初中几何公1

合集下载

初中数学几何图形初步知识点总复习含解析(1)

初中数学几何图形初步知识点总复习含解析(1)

初中数学几何图形初步知识点总复习含解析(1)一、选择题1.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A .45︒B .60︒C .70︒D .40︒【答案】C【解析】【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小【详解】∵∠DOB 与∠DOA 的比是2:11∴设∠DOB=2x ,则∠DOA=11x∴∠AOB=9x∵∠AOB=90°∴x=10°∴∠BOD=20°∴∠COB=70°故选:C【点睛】本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( )A .35°B .45°C .55°D .65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A .【点睛】本题考查余角、补角的计算.3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.4.下列立体图形中,侧面展开图是扇形的是()A .B .C .D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.5.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C .【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.6.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A .中B .考C .顺D .利【答案】C【解析】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C .考点:正方体展开图.7.如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是( )A .10cm 2B .10πcm 2C .20cm 2D .20πcm 2【答案】D【解析】【分析】根据圆柱的侧面积=底面周长×高.【详解】根据圆柱的侧面积计算公式可得π×2×2×5=20πcm 2,故选D .【点睛】本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.8.下列图形中1∠与2∠不相等的是( )A.B.C.D.【答案】B【解析】【分析】根据对顶角,平行线,等角的余角相等等知识一一判断即可.【详解】解:A、根据对顶角相等可知,∠1=∠2,本选项不符合题意.B、∵∠1+∠2=90°,∠1与∠2不一定相等,本选项符合题意.C.根据平行线的性质可知:∠1=∠2,本选项不符合题意.D、根据等角的余角相等,可知∠1=∠2,本选项不符合题意.故选:B.【点睛】本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D 是平行四边形,∴EF ′=AD=3.∴EP+FP 的最小值为3.故选C .考点:菱形的性质;轴对称-最短路线问题10.如图,在ABC V 中,90C ∠=︒,AD 是BAC ∠的平分线,O 是AB 上一点,以OA 为半径的O e 经过点D .若5BD =,3DC =,则AC 的长为( )A .6B .43C .532-D .8【答案】A【解析】【分析】 过点D 作DE AB ⊥于E ,可证ADE ADC △△≌,所以AE AC =,3DE DC ==.又5BD =,利用勾股定理可求得4BE =.设AC AE x ==.因为90C ∠=︒,再利用勾股定理列式求解即可.【详解】解:过点D 作DE AB ⊥于E ,∵90C ∠=︒,AD 是BAC ∠的平分线,∴ADE ADC △△≌,∴AE AC =,3DE DC ==.∵5BD =,∴4BE =,设AC AE x ==.因为90C ∠=︒,∴由勾股定理可得222BC AC AB +=,即2228(4)x x +=+,解得6x =,即6AC =.故选:A .【点睛】本题主要考查圆的相关知识.掌握角平分线的性质以及熟练应用勾股定理是解此题的关键.11.如图,小慧从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为( )A .左转80°B .右转80°C .左转100°D .右转100°【答案】B【解析】【分析】 如图,延长AB 到D ,过C 作CE//AD ,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB 到D ,过C 作CE//AD ,∵此时需要将方向调整到与出发时一致,∴此时沿CE 方向行走,∵从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处, ∴∠A=60°,∠1=20°,AM ∥BN ,CE ∥AB ,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.12.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.13.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14 B.15 C.16 D.17【答案】B【解析】【分析】在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C 即可.【详解】解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=12×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C22129=15cm,故选:B.【点睛】本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.14.如图:点 C 是线段 AB 上的中点,点 D 在线段 CB 上,若AD=8,DB=3AD 4,则CD 的长为( )A .4B .3C .2D .1 【答案】D【解析】【分析】根据线段成比例求出DB 的长度,即可得到AB 的长度,再根据中点平分线段的长度可得AC 的长度,根据CD AD AC =-即可求出CD 的长度.【详解】∵38,4AD DB AD ==∴6DB =∴14AB AD DB =+=∵点 C 是线段 AB 上的中点∴172AC AB == ∴1CD AD AC =-=故答案为:D .【点睛】本题考查了线段的长度问题,掌握成比例线段的性质、中点平分线段的长度是解题的关键.15.如图,在ABC V 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B 、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 是∠BAC 的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C 、∵∠B=30°,∠DAB=30°,∴AD=DB ,∴点D 在AB 的中垂线上,正确;D 、∵∠CAD=30°,∴CD=12AD , ∵AD=DB , ∴CD=12DB , ∴CD=13CB , S △ACD =12CD•AC ,S △ACB =12CB•AC , ∴S △ACD :S △ACB =1:3,∴S △DAC :S △ABD ≠1:3,错误,故选:D .【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.16.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.140° B.130° C.50° D.40°【答案】C【解析】【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.17.用一副三角板(两块)画角,能画出的角的度数是()A.145C o B.95C o C.115C o D.105C o【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.18.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱【答案】D【解析】【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选D.【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解题的关键.19.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.20.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线【答案】D【解析】【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A、经过两点有且只有一条直线,故错误;B、有公共顶点的两条射线组成的图形叫做角,故错误;C、两条直线相交有一个交点,故错误;D、两点确定一条直线,故正确,故选D.【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.。

