高考数学压轴专题最新备战高考《不等式》专项训练
高考数学压轴专题(易错题)备战高考《不等式选讲》基础测试题及解析

【最新】数学高考《不等式选讲》专题解析一、141.若,则不等式的解集为 A .B .C .D .【答案】D 【解析】 【分析】由绝对值三角不等式的性质得出,由,得出,借助正弦函数图象可得出答案。
【详解】 因为成立,所以,又,所以,,故选:D 。
【点睛】本题考查绝对值三角不等式的应用,再利用绝对值不等式时,需要注意等号成立的条件,属于基础题。
2.已知函数()1f x x x a =++-,若()2f x ≥恒成立,则a 的取值范围是( ) A .(][),22,-∞-+∞U B .(][),31,-∞-+∞U C .(][),13,-∞-+∞U D .(][),04,-∞+∞U【答案】B 【解析】 【分析】利用绝对值三角不等式确定()f x 的最小值;把()2f x ≥恒成立的问题,转化为其等价条件去确定a 的范围。
【详解】根据绝对值三角不等式,得1(1)()1x x a x x a a ++-≥+--=+∴()1f x x x a =++-的最小值为1a +()2f x ≥Q 恒成立,∴等价于()f x 的最小值大于等于2,即12a +≥ ∴12a +≥或12a +≤-,1a ≥或3a ≤-,故选B 。
【点睛】本题主要考查了绝对值三角不等式的应用及如何在恒成立条件下确定参数a 的取值范围。
3.猜测使2n a n >对任意正整数n 恒成立的最小正整数a 的值为( ) A .2B .3C .4D .5【答案】B 【解析】 【分析】由题意结合选项利用特殊值排除选项A ,然后利用数学归纳法证明选项B 正确即可. 【详解】注意到当2,4a n ==时,2n a n >不成立,则2a =不合题意, 当3a =时,不等式即23n n >, 当1n =时,不等式即31>, 当2n =时,不等式即94>,下面用数学归纳法证明该式对于*,3n N n ∈≥成立, 当3n =时,不等式即279>,明显成立, 假设()*3,n k k k N=≥∈时不等式成立,即23kk >,则当1n k =+时,123333k k k +=⋅>, 而()()222*31221k k k k k N-+=--∈,结合二次函数的性质可知,当2k >时,22221222210k k -->⨯-⨯->,故当*3,k k N ≥∈时,()()2222310,31k k k k -+>>+.综上可得,23n n >对任意的n 均成立. 则最小正整数a 的值为3. 故选:B . 【点睛】本题主要考查数学归纳法的应用,排除法处理选择题的技巧等知识,意在考查学生的转化能力和计算求解能力.4.已知()f x 是定义域为R 的偶函数,当0x „时,2()4f x x x =+,则(2)5f x +>的解集为( )A .(,5)(5,)-∞-+∞UB .(,5)(3,)-∞-+∞UC .(,7)(3,)-∞-+∞UD .(,7)(2,)-∞-+∞U【答案】C 【解析】 【分析】根据偶函数以及当0x „时,2()4f x x x =+,可得0x ≥时的表达式,由此求得(2)(|2|)f x f x +=+,再代入可解得.【详解】∵()f x 是定义域为R 的偶函数,∴当0x ≥时,0x -≤,所以22()()()4()4f x f x x x x x =-=-+-=-.由()25f x +>以及()f x 为偶函数,得(|2|)5f x +>,∴2|2|4|2|5x x +-+>,所以(|2|5)(|2|1)0x x +-++>, 因为|2|10x ++>, 所以|2|5x +>,所以25x +>或25x +<-, 解得7<-x 或 3.x > 故选C 【点睛】本题考查了利用函数的奇偶性求函数解析式,绝对值不等式的解法,属于中档题.5.若函数()(0)1af x ax a x =+>-在(1,)+∞上的最小值为15,函数()1=+++g x x a x ,则函数()g x 的最小值为( ).A .2B .6C .4D .1【答案】C 【解析】 【分析】当1x >,0a >时,由基本不等式可得()3≥f x a ,又()f x 最小值为15,可得出5a =,再由绝对值三角不等式()()()g =5151=4+++≥+-+x x x x x ,即可得出结果. 【详解】当1x >,0a >时,()()111=+=+-+--a a f x ax a x a x x≥a 3=a ,当且仅当2x =时等号成立,由题可得315a =,即5a =,所以()1=+++g x x a x ()()=5151=4+++≥+-+x x x x ,当且仅当()()510++≤x x 即51x -≤≤-时等号成立,所以函数()g x 的最小值为4.故选:C 【点睛】本题主要考查基本不等式:)0,0a b ab +?>,当且仅当a b =时等号成立,绝对值的三角不等式: +≥-a b a b ,当且仅当0ab ≤时等号成立.6.2018年9月24日,英国数学家M.F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和.记无穷数列21n ⎧⎫⎨⎬⎩⎭的各项的和222111123S n L L =+++++,那么下列结论正确的是( ) A .413S << B .5443S << C .322S << D .2S >【答案】C 【解析】 【分析】由2n ≥时,()2111111n n n n n<=---,由裂项相消求和以及不等式的性质可得2S <,排除D ,再由前3项的和排除A ,B ,从而可得到结论. 【详解】由2n ≥时,()2111111n n n n n<=---, 可得222111111111...11...232231n S n n n =++++<+-+-++--12n=-, n →+∞时,2S →,可得2S <,排除D ,由22111341123363++=+>,可排除,A B ,故选C. 【点睛】本题主要考查裂项相消法求数列的和,以及放缩法和排除法的应用,属于中档题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性.7.在平面内,已知向量(1,0)a =v ,(0,1)b =v ,(1,1)c =v,若非负实数,,x y z 满足1x y z ++=,且23p xa yb zc =++v v v v,则( )A .p vB .p v的最大值为C .p vD .p v的最大值为【答案】A 【解析】 【分析】求出p v 的坐标,表示p v ,即:p v柯西不等式即可求得其最小值,问题得解. 【详解】因为()1,0a =v ,()0,1b =v ,()1,1c =v,所以23p xa yb zc =++v v v v=()3,23x z y z ++,又非负实数,,x y z 满足1x y z ++=,所以01z ≤≤,所以p v ==≥==≥= 当且仅当()()31232,0x z y z z +⨯=+⨯=时,等号成立. 即:当且仅当41,,055x y z ===时,等号成立.所以p v, 故选A. 【点睛】本题主要考查了柯西不等式的应用,还考查了向量的模及坐标运算,考查构造能力,属于中档题.8.已知2(3)f x x x =+,若1x a -≤,则下列不等式一定成立的是( ) A .33()()f x f a a -≤+ B .24()()f x f a a -≤+ C .()()5f x f a a -≤+ D .2|()()2|(1)f x f a a -≤+【答案】B 【解析】 【分析】先令a=0,排除A ,C,D,再利用绝对值三角不等式证明选项B 成立 【详解】令a=0,则1x ≤,即-1≤x≤1,()()()()()0?f x f a f x f f x -=-=≤4,此时A,C,D 不成立,下面证明选项B 成立()()22 33f x f a x x a a -=+--=()() 3x a x a -++≤()()3x a x a -++≤()3x a ++=23x a a -++≤23x a a -++≤24a +故选:B . 【点睛】本题考查了绝对值三角不等式的应用,特值法,结合二次函数最值分析问题,准确推理计算是关键,是基础题.9.若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =( ) A .2- B .2 C .3D .3-【答案】D 【解析】 【分析】由绝对值不等式的性质可知,()22329ax ax -⇔-<<,从而可得到()229ax -=的两个解为2151,33x x -==,即可求出a 的值. 【详解】由题意可知0a ≠,()22329ax ax -⇔-<<,即22450a x ax --<, 故一元二次方程22450a x ax --=的解为2151,33x x -==, 则1212224455,39a x x x x a a +==-=-=-,解得3a =-. 故答案为D. 【点睛】本题主要考查了绝对值不等式的解法,考查了学生的计算能力,属于基础题.10.设0x 为函数()sin f x x π=的零点,且满足001()112x f x ++<,则这样的零点有( ) A .18个 B .19个C .20个D .21个【答案】D 【解析】从题设可得00()x k x k k Z ππ=⇒=∈,又001()sin()sin()(1)222k f x x k ππππ+=+=+=-,故(1)11k k +-<,当k 取奇数时,12k <,则1,3,5,7,9,11k =±±±±±±,共12个数;当k 取偶数时,10k <,则0,2,4,6,8k =±±±±,共9个数,所以这样的零点的个数共有21个,应选答案D 。
