机器自己加工制作这种纸箱,机器租赁费按生产纸箱数收取.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.假设你是决策者,你认为应该选择哪种方案?并说明理由.解:设纸箱的个数为x,则当两种方案费用一样时,4x=2.4x+16000,解得x=10000;当方案一费用低时,4x<2.4x+16000,解得x<10000;当方案二费用低时,4x>2.4x+16000,解得x>10000.答:当需要纸箱的个数为10000时,两种方案都可以;当需要纸箱的个数小于10000时,方案一便宜;当需要纸箱的个数大于10000时,方案二便宜.综合题13.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?解:若按方案一购买更省钱,则有40x+3200<36x+3600.解得x<100.即当买的领带数少于100时,方案一付费较少.若按方案二购买更省钱,则有40x+3200>36x+3600.解得x>100.即当买的领带数超过100时,方案二付费较少;若40x+3200=36x+3600,解得x=100.即当买100条领带时,两种方案付费一样.第九章不等式与不等式组周周练(9.1~9.2)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.下列各式中,是一元一次不等式的是(C)A.5+4>8B.2x-11C.2x≤5D.x-3x≥02.下列数值中不是不等式5x≥2x+9的解的是(D)A.5B.4C.3D.23.(2017·六盘水)不等式3x+6≥9的解集在数轴上表示正确的是(C)4.(2017·杭州)若x+5>0,则(D)xD.-2x<12 A.x+1<0 B.x-1<0C.5<-12+x2x-15.下列解不等式3>5的过程中,出现错误的一步是(D)①去分母,得5(x+2)>3(2x-1);②去括号,得5x+10>6x-3;③移项,得5x-6x>-10-3;④系数化为1,得x>13.A.①B.②C.③D.④6.设a,b,c表示三种不同物体的质量,用天平秤两次,情况如图所示,则这三种物体的质量从小到大排列正确的是(A)A.c<b<aB.b<c<aC.c<a<bD.b<a<c7.(2017· 毕节)关于 x 的一元一次不等式m -2x11.若不等式(a -2)x <1 的两边同时除以 a -2 后变成 x> ,则 a 的取值范围是 a <2.3 ≤-2 的解集为 x ≥4,则 m 的值为(D)A.14B.7C.-2D.28.某射击运动员在一次比赛中(共 10 次射击,每次射击最多是 10 环),前 6 次射击共中 52 环.如果他要打破 89 环的记录,那么第 7 次射击不能少于(D)A.5 环B.6 环C.7 环D.8 环二、填空题(每小题 3 分,共 18 分)1 19.用不等式表示“y 的2与 5 的和是正数”为2y +5>0.2 7 1210.不等式3x +1<3x -3 的解集是 x > 5 .1a -212.不等式 3(x -1)≤5-x 的非负整数解有 3 个.13.某校规定期中考试成绩的 40%和期末考试成绩的 60%的和作为学生成绩总成绩.该校李红同学期中数学考了 85 分,她希望自己学期总成绩不低于 90 分,则她在期末考试中数学至少应得多少分?设她在期末应考 x 分,可列不等式为 40%×85+60%x ≥90.⎧x +2y =3,14.已知关于 x ,y 的方程组⎨的解满足不等式 x +y >3,则 a 的取值范围是 a >1. ⎩2x +y =6a三、解答题(共 50 分)15.(8 分)解下列不等式,并将其解集在数轴上表示出来.(1)8x -1≥6x +3;解:移项,得 8x -6x ≥3+1.合并同类项,得 2x ≥4.系数化为 1,得 x ≥2.其解集在数轴上表示为:6 . 16.(6 分)已知式子 1-3x∴3+ m >0.10x +1(2)2x -1<解:去分母,得 12x -6<10x +1.移项,得 12x -10x <1+6.合并同类项,得 2x <7.7系数化为 1,得x<2.其解集在数轴上表示为:2 与 x -2 的差是负数,求 x 的取值范围.解:∵1-3x2 与 x -2 的差是负数,1-3x ∴ 2 -(x -2)<0.解得 x >1.17.(6 分)已知关于 x 的方程 x +m =3(x -2)的解是正数,求 m 的取值范围.解:解方程 x +m =3(x -2),1得 x =3+2m.∵方程的解是正数,12∴m >-6,即 m 的取值范围是 m >-6.2-x18.(8分)已知:不等式3≤2+x.(1)解该不等式,并把它的解集表示在数轴上;(2)若实数a满足a>2,说明a是不是该不等式的解.解:(1)2-x≤3(2+x),2-x≤6+3x,-4x≤4,x≥-1.解集表示在数轴上如下:(2)∵a>2,不等式的解集为x≥-1,而2>-1,∴a是该不等式的解.19.(10分)(2017·贵港)某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?解:(1)设甲队胜了x场,则负了(10-x)场,根据题意,得2x+10-x=18,解得x=8.则10-x=2.答:甲队胜了8场,负了2场.(2)设乙队在初赛阶段胜a场,根据题意,得2a+(10-a)>15,解得a>5.答:乙队在初赛阶段至少要胜6场.20.(12分)某市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务.甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而制版费900元六折优惠.且甲、乙两厂都规定:一次印刷数至少是500份.如何根据印刷的数量选择比较合算的方案?如果这个中学要印制2000份录取通知书,那么应选择哪个厂?需要多少费用?解:设印刷数量为x份,则当1.2x+900=1.5x+540,此时x=1200.∴当印刷数量为1200份时,两个印刷厂费用一样,二者任选其一.当1.2x+900<1.5x+540,此时x>1200.∴当印刷数量大于1200份时,选择甲印刷厂费用少,比较合算.当1.2x+900>1.5x+540,此时500≤x<1200.∴当印刷数量大于或等于500且小于1200份时,选择乙印刷厂费用少,比较合算.当印制2000份时,选择甲印刷厂比较合算,所需费用为1.2×2000+900=3300(元).∴如果要印制2000份录取通知书,应选择甲印刷厂,需要3300元.x+1>x⎪⎩⎪⎩2第九章不等式与不等式组9.3一元一次不等式组基础题知识点1一元一次不等式组1.下列不等式组中,是一元一次不等式组的是(A)⎧x>2⎧x+1>0A.⎨B.⎨⎩x<-3⎩y-2<0⎧3x-2>0⎧⎪3x-2>0C.⎨D.⎨1⎩(x-2)(x+3)>0知识点2解一元一次不等式组2.如图表示下列四个不等式组中其中一个的解集,这个不等式组是(D)⎧x≥2⎧x≤2⎧x≥2⎧x≤2A.⎨B.⎨C.⎨D.⎨⎩x>-3⎩x<-3⎩x<-3⎩x>-3⎧3x-6<0,3.下列四个数中,为不等式组⎨的解的是(C)⎩3+x>3A.-1B.0C.1D.2⎧⎪2x>x-1,4.(2017·湖州)一元一次不等式组⎨1的解集是(C)x≤1A.x>-1B.x≤2C.-1<x≤2D.x>-1或x≤2⎧2x+9≥3,5.(2017·德州)不等式组⎨1+2x的解集是(B)⎩3>x-1A.x≥-3B.-3≤x<4C.-3≤x<2D.x>4⎧x+1>2,6.(2017·自贡)不等式组⎨的解集表示在数轴上正确的是(C)⎩3x-4≤2⎧2x-1>x+1,7.(2017·襄阳)不等式组⎨的解集为2<x≤3.⎩x+8≥4x-1⎧x+1≥2,①8.(2017·天津)解不等式组:⎨⎩5x≤4x+3.②请结合题意填空,完成本题的解答.(1)解不等式①,得x≥1;(2)解不等式②,得x≤3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为1≤x≤3.9.解不等式组:⎧x-3<1,①(1)⎨⎩4x-4≥x+2;②解:解不等式①,得x<4.解不等式②,得x≥2.∴不等式组的解集为2≤x<4.⎧⎪1 x -6≤1-3x ,⎧x -1>0,①(2)(2016· 郴州)⎨⎩3(x -1)<2x.②解:解不等式①,得 x >1.解不等式②,得 x <3.∴不等式组的解集是 1<x <3.知识点 3 一元一次不等式组的运用10.已知点 P(3-m ,m -1)在第二象限,则 m 的取值范围在数轴上表示正确的是(A)⎧x +1<2a ,11.已知不等式组⎨的解集是 2<x <3,则 a =2,b =1. ⎩x -b >1中档题⎧2x +1>0,12.一元一次不等式组⎨的解集中,整数解的个数是(C) ⎩x -5≤0A.4B.5C.6D.75 13.(2017· 鄂州)对于不等式组⎨3下列说法正确的是(A) ⎪⎩3(x -1)<5x -1,7A.此不等式组的正整数解为 1,2,3;B.此不等式组的解集为-1<x ≤6;C.此不等式组有 5 个整数解;D.此不等式组无解。
【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)