初中数学几何公式定理超全汇总

初中数学几何公式定理超全汇总

初中数学几何公式定理超全汇总140条01线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1 关于某条直线对称的两个图形是全等形13、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称02角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1 在角的平分线上的点到这个角的两边的距离相等23、定理2 到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合03三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1 直角三角形的两个锐角互余29、推论2 三角形的一个外角等于和它不相邻的两个内角的和30、推论3 三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形04等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3 等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1 三个角都相等的三角形是等边三角形39、推论 2 有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半05相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3 三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2 相似三角形周长的比等于相似比50、性质定理3 相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等06四边形57、定理四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1 平行四边形的对角相等62、平行四边形性质定理2 平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3 平行四边形的对角线互相平分65、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3 对角线互相平分的四边形是平行四边形68、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1 矩形的四个角都是直角70、矩形性质定理2 矩形的对角线相等71、矩形判定定理1 有三个角是直角的四边形是矩形72、矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1 菱形的四条边都相等74、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1 四边都相等的四边形是菱形77、菱形判定定理2 对角线互相垂直的平行四边形是菱形07正方形78、正方形性质定理1 正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1 关于中心对称的两个图形是全等的81、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称08等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形09等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h92 、(1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值10圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论 1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r ②直线L和⊙O相切d=r ③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=nπR/180145、扇形面积公式:S扇形=nπR/360=LR/2146、内公切线长= d-(R-r) 外公切线长= d-(R+r)。

2021年中考复习讲义初中几何典型模型一:一线三垂直模型

2021年中考复习讲义初中几何典型模型一:一线三垂直模型

初中数学典型模型之一: “三垂直模型”介绍总体解题思路:只要出现此典型图形,一般都要证三角形全等或相似,再根据全等或相似性质解题.(一)基本图形: 1.“三垂”例1.如图,矩形ABCD 中,E 在AD 上,且EF ⊥EC ,EF=EC ,DE=2,矩形的周长为16,则AE=__ 解析:如图1,典型的“三垂直模型”,由于有等边(EF=EC )先证△AEF ≌△DCE , ∴AE=DC ,∴AD-DC=2,∵AD+DC=8,∴AD=5,DC=3,∴AE=3例2.一块矩形木板ABCD ,长AD=3cm,宽AB=2cm,小虎将一块等腰直角三角板的一条直角边靠在顶点C 上,另一条直角边与AB 边交于点E ,三角板的直角顶点P 在AD 边上移动(不含端点A,D ),当线段BE 最短时,AP=_______解析:如图1,典型的“三垂直模型”,由于没有等边,先证△AEP ∽△DPC , ∴AP CD=AE PD。

当题目出现线段最值时,初三的数学中有两种解题方法:①几何论证方法;②代数论证方法-----通过设未知数,把几何中的线段关系转化成二次函数形式,运用二次函数求最值的方法解题;(详见“动态问题下求线段长”),此题可采用代数论证方法,设BE =y,AP =x ,∴x2=2−y3−x , ∴y =x 2−3x +4=(x −32)2+74 , ∴a =1>0 , ∴x =32 时,y 最小值=742.两种变化图形(1)“交叉型”三垂直模型 (2)“L 型”三垂直模型A BC DEF 图1PA BCD E 证明:∵∠1+∠2=90°,∠2+∠A=90°,∴∠1=∠A 又∵∠B=∠C ,若其中有一组边相等,则证ABE ≅ECD;若没有边相等,则证ABE ~ECD;21AB CED证明:∵∠1+∠2=90°,∠2+∠A=90°,∴∠1=∠A 又∵∠B=∠C ,若其中有一组边相等,则证ABE ≅FCD;若没有边相等,则证ABE ~FCD;21A BF E DC(1)若有等边,则△ABE≌△BDC(AAS )(2)若无等边,则△ABE∽△BDC(AA )EDCBA例3.如图,已知正方形ABCD 的边长为4,点E 、F 分别在边AB 、BC 上,且AE=BF=1,则OC= .解析:求线段长,要么用勾股定理,要么用相似,不管走勾股定理,还是相似,都绕不过先求出∠DOC=90°,当把这个90°标在图形时,就出现“三垂直模型的变化图形—交叉型三垂直模型”,如图1,由于有等边(BC=CD ),先证△BCE ≌△CDF ,∴∠BCE =∠CDF ,∵∠BCE +∠OCD =90°,∴∠CDF +∠OCD =90°,∴∠DOC =90°;这时图形又出现了第二个典型图形:“双垂型图形”,如图2,便易得这个典型图形的一个典型的用途----两直角边的乘积会等于斜边乘以斜边上的高。