高考数学压轴专题最新备战高考《不等式》真题汇编及答案

【最新】数学《不等式》期末复习知识要点一、选择题1.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122y x⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yxx y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值,所以z的最小值为min314z=--=-,则1 222yx x y-⎛⎫⋅=⎪⎝⎭的最小值为41216-=.故选:A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.3.设变量,x y满足约束条件211x yx yx y-≥⎧⎪+≥⎨⎪+≤⎩,则目标函数5z x y=+的最大值为()A.2 B.3 C.4 D.5【答案】D【解析】【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】根据约束条件211x yx yx y-≥⎧⎪+≥⎨⎪+≤⎩画出可行域如图:目标函数z=5x+y可化为y=-5x+z,即表示斜率为-5,截距为z的动直线,由图可知,当直线5z x y=+过点()1,0A时,纵截距最大,即z最大,由211x yx y+=⎧⎨+=⎩得A(1,0)∴目标函数z=5x+y的最小值为z=5故选D【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.设实数满足条件则的最大值为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.5.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.6.已知实数x ,y 满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C .D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,x y +≥ (2)当0y <时,x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2d ==,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.7.若,,则()A.B.C.D.【答案】C【解析】【分析】【详解】试题分析:用特殊值法,令,,得,选项A错误,,选项B错误,,选项D错误,因为选项C正确,故选C.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.8.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都、两种设备上加工,生产一件甲产品需用A设备2小时,B设备6小时;生产一需要在A B件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.9.某企业生产甲、乙两种产品需用到A,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用总量如下表所示.若生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 每天原料的可用总量 A(吨)3212B(吨)128A.12万元B.16万元C.17万元D.18万元【答案】D【解析】【分析】根据条件列可行域与目标函数,结合图象确定最大值取法,即得结果.【详解】设每天甲、乙产品的产量分别为x吨、y吨由已知可得3212,28,0,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数34z x y=+,作出约束条件表示的可行域如图中阴影部分所示,可得目标函数在点P处取得最大值,由28,3212,x yx y+=⎧⎨+=⎩得()2,3P,则max324318z=⨯+⨯=(万元).选D.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.10.设x,y满足102024xx yx y-≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x=r,()1,b m y=-r,则满足a b⊥r r的实数m 的最小值为()A.125B.125-C.32D.32-【答案】B【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.11.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32B .53 C .74D .95【答案】D 【解析】 【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案; 【详解】 当2m n +=时,Q131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭,当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D 【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.12.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】通过列举,和推理证明可以推出充要性. 【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->; 故“()0ab a b ->”是“0a b >>”的必要不充分条件, 故选:B. 【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.13.在ABC ∆中,222sin a b c C ++=,则ABC ∆的形状是 ( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等边三角形【答案】D 【解析】 【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫-⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案. 【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=-⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭, 因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭所以03C π-=,即3C π=,又a b =,所以ABC ∆是等边三角形, 故选D 项. 【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.14.