【精选】人教版七年级下册数学第九章《不等式与不等式组》测试卷(含答案)一、选择题(每题3分,共30分)1.下列各式中,是一元一次不等式的是( )A.x2≥0B.2x-1C.2y≤8D.1x-3x>02.已知a,b,c,d是实数,若a>b,c=d,则( )A.a+c>b+dB.a+b>c+dC.a+c>b-dD.a+b>c-d3.下列说法中正确的是( )A.y=3是不等式y+4<5的解B.y=3是不等式3y≤11的解集C.不等式2y<7的解集是y=3D.y=2是不等式3y≥6的解4.[2023·安徽]在数轴上表示不等式x-12<0的解集,正确的是( )A. B.C. D.5.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围是( )A.-1<m<3B.1<m<3C.-3<m<1D.m>-16.(母题:教材P130习题T3)不等式组{2x>3x,x+4>2的整数解是( )A.0B.-1C.-2D.17.解不等式2x-12-5x+26-x≤-1,去分母,得( )A.3(2x-1)-5x+2-6x≤-6B.3(2x-1)-(5x+2)-6x≥-6C.3(2x-1)-(5x+2)-6x≤-6D.3(2x-1)-(5x+2)-x≤-18.已知关于x的不等式组{x-a≥b,2x-a≤2b+1的解集是3≤x≤5,则ba的值是( )A.-2B.-12C.-4D.29.春到人间,绿化争先.为增强师生的环境保护意识,提升学生的劳动实践能力,某学校开展了以“建绿色校园,树绿色理想”为主题的植树活动,决定用不超过4 200元购买甲、乙1 / 82 / 8两种树苗共100棵,已知甲种树苗每棵45元,乙种树苗每棵38元,则至少可以购买乙种树苗( )A.42棵B.43棵C.57棵D.58棵10.[2023·重庆八中期末](多选题)已知关于x 的不等式组{x -2(x -1)<3,2k +x 7≥x 有且只有两个整数解,则下列四个数中符合条件的整数k 的值有( )A.3B.4C.5D.6二、填空题(每题3分,共24分)11.(母题:教材P115练习T1)x 的12与5的差不小于3,用不等式可表示为 . 12.在2022卡塔尔世界杯期间,以吉祥物拉伊卜为主题元素的纪念品手办、毛绒公仔深得广大球迷喜爱.某官方授权网店销售的手办每个售价200元,毛绒公仔每个售价40元.小熙打算在该网店购买手办和毛绒公仔共10个送同学,总费用不超过1 500元,若设购买手办x 个,则可列不等式为 .13.不等式2x +3<-1的解集为 .14.[2023·清华附中期中]若关于x 的不等式组{2x -5<0,x -a >0有且仅有一个整数解x =2,则实数a 的取值范围是 .15.已知[x ]表示不超过x 的最大整数,例:[4.8]=4,[-0.8]=-1.现定义{x }=x -[x ],例:{1.5}=1.5-[1.5]=0.5,则{3.9}+{-1.8}-{1}= .16.[2023·泸州]关于x ,y 的二元一次方程组{2x +3y =3+a ,x +2y =6的解满足x +y >2√2,写出a 的一个整数值为 .17.[2022·达州]关于x 的不等式组{-x +a <2,3x -12≤x +1恰有3个整数解,则a 的取值范围是 .18.为了响应国家低碳生活的号召,更多的市民放弃开车选择自行车出行,市场上的自行车销量也随之增加,某种品牌自行车专卖店抓住商机,搞促销活动对原进价为800元,标价为1 000元的某款自行车进行打折销售,若要保持利润率不低于5%,则这款自行车最多可打 折.。
新七年级数学下册第九章《不等式与不等式组》单元综合练习题(含答案)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( )A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( )A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个 5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( )A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( ) A .m =2 B .m >2 C .m <2 D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( )A. 30x-45≥300B. 30x+45≥300C. 30x-45≤300D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( ) A .40 B .45 C .51 D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1 D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个.12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 . 14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 .15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 .三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm.(1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1. (1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案:一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B二、填空题:11、312、 ≤a≤13、a≥214、515、40%×85+60%x≥90三、解答题:16、(1)4×s 0.8>100. (2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-b a=1. ∴b=-a ,b >0.∴不等式by >a 的解集为y >a b=-1, 即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2. (2)∵2m -mx 2>12x -1,∴2m-mx >x -2. ∴-mx -x >-2-2m.∴(m+1)x <2(1+m).∵该不等式有解,∴m+1≠0,即m≠-1.当m >-1时,不等式的解集为x <2;当x <-1时,不等式的解集为x >2.19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算.20、(1)解不等式①,得x <52人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章 不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是( )A .B .C .D .2.若a >b ,则下列各式中一定成立的是( )A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b 3.如果 的解集是 ,那么 的取值范围是( )A .B .C .D .4.如图,天平左盘中物体A 的质量为 ,,天平右盘中每个砝码的质量都是1g,则 的取值范围在数轴上可表示为( )A .B .C .D .5.已知不等式组有解,则 的取值范围为( ) A .a>-2 B .a≥-2 C .a<2 D .a≥26.将不等式组的解集在轴上表示出来,应是( ) A . B .C .D .7.不等式组>的整数解的个数为()A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B13.﹣9<x≤﹣314.>15.3组.16.317.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版七年级数学下册:第九章《不等式与一次不等式组》单元测试人教版七年级数学下册:第九章不等式及不等式组单元测试(时间:60分钟,满分:100分)一、选择题(每题3分,共24分)1.当1≤x≤2时,ax+2>0,则a 的取值范围是( ).A .a >﹣1B .a >﹣2C .a >0D .a >﹣1且a≠02.若不等式组12x x k<≤⎧⎨>⎩ 有解,则k 的取值范围是( ).A.2k <B. 2k ≥C.1k <D. 12k ≤<3.已知,a b 为非零有理数,下面四个不等式组中,解集有可能为22x -<<的不等式组是( ).A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩4.不等式组9511x x x m +<+⎧⎨>+⎩的解集是2>x ,则m 的取值范围是( ).A.2≤mB. 2≥mC.1≤mD. 1>m5.不等式组()()⎪⎩⎪⎨⎧≤--+<--+-1213128313x x x x 的解集应为( ). A 、2-<x B 、722≤<-x C 、12≤<-x D 、2-<x 或x ≥16.如图,用两根长度均为Lcm的绳子,分别围成一个正方形和圆.则围成的正方形和圆的面积比较().A.正方形的面积大B.圆的面积大C.一样大D.根据L的变化而变化7.某商场的老板销售一种商品,他要以利润不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售().A.80元B.100元 C.120元D.160元8. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A.5 B.4 C.3 D.2二、填空题(每题5分,共40分)9.已知关于x的不等式组的整数解共有个,则的取值范围为.10.已知方程组⎩⎨⎧=+=-7325ayxyax的解满足⎩⎨⎧<>yx,则a的取值范围.11. 若不等式组⎩⎨⎧->+<121mxmx无解,则m的取值范围是.12.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打折.13.已知关于x的方程3k-5x=-9的解是非负数,求k的取值范围 .14.