1.立体几何中基本概念、公理、定理、推论

1.立体几何中基本概念、公理、定理、推论

1.⽴体⼏何中基本概念、公理、定理、推论⽴体⼏何中基本概念、公理、定理、推论1. 三个公理和三条推论:(1)公理1:⼀条直线的两点在⼀个平⾯内,那么这条直线上的所有的点都在这个平⾯内.这是判断直线在平⾯内的常⽤⽅法.(2)公理2:如果两个平⾯有⼀个公共点,它们有⽆数个公共点,⽽且这⽆数个公共点都在同⼀条直线上.这是判断⼏点共线(证这⼏点是两个平⾯的公共点)和三条直线共点(证其中两条直线的交点在第三条直线上)的⽅法之⼀.(3)公理3:经过不在同⼀直线上的三点有且只有⼀个平⾯.推论1:经过直线和直线外⼀点有且只有⼀个平⾯.推论2:经过两条相交直线有且只有⼀个平⾯.推论3:经过两条平⾏直线有且只有⼀个平⾯.公理3和三个推论是确定平⾯的依据.2. 直观图的画法(斜⼆侧画法规则):在画直观图时,要注意:(1)使045x o y '''∠=(或0135),x o y '''所确定的平⾯表⽰⽔平平⾯.(2)已知图形中平⾏于x 轴和z 轴的线段,在直观图中保持长度和平⾏性不变,平⾏于y 轴的线段平⾏性不变,但在直观图中其长度为原来的⼀半.3. 公理4:平⾏于同⼀直线的两直线互相平⾏.(即平⾏直线的传递性)等⾓定理:如果⼀个⾓的两边和另⼀个⾓的两边分别平⾏并且⽅向相同,那么这两个⾓相等. (此定理说明⾓平移后⼤⼩不变) 若⽆“⽅向相同”,则这两个⾓相等或互补.4. 空间直线的位置关系:(1)相交直线――有且只有⼀个公共点.(2)平⾏直线――在同⼀平⾯内,没有公共点.(3)异⾯直线――不在同⼀平⾯内,也没有公共点.5. 异⾯直线⑴异⾯直线定义:不同在任何⼀个平⾯内的两条直线叫做异⾯直线.⑵异⾯直线的判定:连结平⾯内⼀点与平⾯外⼀点的直线,和这个平⾯内不经过此点的直线是异⾯直线.⑶异⾯直线所成的⾓:已知两条异⾯直线a 、b ,经过空间任⼀点O 作直线a '、b ',使//a a '、//b b ',把a '与b '所成的锐⾓(或直⾓)叫做异⾯直线a 、b 所成的⾓(或夹⾓).⑷异⾯直线所成的⾓的求法:⾸先要判断两条异⾯直线是否垂直,若垂直,则它们所成的⾓为900;若不垂直,则利⽤平移法求⾓,⼀般的步骤是“作(找)—证—算”.注意,异⾯直线所成⾓的范围是π0,2??;求异⾯直线所成⾓的⽅法:计算异⾯直线所成⾓的关键是平移(中点平移,顶点平移以及补形法:把空间图形补成熟悉的或完整的⼏何体,如正⽅体、平⾏六⾯体、长⽅体等,以便易于发现两条异⾯直线间的关系)转化为相交两直线的夹⾓. ⑸两条异⾯直线的公垂线:①定义:和两条异⾯直线都垂直且相交的直线,叫做异⾯直线的公垂线;两条异⾯直线的公垂线有且只有⼀条.⽽和两条异⾯直线都垂直的直线有⽆数条,因为空间中,垂直不⼀定相交.②证明:异⾯直线公垂线的证明常转化为证明公垂线与两条异⾯直线分别垂直.⑹两条异⾯直线的距离:两条异⾯直线的公垂线在这两条异⾯直线间的线段的长度.6. 直线与平⾯的位置关系:(1)直线在平⾯内;(2)直线与平⾯相交.其中,如果⼀条直线和平⾯内任何⼀条直线都垂直,那么这条直线和这个平⾯垂直.注意:任⼀条直线并不等同于⽆数条直线;(3)直线与平⾯平⾏.其中直线与平⾯相交、直线与平⾯平⾏都叫作直线在平⾯外.平⾯与平⾯的位置关系:(1)平⾏――没有公共点;(2)相交――有⼀条公共直线.7.