已知M 、N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )AB.2C.D .172【答案】A 【解析】 【分析】先作可行域,再根据图象确定MN 的最大值取法,并求结果. 【详解】作可行域,为图中四边形ABCD 及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN 的最大值为BD=21417+=,选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.15.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值. 【详解】 由2x y xy +=得:211x y+= ()212222225529x y x yx y x y x y y x y x ⎛⎫∴+=++=++≥+⋅= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号) 2x y ∴+的最小值为9故选:B 【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.16.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C 【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.17.实数,x y 满足020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y -的最大值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据平移得到答案. 【详解】如图所示,画出可行域和目标函数,2z x y =-,则2y x z =-,z 表示直线与y 轴截距的相反数,根据平移知:当3,3x y ==时,2z x y =-有最大值为3. 故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.18.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3【答案】B 【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.19.设x ,y 满足约束条件则的最大值与最小值的比值为( )A .B .C.D .【答案】A 【解析】 【分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案。
高考数学压轴专题最新备战高考《不等式》难题汇编含答案解析

【最新】《不等式》专题一、选择题1.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.2.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .42B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.3.若,x y满足约束条件360601x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩,则122yx⎛⎫⋅ ⎪⎝⎭的最小值为( )A.116B.18C.1 D.2【答案】A【解析】【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解.【详解】由题意,画出约束条件360601x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A-,(5,1)B,(3,3)C,因为1222yx x y-⎛⎫⋅=⎪⎝⎭,令z x y=-,当直线y x z=-经过A时,z取得最小值,所以z的最小值为min314z=--=-,则1222yx x y-⎛⎫⋅=⎪⎝⎭的最小值为41216-=.故选:A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.4.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[; B.(,-∞C.)+∞D.(,)-∞⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,1111332222a a d a a ⎛⎫=--=-+≤-= ⎪⎝⎭1a 时等号成立; 当10a <时,11322a d a =--≥=1a =立;∴实数d的取值范围为(,)-∞⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.5.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( )A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.6.已知0a b >>,则下列不等式正确的是( ) A .ln ln a b b a ->- B.|||b a < C .ln ln a b b a -<- D.|||b a ->【答案】C 【解析】 【分析】利用特殊值代入法,作差比较法,排除不符合条件的选项,即可求解,得到答案. 【详解】由题意,因为0a b >>,取,1a e b ==,则ln 0,ln a b b a e -=-=,1b a e ==-,可排除A 、D 项;取11,49a b ==711812b a ==,可排除B 项; 因为满足0a b >>条件的排除法,可得A 、B 、D 是错误的.故选:C . 【点睛】本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.7.在ABC V 中,,,a b c 分别为A ∠,B Ð,C ∠所对的边,函数32()1f x x bx x =+++的导函数为()f x ',当函数[]()ln ()g x f x '=的定义域为R 时,B Ð的取值范围为( )A .,63ππ⎡⎤⎢⎥⎣⎦B .,6ππ⎡⎫⎪⎢⎣⎭C .2,63ππ⎡⎤⎢⎥⎣⎦D .0,6π⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】首先求出函数的导数,依题意即2()320f x x bx '=+>恒成立,所以()222(2)40b a c ∆=-+-<,再结合余弦定理即可求出B 的取值范围;【详解】解:因为32()1f x x bx x =+++,所以2()32f x x bx '=++()g x 的定义域为R ,则有()222(2)40b a c ∆=-+-<,即222a c b +->,结合余弦定理,222cos 2a c b B ac +-=>,故0,6B π⎛⎫∈ ⎪⎝⎭,故选:D. 【点睛】本题考查导数的计算,对数函数的定义域以及不等式恒成立问题,属于中档题.8.已知集合{}2230A x x x =-->,(){}lg 11B x x =+≤,则()R A B =I ð( )A .{}13x x -≤<B .{}19x x -≤≤C .{}13x x -<≤D .{}19x x -<<【答案】C 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义得出集合()R A B ⋂ð. 【详解】解不等式2230x x -->,得1x <-或3x >;解不等式()lg 11x +≤,得0110x <+≤,解得19x -<≤.{}13A x x x ∴=-或,{}19B x x =-<≤,则{}13R A x x =-≤≤ð,因此,(){}13R A B x x ⋂=-<≤ð,故选:C.【点睛】本题考查集合的补集与交集的计算,同时也考查了一元二次不等式以及对数不等式的求解,考查运算求解能力,属于中等题.9.若直线过点,则的最小值等于( )A .5B .C .6D .【答案】C 【解析】∵直线过点,∴,∴,∵,∴,,,当且仅当时,等号成立,故选C.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.10.已知ABC V 外接圆的半径2R =,且223sin 2AA =.则ABC V 周长的取值范围为( ) A .(23,4]B .(4,43]C .(43,423]+D .