如果关于x的不等式组9080x ax b-≥⎧⎨-<⎩的正整数解仅为1,2,3,则a的取值范围是,b的取值范围是 .15. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .16.若不等式组114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a 的取值范围 . 三、解答题(每题12分,共36分) 17.已知x 满足⎪⎩⎪⎨⎧3)12(24213120)93(33)62(18)3(35-<--->---+-x x x x x x ,化简|x -3|+|2x -1| . 18.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?19. 今年春季我国西南地区发生严重旱情,为了保障人畜饮水安全,某县急需饮水设备12台,现有甲、乙两种设备可供选择,其中甲种设备的购买费用为4000元/台,安装及运输费用为600元/台;乙种设备的购买费用为3000元/台,安装及运输费用为800元/台.若要求购买的费用不超过40000元,安装及运输费用不超过9200元,则可购买甲、乙两种设备各多少台?【答案与解析】一.选择题1. 【答案】A ;【解析】当x=1时,a+2>0解得:a >﹣2;当x=2,2a+2>0,解得:a >﹣1,∴a 的取值范围为:a >﹣1.2. 【答案】A ;【解析】画数轴进行分析.3. 【答案】D ;【解析】由选项及解集可得a b 、一正一负,不防设a 正b 负代入选项验证.4. 【答案】C ;【解析】解第一个不等式得x >2,由题意可得1m +≤2,所以m ≤1.5. 【答案】C ;【解析】解第一个不等式得2x >-,解第二个不等式得1x ≤,所以不等式组的解集为21x -<≤.6. 【答案】B ;7. 【答案】C ;【解析】解:设降价x 元时商店老板才能。
人教版2017-2018学年七年级下册数学第9章不等式与不等式组单元测试卷及答案

《第9章不等式与不等式组》一、选择题1.下列不等式变形正确的是()A.由3x﹣1>2得3x>1 B.由﹣3x<6得x<﹣2C.由>0得y>7 D.由4x>3得x>2.下列各不等式中,错误的是()A.若a+b>b+c,则a>c B.若a>b,则a﹣c>b﹣cC.若ab>bc,则a>c D.若a>b,则2c+a>2c+b3.在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.4.已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc二、填空题6.写出一个解集为x≥﹣2的一元一次不等式:.7.已知y=2x+2,要使y≥x,则x的取值范围为.三、解答题8.已知不等式3x﹣a≤0的正整数解恰是1,2,3,求a的取值范围.9.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.x﹣7>8.10.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.3x<2x+111.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.>6.12.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.﹣4x≥3.13.某长方体形状的容器长5cm,宽3cm,高8cm.容器内原有水的高度为2cm,现准备向它继续注水,用V(单位:cm3)表示新注入水的体积,写出V的取值范围.14.若x<y,比较3x﹣7与3y﹣7的大小,并说明理由.15.长跑比赛中,张华跑在前面,在离终点100m时他以4m/s的速度向终点冲刺,在他身后8m的李明需以多快的速度同时开始冲剌,才能够在张华之前到达终点?16.如果关于x的不等式k﹣x+6>0的正整数解为1、2、3,那么k的取值范围是多少?17.有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,求正整数x,y的值.《第9章不等式与不等式组》参考答案与试题解析一、选择题1.下列不等式变形正确的是()A.由3x﹣1>2得3x>1 B.由﹣3x<6得x<﹣2C.由>0得y>7 D.由4x>3得x>【考点】不等式的性质.【分析】根据不等式的性质进行一一判断.【解答】解:A、在不等式3x﹣1>2的两边同时加上1,不等式仍成立,即3x >3,故本选项错误;B、在不等式﹣3x<6的两边除以﹣3,不等号方向改变,即x>﹣2,故本选项错误;C、在不等式>0的两边同时乘以7,不等式仍成立,即y>0,故本选项错误;D、由4x>3的两边同时除以4,不等式仍成立,即x>,故本选项正确;故选:D.【点评】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.下列各不等式中,错误的是()A.若a+b>b+c,则a>c B.若a>b,则a﹣c>b﹣cC.若ab>bc,则a>c D.若a>b,则2c+a>2c+b【考点】不等式的性质.【分析】根据不等式的性质分析判断.【解答】解:A、若a+b>b+c,不等式两边同时减去b,不等号的方向不变,则a>c正确;B、若a>b,不等式两边同时加上c,不等号的方向不变,则a﹣c>b﹣c正确;C、若ab>bc,不等式两边同时除以b,而b的符号不确定,当b<0时,不等号的方向改变,则a>c错误;D、若a>b,不等式两边同时加上2c,不等号的方向不变,则2c+a>2c+b正确.故选C.【点评】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.在数轴上表示不等式x≥﹣2的解集,正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】根据在数轴上表示不等式解集的方法利用排除法进行解答.【解答】解:∵不等式x≥﹣2中包含等于号,∴必须用实心圆点,∴可排除A、B,∵不等式x≥﹣2中是大于等于,∴折线应向右折,∴可排除D.故选:C.【点评】本题考查的是在数轴上表示不等式解集的方法,即“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.4.已知a>b,若c是任意实数,则下列不等式中总是成立的是()A.a+c<b+c B.a﹣c>b﹣c C.ac<bc D.ac>bc【考点】不等式的性质.【分析】根据不等式的性质,分别将个选项分析求解即可求得答案;注意排除法在解选择题中的应用.【解答】解:A、∵a>b,c是任意实数,∴a+c>b+c,故本选项错误;B、∵a>b,c是任意实数,∴a﹣c>b﹣c,故本选项正确;C、当a>b,c<0时,ac<bc,而此题c是任意实数,故本选项错误;D、当a>b,c>0时,ac>bc,而此题c是任意实数,故本选项错误.故选B.【点评】此题考查了不等式的性质.此题比较简单,注意解此题的关键是掌握不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.二、填空题6.写出一个解集为x≥﹣2的一元一次不等式:4x+8≥0.【考点】不等式的解集.【专题】开放型.【分析】写出满足题意不等式,满足解集为x≥﹣2即可.【解答】解:根据题意得:4x+8≥0,故答案为:4x+8≥0.【点评】此题考查了不等式的解集,答案不唯一,只要满足题意即可.7.已知y=2x+2,要使y≥x,则x的取值范围为x≥﹣2.【考点】解一元一次不等式.【专题】计算题.【分析】将y=2x+2代入已知不等式,求出x的范围即可.【解答】解:将y=2x+2代入y≥x,得:2x+2≥x,解得:x≥﹣2,则x的取值范围是x≥﹣2,故答案为:x≥﹣2.【点评】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.三、解答题8.已知不等式3x﹣a≤0的正整数解恰是1,2,3,求a的取值范围.【考点】一元一次不等式的整数解.【分析】先解不等式,再画出数轴即可直观解答.【解答】解:3x﹣a≤0,移项得,3x≤a,系数化为1得,x≤.∵不等式3x﹣a≤0的正整数解恰是1,2,3,∴3≤x<4,∴3≤<4时,即9≤a<12时,不等式3x﹣a≤0的正整数解恰是1,2,3.故a的取值范围是9≤a<12.【点评】此题是一道根据整数解逆推不等式常数项取值范围的题目,借助图形可以直观的解答.9.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.x﹣7>8.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】移项、合并同类项即可求解.【解答】解:移项,得:x>8+7,合并同类项,得:x>15.将解集在数轴上表示出来为:【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.10.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.3x<2x+1【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】移项、合并同类项即可求解.【解答】解:移项,得:3x﹣2x<1,合并同类项,得:x<1.将解集在数轴上表示出来为:.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.>6.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】系数化成1即可求解.【解答】解:系数化为1得:x>9.将解集在数轴上表示出来为:.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.12.