线⾯平⾏、⾯⾯平⾏⑴直线与平⾯平⾏的判定定理: 如果不在⼀个平⾯(α)内的⼀条直线(l )和平⾯(α)内的⼀条直线(m )平⾏,那么这条直线(l )和这个平⾯(α)平⾏.,,////l m l m l ααα (作⽤:线线平⾏?线⾯平⾏)⑵直线与平⾯平⾏的性质定理:如果⼀条直线(l )和⼀个平⾯(α)平⾏,经过这条直线(l )的平⾯(β)和这个平⾯(α)相交(设交线是m ),那么这条直线(l )和交线(m )平⾏.//,,//l l m l m αβαβ??=? (作⽤: 线⾯平⾏?线线平⾏)⑶平⾯与平⾯平⾏的判定定理:如果⼀个平⾯(β)内有两条相交直线(,a b )分别平⾏于另⼀个平⾯(α),那么这两个平⾯(,βα)平⾏.,,,//,////a b a b P a b ββααβα=? (作⽤:线⾯平⾏?⾯⾯平⾏)推论:如果⼀个平⾯(β)内有两条相交直线(,a b )分别平⾏于另⼀个平⾯(α)内的两条直线(,a b ''), 那么这两个平⾯(,βα)平⾏.,,,,,//,////a b a b P a b a a b b ββααβα''''=(作⽤: 线线平⾏?⾯⾯平⾏) ⑷平⾯与平⾯平⾏的性质定理:如果两个平⾏平⾯(,αβ)同时与第三个平⾯(γ)相交(设交线分别是,a b ),那么它们的交线(,a b )平⾏.//,,//a b a b αβαγβγ?=?=? (作⽤: ⾯⾯平⾏?线线平⾏)推论:如果两个平⾯(,αβ)平⾏,则⼀个平⾯(α)内的⼀条直线(a )平⾏于另⼀个平⾯(β). //,//a a αβαβ?? (作⽤: ⾯⾯平⾏?线⾯平⾏)8.线线垂直、线⾯垂直、⾯⾯垂直⑴直线与平⾯垂直的判定定理:如果⼀条直线(l )和⼀个平⾯(α)内的两条相交直线(,m n )都垂直,那么这条直线(l )垂直于这个平⾯(α).,,,,l m l n m n m n P l ααα⊥⊥=?⊥ (作⽤: 线线垂直?线⾯垂直)⑵直线与平⾯垂直的性质定理:如果⼀条直线(l )和⼀个平⾯(α)垂直,那么这条直线(l )和这个平⾯(α)内的任意⼀条直线(m )垂直.,l m l m αα⊥??⊥ .⑶三垂线定理: 其作⽤是证两直线异⾯垂直和作⼆⾯⾓的平⾯⾓①定理: 在平⾯内的⼀条直线,如果它和这个平⾯的⼀条斜线的射影垂直,那么它也和这条斜线垂直.②逆定理:在平⾯内的⼀条直线,如果它和这个平⾯的⼀条斜线,那么它也和这条斜线在平⾯内的射影垂直.(作⽤: 线线垂直?线线垂直)⑷平⾯与平⾯垂直的判定定理: 如果⼀个平⾯(α)经过另⼀个平⾯(β)的⼀条垂线(l ),那么这两个平⾯(,αβ)互相垂直.,l l βααβ⊥??⊥ (作⽤: 线⾯垂直?⾯⾯垂直)⑸平⾯与平⾯垂直的性质定理:如果两个平⾯(,αβ)垂直,那么在⼀个平⾯(α)内垂直于它们交线(m )的直线(l )垂直于另⼀个平⾯(β).,,,m l l m l αβαβαβ⊥?=?⊥?⊥ (作⽤: ⾯⾯垂直?线⾯垂直)9. 直线和平⾯所成的⾓⑴最⼩⾓定理:平⾯的斜线和它在平⾯内的射影所成的⾓,是这条斜线和这个平⾯内任意⼀条直线所成的⾓中最⼩的⾓.满⾜关系式:12cos cos cos θθθ=?θ是平⾯的斜线与平⾯内的⼀条直线所成的⾓;1θ是平⾯的斜线与斜线在平⾯内的射影所成的⾓;2θ是斜线在平⾯内的射影与平⾯内的直线所成的⾓.