(423,63]+【答案】C 【解析】 【分析】 由223sin 2A A =及倍角公式可得23A π=,2sin 23a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】 由题意,232cos 112A A -=-,即3cos 1A A =-,可化为 333A π⎛⎫-= ⎪⎝⎭,即3sin 32A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=, 即23A π=,2sin 23a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C 【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.11.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.12.若变量x ,y 满足2,{239,0,x y x y x +≤-≤≥则x 2+y 2的最大值是A .4B .9C .10D .12【答案】C 【解析】试题分析:画出可行域如图所示,点A (3,-1)到原点距离最大,所以22max ()10x y +=,选C.【考点】简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间的距离等,考查考生的绘图、用图能力,以及应用数学知识解决实际问题的能力.13.已知函数1()cos 2(2)sin 2f x m x m x =+-,其中12m ≤≤,若函数()f x 的最大值记为()g m ,则()g m 的最小值为( ) A .14-B .1C .3-D 31【答案】D 【解析】 【分析】2()sin (2)sin 2mf x m x m x =-+-+,令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,结合12m ≤≤可得()221122(2)31144t m m m g m y m m m=-+-===+-,再利用基本不等式即可得到答案.【详解】由已知,221()(12sin )(2)sin sin (2)sin 22m f x m x m x m x m x =-+-=-+-+, 令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,因为12m ≤≤, 所以对称轴为2111[0,]222m t m m -==-∈,所以 ()221122(2)3111144t m m m g m y m m m =-+-===+-≥=,当且仅当3m =时,等号成立. 故选:D 【点睛】本题考查换元法求正弦型函数的最值问题,涉及到二次函数的最值、基本不等式的应用,考查学生的数学运算能力,是一道中档题.14.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.15.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( ) A .169πB .89π C .1627πD .827π 【答案】A 【解析】 【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可. 【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-,∴圆柱的体积为23()(3)(02)2V r r r r π=-<<,则33333163331616442()(3)()9442939r r rV r r r r πππ++-=-=g g g g ….当且仅当33342r r =-,即43r =时等号成立.∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.16.设x ∈R ,则“|1|1x -<”是“220x x --<”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】 1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.17.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32 B .53 C .74 D .95【答案】D【解析】【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案;【详解】当2m n +=时, Q 131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+ Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭,当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.18.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225*********n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.19.若0a >,0b >,23a b +=,则36a b +的最小值为( ) A .5B .6C .8D .9【答案】D【解析】【分析】 把36a b +看成(36a b +)×1的形式,把“1”换成()123a b +,整理后积为定值,然后用基本不等式求最小值.【详解】 ∵3613a b +=(36a b +)(a +2b ) =13(366b a a b +++12) ≥13=9 等号成立的条件为66b a a b =,即a=b=1时取等 所以36a b+的最小值为9. 故选:D .【点睛】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换,是基础题20.已知,x y 满足约束条件24030220x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩则目标函数22x y z -=的最大值为( ).A .128B .64C .164D .1128【答案】B【解析】【分析】画出可行域,再求解2x y -的最大值即可.【详解】不等式组表示的平面区域如下图阴影部分所示.设2x y μ=-,因为函数2x y =是增函数,所以μ取最大值时,z 取最大值.易知2x y μ=-在A 点处取得最大值.联立220,30x y x y +-=⎧⎨+-=⎩解得4,1.x y =⎧⎨=-⎩即(4,1)A -.所以max 42(1)6μ=-⨯-=,所以6max 264z ==.故选:B【点睛】本题考查线性规划,考查化归与转化思想以及数形结合思想.。
高考数学压轴专题最新备战高考《不等式》难题汇编及答案

取 ,则 ,可排除B项;
因为满足 条件的排除法,可得A、B、D是错误的.
故选:C.
【点睛】
本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.
7.对于函数 ,若 满足 ,则称 为函数 的一对“线性对称点”.若实数 与 和 与 为函数 的两对“线性对称点”,则 的最大值为()
给出下列结论:①曲线C经过5个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到坐标原点O的距离都不超过2;③曲线C围成区域的面积大于 ;④方程 表示的曲线C在第二象限和第四象限其中正确结论的序号是( )
A.①③B.②④C.①②③D.②③④
【答案】B
【解析】
【分析】
利用基本不等式得 ,可判断②; 和 联立解得 可判断①③;由图可判断④.
⑤已知 的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则 为定值.
A.2B.3C.4D.5
【答案】C
【解析】
【分析】
①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断.
【详解】
①,命题“ ,使得 ”的否定是“ ,均有 ”,故①错误.
4.设 , 满足约束条件 ,若 的最大值为 ,则 的展开式中 项的系数为( )
A.60B.80C.90D.120
【答案】B
【解析】
【分析】
画出可行域和目标函数,根据平移得到 ,再利用二项式定理计算得到答案.