利用不等式的性质解下列不等式,并将解集在数轴上表示出来.﹣4x≥3.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】计算题.【分析】将x系数化为1,求出不等式的解集,表示在数轴上即可.【解答】解:﹣4x≥3,解得:x≤﹣,表示在数轴上,如图所示:【点评】此题考查了解一元一次不等式,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.13.某长方体形状的容器长5cm,宽3cm,高8cm.容器内原有水的高度为2cm,现准备向它继续注水,用V(单位:cm3)表示新注入水的体积,写出V的取值范围.【考点】一元一次不等式的应用.【专题】计算题.【分析】根据水的总体积不能超过容器的总体积.列出不等式组求解.【解答】解:根据题意列出不等式组:,解得:0≤v≤90.故V的取值范围是0≤v≤90.【点评】考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式组.14.若x<y,比较3x﹣7与3y﹣7的大小,并说明理由.【考点】不等式的性质.【分析】根据不等式的性质进行解答.【解答】解:3x﹣7<3y﹣7.理由如下:在不等式x<y的两边同时乘以3,不等式仍成立,即3x<3y,在不等式的两边同时减去7,不等式仍成立,即3x﹣7<3y﹣7.【点评】本题考查了不等式的基本性质.(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.15.长跑比赛中,张华跑在前面,在离终点100m时他以4m/s的速度向终点冲刺,在他身后8m的李明需以多快的速度同时开始冲剌,才能够在张华之前到达终点?【考点】一元一次不等式的应用.【专题】行程问题.【分析】设这时李明需以x米/秒的速度进行以后的冲刺,根据离终点100米时,在张华身后8m的李明在张华之前到达终点,列不等式求解即可.【解答】解:设这时李明需以x米/秒的速度进行以后的冲刺,依题意有x>100+8,解得x>4.32.答:在他身后8m的李明需以4.32米/秒的速度同时开始冲剌,才能够在张华之前到达终点.【点评】本题考查一元一次不等式的应用,关键是设出速度,以路程差作为等量关系列出不等式.16.如果关于x的不等式k﹣x+6>0的正整数解为1、2、3,那么k的取值范围是多少?【考点】一元一次不等式的整数解.【专题】计算题.【分析】表示出不等式的解集,根据正整数解确定出k的范围即可.【解答】解:不等式变形得:x<k+6,∵不等式的正整数解为1、2、3,∴3<k+6≤4,解得:﹣3<k≤﹣2.【点评】此题考查了一元一次不等式的整数解,列出关于k的不等式是解本题的关键.17.有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,求正整数x,y的值.【考点】一元一次不等式组的应用.【专题】计算题.【分析】根据金属棒的长度是40mm,则可以得到7x+9y≤40,再根据x,y都是正整数,即可求得所有可能的结果,分别计算出省料的长度即可确定.【解答】解:根据题意得:7x+9y≤40,则x≤,∵40﹣9y≥0且y是非负整数,∴y的值可以是:1或2或3或4.当y=1时,x≤,则x=4,此时,所剩的废料是:40﹣1×9﹣4×7=3mm;当y=2时,x≤,则x=3,此时,所剩的废料是:40﹣2×9﹣3×7=1mm;当y=3时,x≤,则x=1,此时,所剩的废料是:40﹣3×9﹣7=6mm;当y=4时,x≤,则x=0(舍去).则最小的是:x=3,y=2.【点评】本题考查了不等式的应用,正确确定x,y的所有取值情况是关键.。
人教版七年级数学下册 《第9章 不等式与不等式组》单元测试试卷 含答案解析02

人教版七年级下册数学《第9章不等式与不等式组》单元测试一、选择题1.已知a<b,则下列选项错误的是()A.a+2<b+2B.a﹣1<b﹣1C.<D.﹣3a<﹣3b2.不等式(a+1)x>a+1的解集是x<1,则a必满足()A.a<0B.a>﹣1C.a<﹣1D.a≤13.下列说法中,错误的是()A.不等式x<5有无数多个整数解B.不等式x>﹣5的负整数解有4个C.不等式﹣2x<8的解集是x<﹣4D.﹣10是不等式2x<﹣8的一个解4.满足不等式,﹣2x+3≤7的整数解有()A.6个B.4个C.5个D.无数个5.已知关于x的一元一次不等式组有2个整数解,若a为整数,则a的值为()A.5B.6C.6或7D.7或86.若不等式组无解,则实数a的取值范围是()A.a≥﹣1B.a<﹣1C.a≤1D.a≤﹣17.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120D.10x﹣5(20﹣x)<120二、填空题8.若2a+6是非负数,则a的取值范围是.9.若x>y,则8﹣5x8﹣5y.(填“>”或“=”或“<”)10.不等式2x﹣m≤0的非负整数解只有3个,则m的取值范围是11.已知关于x的不等式组,解不等式①得;解不等式②得;若不等式组的整数解共4个,则m的取值范围是.12.若|﹣a|>﹣a,则a0.(请用“>,<,≥,≤或=”号填空)13.若方程组的解满足条件0<x+y<2,则k的取值范围是.14.已知a,b为实数,若不等式组的解集为﹣1<x<1,那么(a﹣1)(b﹣1)的值等于.15.关于x的不等式1+>+与关于x的不等式x+1>的解集相同,整数m 是,不等式的解集是.16.若关于x,y的方程组的解是一对负数,则|2m+1|﹣|﹣6m+2|=.三、解答题17.解不等式(组)(Ⅰ)解不等式5x﹣2≥3(x+1),并把它的解集在数轴上表示出来.(Ⅱ)解不等式组请结合题意填空,完成本题的解答.解不等式①,得;解不等式②,得;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为.18.若不等式2(x+1)﹣5<3(x﹣1)+4的最小整数解是方程的解,求代数式a2﹣2a﹣11的值.19.已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣5|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.20.某小区为了绿化环境,计划分两次购进A、B两种树苗,第一次分别购进A、B两种树苗30棵和15棵,共花费675元;第二次分别购进A、B两种树苗12棵和5棵,共花费265元.两次购进的A、B两种树苗价格均分别相同.(1)A、B两种树苗每棵的价格分别是多少元?解:设A种树苗每棵x元,B种树苗每棵y元根据题意列方程组,得:解这个方程组,得:答:.(2)若购买A、B两种树苗共31棵,且购买树苗的总费用不超过320元,则最多可以购买A种树苗多少棵?21.接种新冠病毒疫苗,建立全民免疫屏障,是战胜病毒的重要手段.北京科兴中维需运输一批疫苗到我市疾控中心,据调查得知,2辆A型冷链运输车与3辆B型冷链运输车一次可以运输600盒;5辆A型冷链运输车与6辆B型冷链运输车一次可以运输1350盒.(1)求每辆A型车和每辆B型车一次可以分别运输多少盒疫苗.(2)计划用两种冷链运输车共12辆运输这批疫苗,A型车一次需费用5000元,B型车一次需费用3000元.若运输物资不少于1500盒,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?参考答案一、选择题1.D2.C3.C4.C5.D6.D7.C 二、填空题8.a≥﹣3.9.<.10.4≤m<6.11.x<m;x≥3;6<m≤7.12.>.13.﹣4<k<614.6.15.m=7x>1.16.8m﹣1.三、解答题17.解:(Ⅰ)去括号,得:5x﹣2≥3x+3,移项,得:5x﹣3x≥3+2,合并同类项,得:2x≥5,系数化为1,得:x≥,将不等式解集表示在数轴上如下:(Ⅱ)解不等式①,得x<3;解不等式②,得x≥﹣;把不等式①和②的解集在数轴上表示出来:原不等式组的解集为﹣≤x<3.故答案为:x<3、x≥﹣、﹣≤x<3.18.解:解不等式2(x+1)﹣5<3(x﹣1)+4,得x>﹣4,∵大于﹣4的最小整数是﹣3,∴x=﹣3是方程的解.把x=﹣3代入中,得:,解得a=2.当a=2时,a2﹣2a﹣11=22﹣2×2﹣11=﹣11.∴代数式a2﹣2a﹣11的值为﹣11.19.解:(1)解方程组得:,∵x为非正数,y为负数,∴,解得﹣2<m≤3;(2)∵﹣2<m≤3,∴m﹣5<0,m+2>0,则原式=5﹣m﹣m﹣2=3﹣2m(3)由不等式2mx+x<2m+1的解为x>1,知2m+1<0;所以,又因为﹣2<m<3,所以,因为m为整数,所以m=﹣1.20.解:(1)设A种树苗每棵x元,B种树苗每棵y元,根据题意列方程组,得:,解这个方程组,得:.答:A种树苗每棵20元,B种树苗每棵5元.故答案为:;;A种树苗每棵20元,B种树苗每棵5元.(2)设购买A种树苗m棵,则购买B种树苗(31﹣m)棵,依题意,得:20m+5(31﹣m)≤320,解得:m≤11.答:最多可以购买A种树苗11棵.21.解:(1)设每辆A型车和每辆B型车一次可以分别运输x盒疫苗、y盒疫苗,由题意可得,,解得,答:每辆A型车和每辆B型车一次可以分别运输150盒疫苗、100盒疫苗;(2)设A型车a辆,则B型车(12﹣a)辆,由题意可得,,解得6≤a<9,∵a为正整数,∴a=6,7,8,∴共有三种运输方案,方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A型车8辆,B型车4辆,∵A型车一次需费用5000元,B型车一次需费用3000元,计划用两种冷链运输车共12辆运输这批疫苗,∴A型车辆数越少,费用越低,∴方案一所需费用最少,此时的费用为5000×6+3000×6=48000(元),答:方案一:A型车6辆,B型车6辆,方案二:A型车7辆,B型车5辆,方案三:A 型车8辆,B型车4辆,其中方案一所需费用最少,最少费用是48000元.。