⑵直线和平⾯所成的⾓: 平⾯的⼀条斜线和它在平⾯内的射影所成的锐⾓,叫这条直线和这个平⾯所成的⾓. 范围:[0,90]10.⼆⾯⾓⑴⼆⾯⾓的定义:从⼀条直线出发的两个半平⾯所组成的图形叫做⼆⾯⾓.这条直线叫做⼆⾯⾓的棱,每个半平⾯叫做⼆⾯⾓的⾯.棱为l ,两个⾯分别是α、β的⼆⾯⾓记为l αβ--.⼆⾯⾓的范围:[0,]π⑵⼆⾯⾓的平⾯⾓:在⼆⾯⾓的棱上取⼀点,在⼆⾯⾓的⾯内分别作两条垂直于棱的射线,这两条射线所成的⾓叫做⼆⾯⾓的平⾯⾓.11.空间距离⑴点到平⾯的距离:⼀点到它在⼀个平⾯内的正射影的距离.⑵直线到与它平⾏平⾯的距离:⼀条直线上的任⼀点到与它平⾏的平⾯的距离.⑶两个平⾏平⾯的距离:两个平⾏平⾯的公垂线段的长度.⑷异⾯直线的距离12. 多⾯体有关概念:(1)多⾯体:由若⼲个平⾯多边形围成的空间图形叫做多⾯体.围成多⾯体的各个多边形叫做多⾯体的⾯.多⾯体的相邻两个⾯的公共边叫做多⾯体的棱.(2)多⾯体的对⾓线:多⾯体中连结不在同⼀⾯上的两个顶点的线段叫做多⾯体的对⾓线.(3)凸多⾯体:把⼀个多⾯体的任⼀个⾯伸展成平⾯,如果其余的⾯都位于这个平⾯的同⼀侧,这样的多⾯体叫做凸多⾯体.13.棱柱⑴棱柱的定义: 有两个⾯互相平⾏,其余每相邻两个⾯的交线互相平⾏,这样的多⾯体叫棱柱.两个互相平⾏的⾯叫棱柱的底⾯(简称底);其余各⾯叫棱柱的侧⾯;两侧⾯的公共边叫棱柱的侧棱;两底⾯所在平⾯的公垂线段叫棱柱的⾼(公垂线段长也简称⾼).⑵棱柱的分类:侧棱不垂直于底⾯的棱柱叫斜棱柱.侧棱垂直于底⾯的棱柱叫直棱柱.底⾯是正多边形的直棱柱叫正棱柱.棱柱的底⾯可以是三⾓形、四边形、五边形……这样的棱柱分别叫三棱柱、四棱柱、五棱柱……⑶棱柱的性质:①棱柱的各个侧⾯都是平⾏四边形,所有的侧棱都相等,直棱柱的各个侧⾯都是矩形,正棱柱的各个侧⾯都是全等的矩形.②与底⾯平⾏的截⾯是与底⾯对应边互相平⾏的全等多边形.③过棱柱不相邻的两条侧棱的截⾯都是平⾏四边形.⑷平⾏六⾯体、长⽅体、正⽅体:底⾯是平⾏四边形的四棱柱是平⾏六⾯体.侧棱与底⾯垂直的平⾏六⾯体叫直平⾏六⾯体,底⾯是矩形的直平⾏六⾯体叫长⽅体,棱长都相等的长⽅体叫正⽅体.⑸①平⾏六⾯体的任何⼀个⾯都可以作为底⾯;②平⾏六⾯体的对⾓线交于⼀点,并且在交点处互相平分;③平⾏六⾯体的四条对⾓线的平⽅和等于各棱的平⽅和;④长⽅体的⼀条对⾓线的平⽅等于⼀个顶点上三条棱长的平⽅和.14.棱锥⑴棱锥的定义: 有⼀个⾯是多边形,其余各⾯是有⼀个公共顶点的三⾓形,这样的多⾯体叫棱锥其中有公共顶点的三⾓形叫棱锥的侧⾯;多边形叫棱锥的底⾯或底;各侧⾯的公共顶点()S ,叫棱锥的顶点,顶点到底⾯所在平⾯的垂线段()SO ,叫棱锥的⾼(垂线段的长也简称⾼).⑵棱锥的分类:(按底⾯多边形的边数)分别称底⾯是三⾓形,四边形,五边形……的棱锥为三棱锥,四棱锥,五棱锥…… ⑶棱锥的性质:定理:如果棱锥被平⾏于底⾯的平⾯所截,那么所得的截⾯与底⾯相似,截⾯⾯积与底⾯⾯积⽐等于顶点到截⾯的距离与棱锥⾼的平⽅⽐.中截⾯:经过棱锥⾼的中点且平⾏于底⾯的截⾯,叫棱锥的中截⾯⑷正棱锥:底⾯是正多边形,顶点在底⾯上的射影是底⾯的中⼼的棱锥叫正棱锥.⑸正棱锥的性质:①正棱锥的各侧棱相等,各侧⾯都是全等的等腰三⾓形,各等腰三⾓形底边上的⾼(叫斜⾼)也相等。