【详解】
如图所示:画出可行域和目标函数,
,即 ,故 表示直线与 截距的 倍,
根据图像知:当 时, 的最大值为 ,故 .
高考数学压轴专题专题备战高考《不等式》全集汇编附答案

【高中数学】高中数学《不等式》期末考知识点一、选择题1.已知实数x ,y 满足20x y >>,且11122x y x y+=-+,则x y +的最小值为( ). A.35+ B.45+ C.25+ D.35+ 【答案】B 【解析】 【分析】令22x y m x y n-=⎧⎨+=⎩,用,m n 表示出x y +,根据题意知111m n +=,利用1的代换后根据基本不等式即可得x y +的最小值. 【详解】20,20,20x y x y x y >>∴->+>Q ,令22x y m x y n -=⎧⎨+=⎩,解得2525m n x n my +⎧=⎪⎪⎨-⎪=⎪⎩,则0,0m n >>,111m n +=,223111555m n n m n m x y m n +-+⎛⎫⎛⎫∴+=+⨯=⨯+ ⎪⎪⎝⎭⎝⎭13113(455n m m n ⎛⎫=⨯+++≥⨯+ ⎪⎝⎭=当且仅当3n mm n=,即m =,即22)x y x y -=+即931515x y +==时取等号. 故选:B . 【点睛】本题主要考查的是利用基本不等式求最值的问题,换元后根据1的代换是解题的关键,考查学生的计算能力,是中档题.2.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞U B .(1,3)- C .(1,3)D .(,1)(3,)-∞+∞U【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集. 【详解】由0ax b ->的解集为()1,+?,可知0a >且1ba=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.3.已知0a b >>,则下列不等式正确的是( ) A .ln ln a b b a ->- B .||||a b b a -<- C .ln ln a b b a -<- D .||||a b b a ->-【答案】C 【解析】 【分析】利用特殊值代入法,作差比较法,排除不符合条件的选项,即可求解,得到答案. 【详解】由题意,因为0a b >>,取,1a e b ==,则ln 0,ln a b b a e -=-=,1,1a b e b a e -=--=-,可排除A 、D 项;取11,49a b ==,则71,1812a b b a -=-=,可排除B 项; 因为满足0a b >>条件的排除法,可得A 、B 、D 是错误的. 故选:C . 【点睛】本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.4.若,,则( )A .B .C .D .【答案】C【分析】 【详解】试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误,因为选项C 正确,故选C . 【考点】指数函数与对数函数的性质 【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.5.以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直,且该三棱锥外接球的表面积为8π,则以A 为顶点,以面BCD 为下底面的三棱锥的侧面积之和的最大值为( ) A .2 B .4 C .6 D .7 【答案】B 【解析】 【分析】根据题意补全几何图形为长方体,设AB x =,AC y =,AD z =,球半径为R ,即可由外接球的表面积求得对角线长,结合侧面积公式即可由不等式求得面积的最大值. 【详解】将以A 为顶点的三棱锥A BCD -,其侧棱两两互相垂直的三棱锥补形成为一个长方体,如下图所示:长方体的体对角线即为三棱锥A BCD -外接球的直径, 设AB x =,AC y =,AD z =,球半径为R , 因为三棱锥外接球的表面积为8π, 则284R π=π, 解得2R =,所以体对角线为2,所以2228x y z ++=,111222S yz xy xz =++侧面积 由于()()()()222222240x y zS x y y x x z ++-=-+-+-≥,所以416S ≤,故4S ≤,即三棱锥的侧面积之和的最大值为4, 故选:B. 【点睛】本题考查了空间几何体的综合应用,三棱锥的外接球性质及应用,属于中档题.6.已知函数24,0()(2)1,0x x f x xx x ⎧+>⎪=⎨⎪+-≤⎩,若方程()20f x m -=恰有三个不同的实数根,则实数m 的取值范围是( )A .(2,)+∞B .(4,)+∞C .(2,4)D .(3,4)【答案】A 【解析】 【分析】画出函数()f x 的图象,再根据基本不等式求解4y x x=+的最小值,数形结合求解即可. 【详解】画出函数()f x 的图象,如图所示.当0x >时,4()4f x x x=+….设()2g x m =,则方程()20f x m -=恰有三个不同的实数根,即()f x 和()2g x m =的图象有三个交点.由图象可知,24m >,即2m >,故实数m 的取值范围是(2,)+∞.故选:A 【点睛】本题考查分段函数的性质和图象以及函数的零点,考查数形结合以及化归转化思想.7.已知,x y 满足33025010x y x y x y -+≥⎧⎪+≥⎨⎪+-≤⎩,则36y z x -=-的最小值为( )A .157B .913C .17D .313【答案】D 【解析】 【分析】画出可行域,目标函数36y z x -=-的几何意义是可行域内的点与定点(6,3)P 连接的斜率,根据图像得到答案. 【详解】画出可行域如图中阴影部分所示, 目标函数36y z x -=-的几何意义是可行域内的点与定点(6,3)P 连接的斜率. 直线330x y -+=与直线10x y +-=交于点13(,)22A -,由图可知,当可行域内的点为A 时,PA k 最小,故min 333211362z -==--. 故选:D .【点睛】本题考查了线性规划问题,画出图像是解题的关键.8.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1 B .2 C .3 D .4【答案】D 【解析】 【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >,则1111()()24n m m n m n m n m n +=++=++…,当且仅当n mm n =且1m n +=即12m n ==时取等号, 故选:D . 【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.9.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则2n x x ⎛ ⎝的展开式中2x 项的系数为( ) A .60 B .80C .90D .120【答案】B 【解析】【分析】画出可行域和目标函数,根据平移得到5n =,再利用二项式定理计算得到答案. 【详解】如图所示:画出可行域和目标函数,32z x y =-+,即322zy x =+,故z 表示直线与y 截距的2倍, 根据图像知:当1,1x y =-=时,32z x y =-+的最大值为5,故5n =.52x x ⎛- ⎪⎝⎭展开式的通项为:()()35552155221rr r r r r r r T C x C xx ---+⎛=⋅-=⋅⋅-⋅ ⎪⎝⎭, 取2r =得到2x 项的系数为:()225252180C -⋅⋅-=.