人教版七年级下册数学第九章 不等式与不等式组含答案(附答案)

人教版七年级下册数学第九章不等式与不等式组含答案一、单选题(共15题,共计45分)1、用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当未进入木块的钉子长度足够时,每次钉入木块的钉子长度是前一次的.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后铁钉进入木块的长度是2 cm,若铁钉总长度为a cm,则a满足( )A.2.5<a<4B.2.5≤a<3.5C.3≤a<4D.3<a≤3.52、不等式组的解集在数轴上表示正确的是()A. B. C.D.3、若a<b<0,则下列式子:①a+1<b+2;② >1;③a+b<ab;④<中,正确的有()A.1个B.2个C.3个D.4个4、关于的不等式组的所有整数解的积为2,则的取值范围为()A. B. C. D.5、在数学表达式:(1)﹣3<0 (2)3x+5>0 (3)x2﹣6(4)x=﹣2 (5)y≠0(6)x≥50中,不等式的个数是()A.2个B.3个C.4个D.5个6、一元一次不等式组的解集为x>a,且a≠-1,则a取值范围是().A.a>-1B.a<-1C.a>0D.a<07、点A(m﹣4,1﹣2m)在第三象限,则m的取值范围是()A.m>B.m<4C. <m<4D.m>48、点(-7,-2m+1)在第三象限,则m的取值范围是()A. B. C. D.9、关于x的不等式组只有5个整数解,则a的取值范围是()A.﹣6<aB.﹣6≤ aC.﹣6<aD.﹣6≤ a10、解不等式组的解集在数轴上表示正确的是()A. B. C.D.11、已知满足方程组,若关于的不等式组的解集为,则的取值范围为()A. B. C. D.12、在平面直角坐标系中,点(a﹣3,2a+1)在第二象限内,则a的取值范围是()A.﹣3<a<B. <a<3C.﹣3<a<﹣D.- <a<313、若a>b,则下列结论正确的是()A.a+2<b+2B.a-5<b-5C. <D.3a>3b14、下面给出5个式子:①3>0;②4x+3y>0;③x;④x﹣1;⑤x+2≤3.其中不等式有()A.2个B.3个C.4个D.5个15、已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为()A. B. C. D.二、填空题(共10题,共计30分)16、不等式组的所有整数解的积为________ .17、当x________时,代数式的值不小于零.18、不等式组的解为________.19、若关于x的不等式组有且只有三个整数解,则m的取值范围是________.20、不等式2x-4>0的解集是________21、若关于x的不等式|x+a|<b的解集为2<x<4,则ab的值是________。
人教版初中数学七年级下册第9章《不等式与不等式组》测试题及答案
人教版初中数学七年级下册第9章《不等式与不等式组》测试题(一)一、选择题:1,下列各式中,是一元一次不等式的是( ) A.5+4>8 B.2x -1 C.2x ≤5D.1x-3x ≥0 2,已知a<b,则下列不等式中不正确的是( )A. 4a<4bB. a+4<b+4C. -4a<-4bD. a-4<b-4 3,下列数中:76, 73,79, 80, 74.9, 75.1, 90, 60,是不等式23x >50的解的有( ) A.5个 B.6个 C.7个 D.8个 4,若t>0,那么12a+12t 与a 的大小关系是( ) A .2a +t>2a B .12a+t>12a C .12a+t ≥12a D .无法确定5,如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等 则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b6,若a<0关于x 的不等式ax+1>0的解集是( )A .x>1a B .x<1a C .x>-1a D .x<-1a7,不等式组31027x x +>⎧⎨<⎩的整数解的个数是( )A .1个B .2个C .3个D .4个8,从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲到乙,则他用的时间大约为( )A 1小时~2小时 B2小时~3小时 C3小时~4小时 D2小时~4小时9,某种出租车的收费标准:起步价7元(即行使距离不超过3千米都须付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( )A .5千米 B.7千米 C.8千米 D.15千米 10,在方程组2122x y mx y +=-⎧⎨+=⎩中若未知数x 、y 满足x+y ≥0,则m 的取值范围在数轴上表示应是( )二、填空题11,不等号填空:若a<b<0 ,则5a -5b -;a1 b 1;12-a 12-b .12,满足2n-1>1-3n 的最小整数值是________.13,若不等式ax+b<0的解集是x>-1,则a 、b 应满足的条件有______.14,满足不等式组122113x x x -⎧>-⎪⎪⎨-⎪-≥⎪⎩的整数x 为__________.15,若|12x --5|=5-12x -,则x 的取值范围是________.16,某种品牌的八宝粥,外包装标明:净含量为330g ±10g ,表明了这罐八宝粥的净含量x 的范围是 .17,小芳上午10时开始以每小时4km 的速度从甲地赶往乙地,•到达时已超过下午1时,但不到1时45分,则甲、乙两地距离的范围是_________. 18,代数式x-1与x-2的值符号相同,则x 的取值范围________.三、解答题19,解不等式组,并把它的解集在数轴上表示出来.(1)9-4(x-5)<7x+4; (2)0.10.81120.63x x x ++-<-;(3)523(1),317;22x x x x ->+⎧⎪⎨-≤-⎪⎩ (4)6432,2111.32x x x x +≥+⎧⎪+-⎨>+⎪⎩20,代数式213 1--x的值不大于321x-的值,求x的范围21,方程组3,23x yx y a-=⎧⎨+=-⎩的解为负数,求a的范围.22,已知,x满足3351,11.4x xx+>-⎧⎪⎨+>-⎪⎩化简:52++-xx.23,已知│3a+5│+(a-2b+52)2=0,求关于x的不等式3ax-12(x+1)<-4b(x-2)的最小非负整数解.24,是否存在这样的整数m,使方程组24563x y mx y m+=+⎧⎨-=+⎩的解x、y为非负数,若存在,求m•的取值?若不存在,则说明理由.25,有一群猴子,一天结伴去偷桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个.你能求出有几只猴子,几个桃子吗?参考答案一、1,C;2,C;3,A;4,A.解:不等式t>0利用不等式基本性质1,两边都加上12a得12a+t>12a.5,C.6,D.解:不等式ax+1>0,ax>-1,∵a<0,∴x<-1a因此答案应选D.7,D.解:先求不等式组解集-13<x<72,则整数x=0,1,2,3共4个.8,D;9,C.10,D.解:2122x y m x y+=-⎧⎨+=⎩①+②,得3x+3y=3-m,∴x+y=33m-,∵x+y≥0,∴33m-≥0,∴m≤3在数轴上表示3为实心点.射线向左,因此选D.二、11,>、>、<;12,1.解:先求解集n>25,再利用数轴找到最小整数n=1.13,a<0,a=b 解析:ax+b<0,ax<-b,而不等式解集x>-1不等号改变了方向.因此可以确定运用不等式性质3,所以a<0,而-ab=-1,∴b=a.14,-2,-1,0,1 解析:先求不等式组解集-3<x≤1,故整数x=0,1,-1,-2.15,x≤11 解析:∵│a│=-a时a≤0,∴12x--5≤0,解得x≤11.16,320≤x≤340.17,(12~15)km.解:设甲乙两地距离为xkm,依题意可得4×(13-10)<x<4•×(134560-10),即12<x<15.18,x>2或x<1 解析:由已知可得10102020 x xx x->-<⎧⎧⎨⎨->-<⎩⎩或者.三、19,(1)9-4(x-5)<7x+4.解:去括号9-4x+20<7x+4,移项合并11x>25,化系数为1,x>2511.(2)0.10.81120.63x x x++-<-.解:811263x x x++-<-,去分母 3x-(x+8)<6-2(x+1),去括号 3x-x-8<6-2x-2,移项合并 4x<12,化系数为1,x<3.(3)523(1)31722x xxx->+⎧⎪⎨-≤-⎪⎩解:解不等式①得 x>52,解不等式②得 x≤4,∴不等式组的解集52<x ≤4. (4)6432211132x x x x+≥+⎧⎪+-⎨>+⎪⎩解:解不等式①得x ≥-23,解不等式②得x>1,∴不等式组的解集为x>1. 20,57≥x ;21,a<-3;22,7; 23,解:由已知可得535035520212a a ab b ⎧+==-⎧⎪⎪⎪⎨⎨-+=⎪⎪=⎩⎪⎩解得代入不等式得-5x-12(x+1)<-53(x-2),解之得 x>-1,∴最小非负整数解x=0.24,解:24563x y m x y m +=+⎧⎨-=+⎩得11139529m x m y +⎧=⎪⎪⎨-⎪=⎪⎩∵x ,y 为非负数00x y ≥⎧⎨≥⎩∴1113095209m m +⎧≥⎪⎪⎨-⎪≥⎪⎩解得-1311≤m ≤52,∵m 为整数,∴m=-1,0,1,2.答:存在这样的整数m=-1,0,1,2,可使方程24563x y m x y m +=+⎧⎨-=+⎩的解为非负数.