(完整版)初中几何公式定理

(完整版)初中几何公式定理

初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1关于某条直线对称的两个图形是全等形13、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1在角的平分线上的点到这个角的两边的距离相等23、定理2到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1直角三角形的两个锐角互余29、推论2三角形的一个外角等于和它不相邻的两个内角的和30、推论3三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1三个角都相等的三角形是等边三角形39、推论2有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2相似三角形周长的比等于相似比50、性质定理3相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1平行四边形的对角相等62、平行四边形性质定理2平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3平行四边形的对角线互相平分65、平行四边形判定定理1两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3对角线互相平分的四边形是平行四边形68、平行四边形判定定理4一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1矩形的四个角都是直角70、矩形性质定理2矩形的对角线相等71、矩形判定定理1有三个角是直角的四边形是矩形72、矩形判定定理2对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1菱形的四条边都相等74、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1四边都相等的四边形是菱形77、菱形判定定理2对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1关于中心对称的两个图形是全等的81、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h92、(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1经过圆心且垂直于切线的直线必经过切点125、推论2经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形面只是一些小技巧,接下来我们读完题开始找思路。

平面几何五大公理

平面几何五大公理

平面几何五大公理所谓公理:1)经过人类长期反复的实践检验是真实的,不需要由其他判断加以证明的命题和原理。

2)某个演绎系统的初始命题。

这样的命题在该系统内是不需要其他命题加以证明的,并且它们是推岀该系统内其他命题的基本命题欧几里德的《几何原本》,一开始欧几里德就劈头盖脸地给出了23个定义,5个公设,5个公理。

其实他说的公社就是我们后来所说的公理,他的公理是一些计算和证明用到的方法(如公理1:等于同一个量的量相等,公理5 :整体大于局部等)他给岀的5个公设倒是和几何学非常紧密的,也就是后来我们教科书中的公理。

分别是:1、五大公设:公设1 从任意的一个点到另外一个点作一条直线是可能的。

公设2 把有限的直线不断循直线延长是可能的。

公设3 以任一点为圆心和任一距离为半径作一圆是可能的。

公设4 所有的直角都相等。

公设5 如果一直线与两线相交,且同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点。

2、五大公理公理1 与同一件东西相等的一些东西,它们彼此也是相等的。

公理2 等量加等量,总量仍相等。

公理3 等量减等量,余量仍相等。

公理4 彼此重合的东西彼此是相等的。

公理5 整体大于部分。

今天我们常说的平面几何五大公理,就是指五大公设。

在这五个公设(理)里,欧几里德并没有幼稚地假定定义的存在和彼此相容。

亚里士多德就指出,头三个公设说的是可以构造线和圆,所以他是对两件东西顿在性的声明。

事实上欧几里德用这种构造法证明很多命题。

第五个公设非常罗嗦,没有前四个简洁好懂。

声明的也不是存在的东西,而是欧几里德自己想的东西。

这就足以说明他的天才。

从欧几里德提出这个公理到1800年这大约2100年的时间里虽然人们没有怀疑整个体系的正确性,但是对这个第五公设却一直耿耿于怀。

很多数学家想把这个公设从这个体系中去掉,但是几经努力而无果,无法从其他公设中推到处第五公设。

第五公设称为平行公理,引导岀千年来数学上和哲学上最大的难题之一。

第二章 2.4.1-3 几何公差的符号及代号

公称要素在实际生产中是不可能得到的。 (2)组成要素。
组成要素是指零件上实际存在的要素。
因为加工误差不可避免,所以组成要素总是偏离公称要素,通常 由测得要素来代替。
由于测量误差总是客观存在的,因此组成要素并非该要素的真实状况。
2.按在几何公差中所处的地位分
(1)被测要素。
被测要素是指给出了形状或(和)位置公差的要素,即需要研
框格自左至右顺序标注以下内容,如图2.17~图2.21所示。
图2.17
图2.18
图2.19
图2.20
图2.21
3.基准符号 对有位置公差要求的零件,在图样上必须标明基准。
与被测要素相关的基准用一个大写字母表示。
字母标注在基准方格内,与一个涂黑的或空白的三角形相连以表 示基准,如图2.22和图2.23所示;
导出要素是指对称要素的中心点、线、面或回转表面的轴线。
图 2.24所示的球心和轴线就是导出要素。导出要素随着组成要素 的存最小条件
最小条件是指被测组成要素对其公称要素的最大变动量为最小。
当评定形状误差大小时,其公称要素的位置即应符合最小条件。
如图2.26所示,
轮廓abc是给定平面内 素线的组成要素,评定该要 素的形状误差大小时,公称 要素的位置不同,直线度误 差的大小也不同。
2.4 几何公差及其公差带
在零件加工过程中,由于工件、刀具和机床的变形,相对运动关系 的不准确,各种频率的震动以及定位不准确等原因,不仅会使工件产生 尺寸误差,还会使几何要素的实际形状和位置相对于理想形状和位置产
生差异,这就是形状和位置误差(简称几何误差)。
几何误差将对工件的使用性能产生不利影响。
几何要素的几何误差不仅影响该工件的互换性,而且也影响整个 机械产品的质量,降低寿命。

初中一年级上册数学知识点

初中一年级上册数学知识点初中一年级上册数学知识点第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个局部不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个局部都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最根本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n 条侧棱;2n个顶点。

5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。

弧:圆上A、B两点之间的局部叫做弧。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

第二章有理数及其运算1、有理数的分类正有理数有理数零负有理数或整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