故选:B .【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.10.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.11.已知,a b 都是正实数,则222a ba b a b+++的最大值是( ) A .223-B .322-C .221D .43【答案】A 【解析】 【分析】设2,2m a b n a b =+=+,将222a b a b a b+++,转化为2222233a b n ma b a b m n +=--++,利用基本不等式求解. 【详解】设2,2m a b n a b =+=+,所以22,33m n n ma b --==,所以2222222333a b n m a b a b m n +=--≤-=-++, 当且仅当233n mm n=时取等号.所以222a b a b a b +++的最大值是23-. 故选:A 【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.12.已知ABC V 外接圆的半径2R =,且2sin 2AA =.则ABC V 周长的取值范围为( )A .B .(4,C .4+D .(4+【答案】C 【解析】 【分析】由2sin 2A A =及倍角公式可得23A π=,2sin a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】由题意,22cos 1123A A -=-,即cos 13A A -=-,可化为33A π⎛⎫-= ⎪⎝⎭,即sin 3A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=,即23A π=,2sin a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C 【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.13.已知函数1()cos 2(2)sin 2f x m x m x =+-,其中12m ≤≤,若函数()f x 的最大值记为()g m ,则()g m 的最小值为( ) A .14-B .1 C.D1【答案】D 【解析】 【分析】2()sin (2)sin 2mf x m x m x =-+-+,令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,结合12m ≤≤可得()221122(2)31144t m m m g m y m m m=-+-===+-,再利用基本不等式即可得到答案.【详解】 由已知,221()(12sin )(2)sin sin (2)sin 22m f x m x m x m x m x =-+-=-+-+, 令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,因为12m ≤≤, 所以对称轴为2111[0,]222m t m m -==-∈,所以 ()221122(2)3111144t m m m g m y m m m =-+-===+-≥=,当且仅当3m =时,等号成立. 故选:D 【点睛】本题考查换元法求正弦型函数的最值问题,涉及到二次函数的最值、基本不等式的应用,考查学生的数学运算能力,是一道中档题.14.已知离散型随机变量X 服从二项分布~(,)X B n p ,且()4E X =,()D X q =,则11p q+的最小值为( ) A .2B .52C .94D .4 【答案】C【解析】【分析】根据二项分布()~X B n p ,的性质可得()E X ,()D X ,化简即44p q +=,结合基本不等式即可得到11p q+的最小值. 【详解】离散型随机变量X 服从二项分布()X B n p :,,所以有()4E X np ==, ()()1D X q np p ==-(,所以44p q +=,即14q p +=,(0p >,0q >) 所以11114q p p q p q ⎛⎫⎛⎫+=++= ⎪⎪⎝⎭⎝⎭ 5592144444q p q p p q p q ⎛⎫++≥⨯=+= ⎪⎝⎭, 当且仅当423q p ==时取得等号. 故选C .【点睛】本题主要考查了二项分布的期望与方差,考查了基本不等式,属于中档题.15.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( )A .log 3log 3a b >B .336a b +>C .133ab a b ++>D .b a a b > 【答案】B【解析】【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立.【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =;因为0a b >>,1ab >,所以336a b +>=>>,综上选B.【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.16.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A.169πB.89πC.1627πD.827π【答案】A【解析】【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.【详解】解:设圆柱的半径为r,高为x,体积为V,则由题意可得323r x-=,332x r∴=-,∴圆柱的体积为23()(3)(02)2V r r r rπ=-<<,则33333163331616442()(3)()9442939r r rV r r r rπππ++-=-=g g g g….当且仅当33342r r=-,即43r=时等号成立.∴圆柱的最大体积为169π,故选:A.【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.17.若实数x,y满足不等式组11y xx yy≤⎧⎪+≤⎨⎪≥-⎩,则2x y+的最小值是( )A .3B.32 C .0 D .3-【答案】D【解析】【分析】 根据已知的约束条件画出满足约束条件的可行域,再由目标函数2z x y =+可得2y x z =-+,此时Z 为直线在y 轴上的截距,根据条件可求Z 的最小值.【详解】解:作出不等式组所表示的平面区域,如图所示得阴影部分的ABC ∆,由2z x y =+可得2y x z =-+,则z 为直线在y 轴上的截距把直线:2l y x =-向上平移到A 时,z 最小,此时由1y x y =⎧⎨=-⎩可得(1,1)A -- 此时3z =-,故选:D .【点睛】本题考查用图解法解决线性规划问题,分析题目的已知条件,找出目标函数中的z 的意义是关键,属于中档题.18.实数,x y 满足020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y -的最大值为( )A .1B .2C .3D .4【答案】C【解析】【分析】画出可行域和目标函数,根据平移得到答案.【详解】如图所示,画出可行域和目标函数,2z x y =-,则2y x z =-,z 表示直线与y 轴截距的相反数,根据平移知:当3,3x y ==时,2z x y =-有最大值为3.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.19.