点拨:先求到方程组的解,再根据题意设存在使方程组的解00x y ≥⎧⎨≥⎩的m ,•从而建立关于m 为未知数的一元一次不等式组,求解m 的取值范围,选取整数解.25,设有x 只猴子,则有(3x+59)只桃子,根据题意得:0<(3x+59)-5(x-1)<5,解得29.5<x<32,因为x 为整数,所以x=30或x=31,当x=30时,(3x+59)=149,当x=31时,(3x+59)=152.答:有30只猴子,149只桃子或有31只猴子,152只桃子.1. 将不等式组13x x ⎧⎨⎩≥≤的解集在数轴上表示出来,应是 ( )2. 下面给出的不等式组中①23x x >-⎧⎨<⎩②020x x >⎧⎨+>⎩③22124x x x ⎧>+⎪⎨+>⎪⎩④307x x +>⎧⎨<-⎩⑤101x y x +>⎧⎨-<⎩其中是一元一次不等式组的个数是( ) A.2个B.3个C.4个D.5个3. 不等式组24030x x ->⎧⎨->⎩,的解集为( )A.23x << B. 3x > C. 2x <D. 23x x ><-或4. 下列不等式中哪一个不是一元一次不等式( )A.3x >B.1y y -+>C.12x> D.21x >5. 下列关系式是不等式的是( )A.25x += B.2x + C.25x +>D.235+=6. 若使代数式312x -的值在1-和2之间,x 可以取的整数有( ) A.1个B.2个C.3个D.4个7. 不等式组2030x x -<⎧⎨->⎩的正整数解是( )A.0和1 B.2和3 C.1和3 D.1和2 8. 下列选项中,同时适合不等式57x +<和220x +>的数是( )A.3 B.3- C.1- D.19. 不等式211133x ax +-+>的解集是53x <,则a 应满足( ) A.5a > B.5a = C.5a >- D.5a =-10. a 是一个整数,比较a 与3a 的大小是( )C1DA3BA.3a a >B.3a a <C.3a a =D.无法确定二、填空题(每题3分,共30分) 11. 不等式(3)1a x ->的解集是13x a <-,则a 的取值范围 . 12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降 元出售商品.13. 一个两位数,十位数字与个位数字的和为6,且这个两位数不大于42,则这样的两位数有 ______个. 14. 若a b >,则22____ac bc .15. 关于x 的方程32x k +=的解是非负数,则k 的取值范围是 . 16. 若(1)20mm x++>是关于x 的一元一次不等式,则m 的取值是 .17. 关于x 的方程4132x m x -+=-的解是负数,则m 的取值范围 .18. 若0m n <<,则222x m x n x n >⎧⎪>-⎨⎪<⎩的解集为 .19. 不等式15x +<的正整数解是 .20. 不等式组⎩⎨⎧-<+<632a x a x 的解集是32+<a x ,则a 的取值 .三、解答题(21、22每小题8分,23、24第小题10分,共36分) 21. 解不等式5(1)33x x x +->+22. 解不等式组3(2)41214x x x x --⎧⎪⎨-<-⎪⎩≤23. 关于x ,y 的方程组322441x y k x y k +=+⎧⎨+=-⎩的解x ,y 满足x y >,求k 的取值范围.24.有学生若干人,住若干间宿舍,若每间住4人,则有20人无法安排住宿;若每间住8 人,则有一间宿舍不满也不空,问宿舍间数和学生人数分别是多少?25.喷灌是一种先进的田间灌水技术.雾化指标P是它的技术要素之一.当喷嘴的直径d(mm).喷头的工作压强为h(kPa)时.雾化指标P=100hd.如果树喷灌时要求3000≤P≤4000.若d=4mm.求h的范围.四、解答题(本题共2小题,每题12分,共24分)26.某同学在A,B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包的单价的4倍少8元.(1)求该同学看中的随身听和书包的单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样商品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?27.在“512大地震”灾民安置工作中,某企业接到一批生产甲种板材240002m和乙种板材120002m的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材302m或乙种板材202m .问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A B ,两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A 型板房和一间B 型板房所需板材问:这400间板房最多能安置多少灾民?参考答案:一、选择题:1. B2. B.3. A4. C.5. C.6. B7. D.8. D.9. B.10. D. 二、填空题:11. 3a <. 12. 450元. 13. 4个. 14. ≥. 15. 2k ≤. 16. 1m =.17. 3m <. 18. 无解. 19. 1,2,3. 20..a ≤ -9 三、解不等式(组):21. 2x >-. 22. 312x <≤ 23. 1k > 24.解:设宿舍间数为x ,学生人数为y. 由题意得⎪⎩⎪⎨⎧>--<--+=0)1(88)1(8204x y x y x y解得: 5 < x < 7∵x 是正整数 ∴ x = 6 故y=44 答:宿舍间数为6,学生人数为44 . 24.解:把d=4代入公式P=100h d 中得P=1004h,即P=25h ,又∵3000≤P≤4000,∴3000≤25h≤4000,120≤h≤160,故h 的范围为120~160(kPa )26. (1)随身听的单价为360元,书包单价为92元.(2)在超市A 购买更省钱. 27.(1)设安排x 人生产甲种板材,应安排80人生产甲种板材,60人生产乙种板材.(2)设建造A 型板房m 间,则建造B 型板房为(400)m -间,由题意有:5478(400)240002641(400)12000m m m m +-⎧⎨+-⎩≤≤,.解得300m ≥.又0400m ≤≤,300400m ∴≤≤.这400间板房可安置灾民58(400)33200w m m m =+-=-+. ∴当300m =时,w 取得最大值2300名.答:这400间板房最多能安置灾民2300名.。
人教版数学七年级下册 第九章 不等式与不等式组 单元测试(含答案)
人教版数学七年级下册 第九章 不等式与不等式组 单元测试(含答案)一、单选题(共有9道小题)1.一元一次不等式01≥-x 的解集在数轴上表示正确的是( )2.不等式10x +<的解集在数轴上表示正确的是( ).3.不等式组120x x>⎧⎨->⎩的解集在数轴上表示为( )B–112O A –112O D–1–21O C –112OA -1C-1D1B 1D –112OC –112O A –112O B –112O4.不等式组112<+≤-x 的解集,在数轴上表示正确的是( )5.若关于x 的不等式组的解表示在数轴上如图所示,则这个不等式组的解是() A .2x ≤ B .1x >C .12x ≤<D .12x <≤ 6.实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .c b c a ->-B .c b c a +<+C .bc ac >D .b cb a<7.不等式组()3225123x x x x +>+⎧⎪⎨-≤⎪⎩的最小整数解是( )A.-1B.0C.1D.28.不等式组221x x ≤⎧⎨+>⎩的最小整数解为( )A.-1B.0C.1D.2–1–2–31DO –1–2–31CO B–1–2–31O A–1–2–31O 21xO a b c9.使不等式12x -≥与378x -<同时成立的x 的整数值是( )A.3,4B.4,5C.3,4,5D.不存在二、填空题(共有6道小题)10.不等式240x -<的解集是____11.不等式组31231x x -⎧⎨+≥⎩<的解集是 .12.在实数范围内规定新运算“△”,其规则是:a △b =2a -b .已知不等式x △k ≥1的解集在数轴上如图表示,则k 的值是 .13.不等式组⎪⎩⎪⎨⎧>+->+x x x x 32-133475)1(2的解集为 14.已知关于x 的不等式组2132x x x m+⎧>-⎪⎨⎪<⎩的所有整数解的和是-7,则m 的取值范围是15.不等式213x ->的解集为_______.三、计算题(共有2道小题)16.解不等式组51,247.x x x -<⎧⎨+≤-⎩–1–21O17.解不等式:634+>-x x ,并把解集在数轴上表示出来。
新七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)(1)
人教版七年级数学下册第九章不等式与不等式组复习检测试题(有答案)一、选择题。