任何一个有理数都可以用数轴上的一个点来表示。

初中数学各种公式大全

初中数学各种公式大全初中数学中有很多重要的公式,下面是一份初中数学各种公式的完整版,包括代数、几何、概率统计等方面的公式。

一、代数篇1.平方差公式:$(a+b)(a-b)=a^2-b^2$2. 完全平方公式:$(a+b)^2=a^2+2ab+b^2$、$(a-b)^2=a^2-2ab+b^2$3. 二次方程的根与系数的关系:若$x_1$和$x_2$是方程$ax^2+bx+c=0$的两个根,则$x_1+x_2=-\frac{b}{a}$、$x_1x_2=\frac{c}{a}$4. 一元一次方程求解公式:$x=\frac{c-b}{a}$5.等差数列通项公式:$a_n=a_1+(n-1)d$6.等差数列前n项和公式:$S_n=\frac{n}{2}(a_1+a_n)=\frac{n}{2}[2a_1+(n-1)d]$7.等比数列通项公式:$a_n=a_1\cdot q^{(n-1)}$8.等比数列前n项和公式(当$,q,<1$时):$S_n=\frac{a_1(1-q^n)}{1-q}$9. 二项式定理:$(a+b)^n=C_n^0a^n+C_n^1a^{(n-1)}b+C_n^2a^{(n-2)}b^2+...+C_n^kb^{(n-k)}+...+C_n^nb^n$10. 二次根式的性质:$\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}$和$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$二、几何篇1.相似三角形的性质:对应角相等、对应边成比例2.直角三角形勾股定理:若$a$、$b$、$c$为直角三角形的两条直角边和斜边,则$c^2=a^2+b^2$3. 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}=2R$(其中$R$为三角形外接圆的半径)4. 余弦定理:$c^2=a^2+b^2-2ab\cos C$5. 面积公式:$\triangle ABC=\frac{1}{2}ab\sin C$6. 圆的面积公式:$S=\pi r^2$7. 矩形面积公式:$S=a\cdot b$8. 平行四边形面积公式:$S=bh$9. 梯形面积公式:$S=\frac{1}{2}(a+b)h$10. 扇形面积公式:$S=\frac{1}{2}r^2\theta$三、概率与统计篇1. 事件的概率:$P(A)=\frac{N(A)}{N(S)}$(其中$N(A)$为事件$A$发生的次数2. 随机事件的概率:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$3.等可能事件的概率:$P(A)=\frac{m}{n}$(其中$m$为事件$A$的可能结果数,$n$为试验的总可能结果数)4. 组合数公式:$C_n^k=\frac{n!}{k!(n-k)!}$(其中$n!$表示$n$的阶乘)5. 二项分布公式:$P(X=k)=C_n^kp^kq^{(n-k)}$(其中$X$为二项分布的随机变量,$p$为单次实验中事件$A$的概率,$q=1-p$)6. 正态分布标准化公式:$x=\frac{X-\mu}{\sigma}$(其中$X$为正态分布的随机变量,$\mu$为正态分布的均值,$\sigma$为正态分布的标准差)以上是初中数学中各种公式的完整版,供你参考。

立体几何——两条直线之间的位置关系(一)