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( )A .1(1,)2-B .1(,1)(,)2-∞-+∞UC .1(,1)2-D .1(,)(1,)2-∞-⋃+∞ 【答案】B【解析】【分析】判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2x x f x e e x -=-+,定义域为R ,且满足()()sin 2x x f x e e x --=-+- ()()sin2x x e e x f x -=--+=-,∴()f x 为R 上的奇函数;又()'2cos222cos20x x f x e e x x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>,得()()()221f x f x f x ->-=-, ∴221x x ->-,即2210x x +->,解得1x <-或12x >, 所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞⎪⎝⎭. 故选B .【点睛】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.20.已知107700,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,表示的平面区域为D ,若“(,),2x y x y a ∃+>”为假命题,则实数a 的取值范围是( )A .[5,)+∞B .[2,)+∞C .[1,)+∞D .[0,)+∞ 【答案】A【解析】【分析】作出不等式组表示的可行域,结合目标函数的几何意义可得目标函数最大值,再根据特称命题和全称命题的真假关系得出“(,),2x y x y a ∀+≤”为真命题,由恒等式的思想可得实数a 的取值范围.【详解】绘制不等式组表示的可行域如图中阴影部分(含边界)所示,令2Z x y =+得2y x Z =-+,结合目标函数的几何意义可得目标函数在点A 处取得最大值,联立直线方程10770x y x y -+=⎧⎨--=⎩得点47,33A ⎛⎫ ⎪⎝⎭,所以2Z x y =+的最大值为5, 因为“(,),2x y R x y a ∃∈+>”为假命题,所以“(,),2x y x y a ∀+≤”为真命题,所以实数a 的取值范围是5a ≤,故选:A.【点睛】本题考查线性规划问题的最值,以及特称命题与全称命题的关系和不等式的恒成立思想,属于中档题.。
高考数学压轴专题(易错题)备战高考《不等式》真题汇编含答案

数学《不等式》复习资料一、选择题1.已知107700,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,表示的平面区域为D ,若“(,),2x y x y a ∃+>”为假命题,则实数a 的取值范围是( ) A .[5,)+∞ B .[2,)+∞C .[1,)+∞D .[0,)+∞【答案】A 【解析】 【分析】作出不等式组表示的可行域,结合目标函数的几何意义可得目标函数最大值,再根据特称命题和全称命题的真假关系得出“(,),2x y x y a ∀+≤”为真命题,由恒等式的思想可得实数a 的取值范围.【详解】绘制不等式组表示的可行域如图中阴影部分(含边界)所示,令2Z x y =+得2y x Z =-+,结合目标函数的几何意义可得目标函数在点A 处取得最大值,联立直线方程10770x y x y -+=⎧⎨--=⎩得点47,33A ⎛⎫⎪⎝⎭,所以2Z x y =+的最大值为5,因为“(,),2x y R x y a ∃∈+>”为假命题,所以“(,),2x y x y a ∀+≤”为真命题,所以实数a的取值范围是5a ≤, 故选:A.【点睛】本题考查线性规划问题的最值,以及特称命题与全称命题的关系和不等式的恒成立思想,属于中档题.2.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( )A .3B .1C .2D .32【答案】D 【解析】 【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n +的最小值. 【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()111111515193222323232322n m n m m n m n m n m n m n ⎛⎫⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+⋅=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.3.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( ) A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.4.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.5.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5B 45C 5D 25【答案】C 【解析】 【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离, 所以AB ()()2242325-+-=故选:C . 【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.6.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.7.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .8【答案】C 【解析】 【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点C 时,z 取得最大值.【详解】解:作出约束条件表示的可行域是以(1,0),(1,0),(2,3)-为顶点的三角形及其内部,如下图表示:当目标函数经过点()2,3C 时,z 取得最大值,最大值为7.故选:C. 【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.8.已知集合{}2230A x x x =-->,(){}lg 11B x x =+≤,则()R A B =I ð( )A .{}13x x -≤<B .{}19x x -≤≤C .{}13x x -<≤D .{}19x x -<<【答案】C 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义得出集合()R A B ⋂ð. 【详解】解不等式2230x x -->,得1x <-或3x >;解不等式()lg 11x +≤,得0110x <+≤,解得19x -<≤.{}13A x x x ∴=-或,{}19B x x =-<≤,则{}13R A x x =-≤≤ð,因此,(){}13R A B x x ⋂=-<≤ð,故选:C. 【点睛】本题考查集合的补集与交集的计算,同时也考查了一元二次不等式以及对数不等式的求解,考查运算求解能力,属于中等题.9.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A B .1)C .D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案.