1.下列式子中,是不等式的有( ).①2x=7;②3x+4y;③-3<2;④2a-3≥0;⑤x>1;⑥a-b>1.A.5个B.4个C.3个D.1个2.若a<b,则下列结论不一定成立的是()A.a﹣1<b﹣1 B.2a<2b C.﹣>﹣D.a2<b23.不等式3x+2≥5的解集是()A.x≥1 B.x≥C.x≤1 D.x≤﹣14.已知不等式组,其解集在数轴上表示正确的是()A.B.C.D.5.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤76.不等式组的正整数解的个数是()A.5 B.4 C.3 D.27.已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<18.下列哪个选项中的不等式与不等式5x>8+2x组成的不等式组的解集为<x<5()A.x+5<0 B.2x>10 C.3x﹣15<0 D.﹣x﹣5>09.不等式组的最小整数解是()A.﹣1 B.0 C.1 D.210.已知:[x]表示不超过x的最大整数.例:[3.9]=3,[﹣1.8]=﹣2.令关于k的函数f(k)=[]﹣[](k 是正整数).例:f(3)=[]﹣[]=1.则下列结论错误的是()A.f(1)=0 B.f(k+4)=f(k)C.f(k+1)≥f(k)D.f(k)=0或1二.填空题1.不等式0103≤-x 的正整数解是_______________________.2.2≥x 的最小值是a ,6-≤x 的最大值是b ,则.___________=+b a3.把关于x 的不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是 . 4.若不等式组⎩⎨⎧><bx ax 的解集是空集,则,a b 的大小关系是_______________.5.若代数式3x -15的值不小于代数式1510x+的值,则x 的取值范围是__________.6.不等式组的解集为 .7.若x 为实数,则[x]表示不大于x 的最大整数,例如[1.6]=1,[π]=3,[﹣2.82]=﹣3等.[x]+1是大于x 的最小整数,对任意的实数x 都满足不等式[x]≤x <[x]+1.①利用这个不等式①,求出满足[x]=2x ﹣1的所有解,其所有解为 . 三、解答题1.解不等式组,并将解集在数轴上表示出来.2.求不等式组的正整数解.3.某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本. (1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?4.某中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?5.某学校准备购买若干台A型电脑和B型打印机.如果购买1台A型电脑,2台B型打印机,一共需要花费5900元;如果购买2台A型电脑,2台B型打印机,一共需要花费9400元.(1)求每台A型电脑和每台B型打印机的价格分别是多少元?(2)如果学校购买A型电脑和B型打印机的预算费用不超过20000元,并且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至多能购买多少台B型打印机?6.友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.参考答案:一、选择题。
七年级数学(下)(人教版)第9章 不等式与不等式组 检测题(含详解)
第九章 不等式与不等式组检测题〔时辰 :120分钟,总分值:100分〕一、选择 题〔共10小题,每题3分,总分值30分〕1.不等式的解集在数轴上表示 精确 的选项是〔 〕2.不等式-1<≤2在数轴上表示 精确 的选项是〔 〕3.解集在数轴上表示 为如以下图的不等式组是〔 〕A .B .C .D . 4.关于 的不等式2-≤1的解集如以下图,那么的取值是〔 〕A .0B .-3C .-2D .-15.将不等式组的解集在数轴上表示 出来,精确 的选项是〔 〕6.已经清楚 <,那么以下不等式中不精确 的选项是〔 〕A .4<4B .+4<+4C .-4<-4D .-4<-47.称心 -1<≤2的数在数轴上表示 为〔 〕A .B .C . D第4题图A .B .C .D .8.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,那么他用的时辰大年夜概为〔〕A.1小时~2小时 B.2小时~3小时C.3小时~4小时 D.2小时~4小时9.假设方程3(+1)+1=(3-)-5的解是负数,那么的取值范围是〔〕A.>-1.25 B.<-1.25 C.>1.25 D.<1.2510.某种出租车的收费标准:起步价7元〔即行驶距离不逾越3 km都需付7元车费〕,逾越3 km后,每增加 1 km,加收2.4元〔缺少 1 km按1 km计〕.某人乘这种出租车从甲地到乙地共付车费 19元,那么甲地到乙地行程的最大年夜值是〔〕A.5 km B.7 km C.8 km D.15 km二、填空题〔共8小题,每题3分,总分值24分〕11.当________时,不等式(2-)<8的解集为>.12.从小明家到黉舍的行程是2 400米,假设小明早上7点离家,要在7点30分到40分之间到达黉舍,设步行速度为米/分,那么可列不等式组为__________________,小明步行的速度范围是_________.13.假设 =,=,且>2>,那么的取值范围是________.14.已经清楚=3是方程-2=-1的解,那么不等式(2-)<的解集是.15.假设不等式组的解集是>3,那么的取值范围是.16.已经清楚关于的不等式组的整数解共有5个,那么的取值范围是.17.小明用100元钞票购得笔记本跟钢笔共30件,已经清楚每本笔记本2元,每支钢笔5元.那么小明最多能买支钢笔.18.某种商品的进价为800元,出售时标价为1 200元,后因由于该商品积压,市廛准备打折销售,但要保证利润率不低于5%,那么至多可打折.三、解答题〔共6小题,总分值46分〕19.(6分)解不等式组,并把它的解集表示在数轴上:20.〔8分〕已经清楚关于的方程的解为非负数,求的取值范围.21.〔8分〕国庆节时代,电器市场火爆.某市廛需要购进一批电视机跟洗衣机,按照市场调查,决定电视机进货量非常多于洗衣机的进货量的一半.电视机与洗衣机的进价跟售价如下表:类不电视机洗衣机进价〔元/台〕 1 800 1 500售价〔元/台〕 2 000 1 600方案购进电视机跟洗衣机共100台,市廛最多可筹集资金161 800元.〔1〕请你帮助市廛算一算有多少多种进货方案?〔不考虑除进价之外的其他费用〕〔2〕哪种进货方案待市廛销售购进的电视机与洗衣机终了后获得利润最多?并求出最多利润.〔利润=售价-进价〕22.〔8分〕今秋,某市白玉村水果喜获歉收,果农王灿收获枇杷20吨,桃子12吨.现方案租用甲、乙两种货车共8辆将这批水果全部运往当地销售,已经清楚一辆甲种货车可装枇杷4吨跟桃子1吨,一辆乙种货车可装枇杷跟桃子各2吨.〔1〕王灿怎么样安排甲、乙两种货车可一次性地运到销售地?有多少多种方案?〔2〕假设甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,那么果农王灿应选择哪种方案,使运输费最少?最少运费是多少多?23.〔8分〕2021年我市某县准备 20周年县庆,园林局部决定使用现有的3 490盆甲莳花草跟 2 950盆乙莳花草搭配两种园艺外型共50个摆放在迎宾大道两侧,已经清楚搭配一个种外型需甲莳花草 80盆,乙莳花草 40盆,搭配一个种外型需甲莳花草 50盆,乙莳花草 90盆.〔1〕某校九年级〔1〕班课外活动小组承接了谁人园艺外型搭配方案的方案,征询符合题意的搭配方案有多少多种?请你帮助方案出来.〔2〕假设搭配一个种外型的本钞票是800元,搭配一个种外型的本钞票是960元,试说明〔1〕中哪种方案本钞票最低?最低本钞票是多少多元?24.〔8分〕一经销商方案购进某品牌的A型、B型、C型三款共60部,每款至多要购进8部,且偏偏用完购机款61 000元.设购进A型部,B型部.三款的进价跟预售价如下表:〔1〕用含,的式子表示购进C型的部数;〔2〕求出与之间的函数关系式;〔3〕假设所购进全部售出,综合考虑各种因素,该经销商在购销这批过程中需不的支出各种费用共1 500元.①求出预估利润〔元〕与〔部〕的函数关系式;〔注:预估利润=预售总额-购机款-各种费用〕②求出预估利润的最大年夜值,并写出现在购进三款各多少多部.第九章不等式与不等式组检测题参考答案1.A 分析:不等式的解集为.应选A.2.A 3.D4.B 分析:≤,又不等式的解为:≤-1,因此=-1,解得:=-3.5.C 分析:解不等式组得.6.C分析:按照不等式的根天分质,不等式单方同时加上或减去一致个数,不等号的倾向波动;不等式单方同时乘或除以一致个负数,不等号的倾向波动,同时乘或除以一致个负数,不等号的倾向要修改 .7.B分析:留心解集表示时的倾向及点的空心与实心的区不.8.D分析:行程肯定,速度的范围开门见山决定所用时辰的范围 . 9.A分析:先通过解方程求出用表示的的式子,然后按照方程解是负数,掉掉落关于的不等式,求解不等式即可.10.C11.>2 分析:按照不等式的性质,不等号倾向发生修改,因此x的系数小于0. 12.60米/分~80米/分分析:7点出发,要在7点30分到40分之间到达黉舍,意味着小明在30分钟之内的行程不克不迭逾越2 400米,而40分钟时的行程至多到达2 400米.由此可列出不等式组.13.1<a<4 分析:按照题意,可掉掉落不等式组解不等式组即可.14.x<分析:先将x=3代入方程,可解得a=-5,再将a=-5代入不等式解不等式得出结果.15.m3 分析:解不等式组可得结果由于不等式组的解集是x>3,因此结合数轴,按照“同大年夜取大年夜〞原那么,不行看出结果为m3.16.-3<a≤-2 分析:解不等式组可得结果a≤x≤2,因此五个整数解为2、1、0、-1、-2,因此-3<a≤-2.17.13 分析:设小明一共买了x本笔记本,y支钢笔,按照题意,可得,可求得y≤.由于y为正整数,因此最多可以买钢笔13支.18.7 分析:设最低打x折,由题意可得,解得x≥7.19.解:解不等式①,得;解不等式②,得.在一致条数轴上表示不等式①②的解集,如以下图:第19题答因此,原不等式组的解集是.20.解:解关于x的方程,得.由于方程的解为非负数,因此有≤0,解得≥.21.解:〔1〕设市廛购进电视机x台,那么购进洗衣机〔100-x〕台,按照题意,得解不等式组,得≤x≤.即购进电视机最少34台,最多39台,市廛有6种进货方案.