立体几何——两条直线之间的位置关系(一)一、知识导学1.平面的基本性质. 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线. 公理3:经过不在同一条直线上的三点,有且只有一个平面. 推论1:经过一条直线和这条直线外的一点,,有且只有一个平面. 推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2.空间两条直线的位置关系,包括:相交、平行、异面.3.公理4:平行于同一条直线的两条直线平行. 定理4:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.4.异面直线. 异面直线所成的角;两条异面直线互相垂直的概念;异面直线的公垂线及距离.5.反证法.会用反证法证明一些简单的问题.二、疑难知识导析1.异面直线是指不同在任何一个平面内,没有公共点.强调任何一个平面.2.异面直线所成的角是指经过空间任意一点作两条分别和异面的两条直线平行的直线所成的锐角(或直角).一般通过平移后转化到三角形中求角,注意角的范围.3.异面直线的公垂线要求和两条异面直线垂直并且相交,4.异面直线的距离是指夹在两异面直线之间公垂线段的长度.求两条异面直线的距离关键是找到它们的公垂线.5.异面直线的证明一般用反证法、异面直线的判定方法:如图,如果b,A且A,a,则a与b异面.三、经典例题导讲[例1]在正方体ABCD-A B C D中,O是底面ABCD的中心,M、N分别是棱DD、D C的中点,则直线OM( ).A .是AC和MN的公垂线.B .垂直于AC但不垂直于MN.C .垂直于MN,但不垂直于AC.D .与AC、MN都不垂直.错解:B.错因:学生观察能力较差,找不出三垂线定理中的射影.正解:A.[例2]如图,已知在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且,求证:直线EG,FH,AC相交于一点.错解:证明:、F分别是AB,AD的中点,∥BD,EF=BD,又, GH∥BD,GH=BD,四边形EFGH是梯形,设两腰EG,FH相交于一点T,,F分别是AD.AC与FH交于一点.直线EG,FH,AC相交于一点正解:证明:、F分别是AB,AD的中点,∥BD,EF=BD, 又,GH∥BD,GH=BD,四边形EFGH是梯形,设两腰EG,FH相交于一点T,平面ABC,FH平面ACD,T面ABC,且T面ACD,又平面ABC平面ACD=AC,,直线EG,FH,AC相交于一点T.[例3]判断:若a,b是两条异面直线,P为空间任意一点,则过P点有且仅有一个平面与a,b 都平行.错解:认为正确.错因:空间想像力不够.忽略P在其中一条线上,或a与P确定平面恰好与b平行,此时就不能过P作平面与a平行.正解:假命题.[例4]如图,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线(在同一条直线上).分析:先确定一个平面,然后证明相关直线在这个平面内,最后证明四点共线.证明∵ AB//CD, AB,CD确定一个平面β.又∵AB ∩α=E,ABβ, Eα,Eβ,即 E为平面α与β的一个公共点.同理可证F,G,H均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴ E,F,G,H四点必定共线.点评:在立体几何的问题中,证明若干点共线时,先证明这些点都是某两平面的公共点,而后得出这些点都在二平面的交线上的结论.[例5]如图,已知平面α,β,且α∩β=.设梯形ABCD中,AD∥BC,且ABα,CDβ,求证:AB,CD,共点(相交于一点).分析:AB,CD是梯形ABCD的两条腰,必定相交于一点M,只要证明M在上,而是两个平面α,β的交线,因此,只要证明M∈α,且M∈β即可.证明:∵梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴ AB,CD必定相交于一点,设 AB ∩CD=M.又∵ ABα,CDβ,∴ M∈α,且M∈β.∴ M∈α∩β.又∵α∩β=,∴ M∈,即 AB,CD,共点.点评:证明多条直线共点时,与证明多点共线是一样的.[例6]已知:a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面.分析:弄清楚四条直线不共点且两两相交的含义:四条直线不共点,包括有三条直线共点的情况;两两相交是指任何两条直线都相交.在此基础上,根据平面的性质,确定一个平面,再证明所有的直线都在这个平面内.证明 1?若当四条直线中有三条相交于一点,不妨设a,b,c相交于一点 A ∴直线d和A确定一个平面α.又设直线d与a,b,c分别相交于E,F,G,则 A,E,F,G∈α.∵ A,E∈α,A,E∈a,∴ aα.同理可证 bα,cα.∴ a,b,c,d在同一平面α内.2?当四条直线中任何三条都不共点时,如图.∵这四条直线两两相交,则设相交直线a,b确定一个平面α.设直线c与a,b分别交于点H,K,则 H,K∈α.又∵ H,K∈c,∴ cα.同理可证 dα.∴ a,b,c,d四条直线在同一平面α内.点评:证明若干条线(或若干个点)共面的一般步骤是:首先由题给条件中的部分线(或点)确定一个平面,然后再证明其余的线(或点)均在这个平面内.本题最容易忽视“三线共点”这一种情况.因此,在分析题意时,应仔细推敲问题中每一句话的含义.[例7]在立方体ABCD-A1B1C1D1中,(1)找出平面AC的斜线BD1在平面AC内的射影;(2)直线BD1和直线AC的位置关系如何?(3)直线BD1和直线AC所成的角是多少度?解:(1)连结BD, 交AC于点O .(2)BD1和AC是异面直线.(3)过O作BD1的平行线交DD1于点M,连结MA、MC,则∠MOA或其补角即为异面直线AC和BD1所成的角.不难得到MA=MC,而O为AC的中点,因此MO⊥AC,即∠MOA=90°,∴异面直线BD1与AC所成的角为90°.[例8] 已知:在直角三角形ABC中,A为直角,PA⊥平面ABC,BD⊥PC,垂足为D,求证:AD⊥PC证明:∵PA ⊥平面ABC∴PA⊥BA又∵BA⊥AC ∴BA⊥平面PAC∴AD是BD在平面PAC内的射影又∵BD⊥PC∴AD⊥PC.(三垂线定理的逆定理)四、典型习题导练1.如图, P是△ABC所在平面外一点,连结PA、PB、PC后,在包括AB、BC、CA的六条棱所在的直线中,异面直线的对数为( )A.2对B.3对C.4对D.6对2. 两个正方形ABCD、ABEF所在的平面互相垂直,则异面直线AC和BF所成角的大小为.3. 在棱长为a的正方体ABCD-A1B1C1D1中,体对角线DB1与面对角线BC1所成的角是,它们的距离是 .4.长方体中,则所成角的大小为_ ___.5.关于直角AOB在定平面α内的射影有如下判断:①可能是0°的角;②可能是锐角;③可能是直角;④可能是钝角;⑤可能是180°的角. 其中正确判断的序号是_____.(注:把你认为正确的序号都填上).6.在空间四边形ABCD中,AB⊥CD,AH⊥平面BCD,求证:BH⊥CD7.如图正四面体中,D、E是棱PC上不重合的两点;F、H分别是棱PA、PB上的点,且与P 点不重合.求证:EF和DH是异面直线.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何公里、定理和推论1过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交 d﹤r②直线L和⊙O相切 d=r③直线L和⊙O相离 d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d﹥R+r ②两圆外切 d=R+r③两圆相交 R-r﹤d﹤R+r(R﹥r)④两圆内切 d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)。

相关文档
最新文档