〔2〕设市廛销售终了后赚钱为y元,按照题意,得y=〔2 000-1 800〕x+(1 600-1 500)(100-x)=100x+10 000.由于100>0,因此当x最大年夜时,y的值最大年夜.即当x=39时,市廛赚钱最多为13 900元.22.解:〔1〕设安排甲种货车x辆,那么安排乙种货车〔8-x〕辆,依题意,得4x + 2〔8-x〕≥20,且x + 2〔8-x〕≥12,解此不等式组,得x≥2,且x≤4,即2≤x≤4.由于x 是正整数,因此x可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:甲种货车乙种货车方案一2辆6辆方案二3辆5辆〔2〕方案一所需运费300×2+240×6= 2 040〔元〕;方案二所需运费300×3+240×5 =2 100〔元〕;方案三所需运费300×4 +240×4 =2 160〔元〕.因此王灿应选择方案一运费最少,最少运费是2 040元.23.解:设搭配种外型个,那么种外型为个,依题意,得:解谁人不等式组,得:,.是整数,可取,因此可方案三种搭配方案:①种园艺外型个,种园艺外型个;②种园艺外型个,种园艺外型个;③种园艺外型个,种园艺外型个.〔2〕由于种外型的本钞票高于种外型,因此种外型越少,本钞票越低,故应选择方案③,本钞票最低,最低本钞票为:〔元〕24.解:〔1〕60-x-y;〔2〕由题意,得900x+1 200y+1 100〔60-x-y〕= 61 000,拾掇得y=2x-50.〔3〕①由题意,得= 1 200x+1 600y+1 300〔60-x-y〕-61 000-1 500,拾掇得=500x+500.②购进C型部数为:60-x-y =110-3x.按照题意列不等式组,得解得29≤x≤34.因此x范围为29≤x≤34,且x为整数.由于是x的一次函数,k=500>0,因此随x的增大年夜而增大年夜.因此当x取最大年夜值34时,有最大年夜值,最大年夜值为17 500元.现在购进A型34部,B型18部,C型8部.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学下册 第九章 不等式与不等式组 全章测试题
一、选择题
1.下列变形错误的是( )
A .若a -c >b -c ,则a >b
B .若12a <12b ,则a <b
C .若-a -c >-b -c ,则a >b
D .若-12a <-12b ,则a >b
2.不等式x 2-x -13≤1的解集是( )
A .x≤4
B .x≥4
C .x≤-1
D .x≥-1
3.将不等式组⎩⎪⎨⎪⎧12x -1≤7-32x ,5x -2>3(x +1)
的解集表示在数轴上,正确的是( )
4.若关于x 的方程3(x +k)=x +6的解是非负数,则k 的取值范围是( )
A .k≥2
B .k >2
C .k≤2
D .k <2
5.若关于x 的一元一次不等式组⎩
⎨⎧x -1<0,x -a >0无解,则a 的取值范围是( ) A .a≥1 B .a >1
C .a≤-1
D .a <-1
6.若不等式组⎩⎨⎧x -b <0,x +a >0
的解集为2<x <3,则a ,b 的值分别为( ) A .-2,3 B .2,-3
C .3,-2
D .-3,2
7.三个连续正整数的和小于39,这样的正整数中,最大一组的和是( )
A .39
B .36
C .35
D .34
8.某天然气公司在一些居民小区安装天然气管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数( )
A .至少20户
B .至多20户
C .至少21户
D .至多21户
9.某种出租车的收费标准是:起步价7元(即行驶距离不超过3千米都收7元车费),超过3千米以后,超过部分每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车
从甲地到乙地共支付19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的取值范围是
( )
A .1<x≤11
B .7<x≤8
C .8<x≤9
D .7<x <8
二、填空题
10.已知x 2是非负数,用不等式表示____;已知x 的5倍与3的差大于10,且不大于20,用不等式组表示____________.
11.若|x +1|=1+x 成立,则x 的取值范围是__________.
12.若关于x ,y 的二元一次方程组⎩
⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m 的取值范围为____________.
13.在平面直角坐标系中,已知点A(7-2m ,5-m)在第二象限内,且m 为整数,则点A 的坐标为_________.
14.一种药品的说明书上写着:“每日用量60~120 mg ,分4次服用”,则一次服用这种药品的用量x(mg)的范围是____________.
15.按下列程序(如图),进行运算规定:程序运行到“判断结果是否大于244”为一次运算.若x =5,则运算进行______次才停止;若运算进行了5次才停止,则x 的取值范围是__________.
16.为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每一个路口安排8人,那么最后一个路口不足8人,但不少于4人.则这个中学共选派值勤学生_______人,共有______个交通路口安排值勤.
三、解答题
17.解下列不等式(组),并把解集在数轴上表示出来:
(1)5x -13-x >1;
(2)x 2-1≤7-x 3;
(3)⎩⎨⎧4x +6>1-x ,3(x -1)≤x +5;
(4)⎩⎨⎧2x +5≤3(x +2),1-2x 3+15>0.
18.解不等式组⎩⎨⎧2x +3>3x ,
x +33-x -16≥12,
并求出它的整数解的和.
19.阅读理解:解不等式(x +1)(x -3)>0.
解:根据两数相乘,同号得正,原不等式可以转化为⎩⎨⎧x +1>0,x -3>0或⎩⎨⎧x +1<0,x -3<0.
解不等式组⎩⎨⎧x +1>0,x -3>0
得x >3; 解不等式组⎩⎨⎧x +1<0,x -3<0
得x <-1. 所以原不等式的解集为x >3或x <-1.
问题解决:根据以上材料,解不等式(x -2)(x +3)<0.
20.某商场进了一批价值8万元的衣服,每件零售价为180元时,卖出了250件,但发现销售量不大,营业部决定每件降价40元,那么商场至少要再卖出多少件后才能收回成本?
21.某小区前面有一块空地,现想建成一块面积大于48平方米,周长小于34米的长方形绿化草地,已知一边长为8米,设其邻边长为x 米,求x 的整数值.
22. 为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,则学校最多可以购买多少个足球?
23.某地区为筹备一项庆典,利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A ,B 两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆;搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆,且搭配一个A 种造型的成本是200元,搭配一个B 种造型的成本是300元,则有多少种搭配方案?这些方案中成本最低的是多少元?
答案:
1---9 CAACA ABCB
10. x 2≥0 ⎩⎨⎧5x -3>105x -3≤20
11. x≥-1
12. 83
<m <19 13. (-1,1)
14. 15≤x ≤30
15. 4 2<x ≤4
16. 158 20
17. (1) 解:x >2,数轴略
(2) 解:x ≤4,数轴略
(3) 解:-1<x ≤4,数轴略
(4) 解:-1≤x <45,数轴略
18. 解:不等式组的解集为-4≤x <3
∴这个不等式组的整数解为-4,-3,-2,-1,0,1,2
其和为-4-3-2-1+0+1+2=-7
19. 解:由题意得⎩⎨⎧x -2>0,x +3<0或⎩⎨⎧x -2<0,x +3>0,
解不等式组⎩
⎨⎧x -2>0,x +3<0,不等式组无解;
解不等式组⎩⎨⎧x -2<0,x +3>0,
解得-3<x <2,则原不等式的解集是-3<x <2 20. 解:设商场至少要再卖出x 件后才能收回成本
由题意得180×250+(180-40)x ≥80000
解得x ≥250
即商场至少要再卖出250件后才能收回成本
21. 解:根据题意得⎩⎨⎧8x >48,2(x +8)<34,
解得6<x <9
又∵x 为整数
∴x 的值为7或8
22. 解:(1)设足球的单价是x 元,篮球的单价是y 元,根据题意得⎩⎨⎧x +y =159,x =2y -9,解得⎩⎨⎧x =103,y =56,
则足球的单价是103元,篮球的单价是56元
(2)设最多可以购买足球m 个,则购买篮球(20-m)个,根据题意得103m +56(20-m)≤1550,
解得m ≤9747,∵m 为整数,∴m 最大取9,则学校最多可以购买9个足球
23. 解:设搭配A 种造型x 个,则B 种造型为(50-x)个,依题意得⎩⎨⎧80x +50(50-x )≤3490,40x +90(50-x )≤2950,
解得31≤x ≤33,∵x 是整数,∴x 可取31,32,33,
∴可设计三种搭配方案:①A 种的造型31个,B 种造型19个;②A 种造型32个,B 种造型18个;③A 种造型33个,B 种造型17个.由于B 种造型的成本高于A 种造型成本,所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为33×200+17×300=11700(元)。