【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x yx x PM P P M x F x Q P x x-+-+====+≥-,当4x x =,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.10.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1 B .2 C .3 D .4【答案】D 【解析】 【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >,则1111()()24n m m n m n m n m n +=++=++…,当且仅当n mm n =且1m n +=即12m n ==时取等号, 故选:D . 【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.11.在三角形ABC 中,给出命题:p “2ab c >”,命题:q “3C π<”,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】 【分析】由余弦定理将2c 化为222cos a b ab C +-,整理后利用基本不等式求得12cos 2C +>,求出C 范围,即可判断充分性,取4a =,7b =,6c =,则可判断必要性不成立,两者结合可得正确的选项. 【详解】充分性:由余弦定理,2222cos c a b ab C =+-, 所以2ab c >,即222cos ab a b ab C >+-,整理得,2212cos a b C ab++>,由基本不等式,222a b ab ab+≥=,当且仅当a b =时等号成立, 此时,12cos 2C +>,即1cos 2C >,解得3C π<, 充分性得证;必要性:取4a =,7b =,6c =,则164936291cos 247562C +-==>⨯⨯,故3C π<,但228ab c =<,故3C π<推不出2ab c >.故必要性不成立; 故p 是q 的充分不必要条件. 故选:A 【点睛】本题主要考查充分必要条件的判断、余弦定理的应用和基本不等式的应用,考查学生分析转化能力,属于中档题.12.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.13.已知函数()2f x ax bx =+,满足()()241f f -≥≥,()12f -≤,则()2f 的最大值为( ) A .12 B .13C .14D .15【答案】C 【解析】 【分析】根据已知条件可得,a b 满足的不等式2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,作出不等式组所表示的平面区域,又()242f a b =+,利用线性规划即可求出()2f 的最大值.【详解】由已知得2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,可得(),P a b 的表示的平面区域如图:可求出()3,1A ,()2,2B ,()0,2C -, 目标函数()242z f a b ==+,可化为122b a z =-+,当直线过点A 时,max 14z =. 故选:C. 【点睛】本题主要考查求线性约束条件下的最值计算,关键是根据,a b 满足的不等式作出可行域,并将目标函数()242z f a b ==+变形为122b a z =-+进行平移,找到截距的最大值.14.已知x ,y 满足约束条件02340x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )A .2B .12C .-2D .12-【答案】A 【解析】 【分析】由约束条件可得到可行域,根据图象可知最优解为()2,0A ,代入可构造方程求得结果. 【详解】由约束条件可知可行域如下图阴影部分所示:当直线:l y ax z =-+经AOB V 区域时,当l 过点()2,0A 时,在y 轴上的截距最大, 即()2,0A 为最优解,42a ∴=,解得:2a =. 故选:A . 【点睛】本题考查线性规划中的根据目标函数的最值求解参数值的问题,关键是能够通过约束条件准确得到可行域,根据数形结合的方式确定最优解.15.已知正数x ,y 满足144x y+=,则x y +的最小值是( ) A .9 B .6C .94D .52【答案】C 【解析】 【分析】 先把x y +转化成114()4x y x y ⎛⎫+⋅+ ⎪⎝⎭,展开后利用均值不等式即可求解. 【详解】Q 正数x ,y 满足144x y+=, 11414149()14524444y x y x x y x y x y x y x y ⎛⎛⎫⎛⎫∴+=+⋅+=++++⨯= ⎪ ⎪ ⎝⎭⎝⎭⎝…, 当且仅当4144y x x yx y⎧=⎪⎪⎨⎪+=⎪⎩,即34x =,32y =时,取等号.故选:C 【点睛】本题主要考查了基本不等式在最值问题中的应用,基本不等式一定要把握好“一正,二定,三相等”的原则,属于基础题.16.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤< B .{}01x x <<C .{}02x x ≤<D .{}02x x <<【答案】B 【解析】 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.17.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是 A .3 B .4 C .92D .112【答案】B 【解析】 【详解】解析:考察均值不等式2228(2)82x y x y x y +⎛⎫+=-⋅≥- ⎪⎝⎭,整理得2(2)4(2)320x y x y +++-≥即(24)(28)0x y x y +-++≥,又x+2 y>0,24x y ∴+≥18.设x ,y 满足约束条件则的最大值与最小值的比值为( )A .B .C .D .【答案】A 【解析】 【分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案。
高考数学压轴专题(易错题)备战高考《不等式》难题汇编附答案解析
【高中数学】数学《不等式》高考复习知识点一、选择题1.已知x ,y 满足约束条件02340x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )A .2B .12C .-2D .12-【答案】A 【解析】 【分析】由约束条件可得到可行域,根据图象可知最优解为()2,0A ,代入可构造方程求得结果. 【详解】由约束条件可知可行域如下图阴影部分所示:当直线:l y ax z =-+经AOB V 区域时,当l 过点()2,0A 时,在y 轴上的截距最大, 即()2,0A 为最优解,42a ∴=,解得:2a =. 故选:A . 【点睛】本题考查线性规划中的根据目标函数的最值求解参数值的问题,关键是能够通过约束条件准确得到可行域,根据数形结合的方式确定最优解.2.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( ) A 3B .51)C .45D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案. 【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x y x x PM P P M x F x Q P x x-+-+====+≥-, 当4x x =,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.3.变量,x y 满足约束条件1{2314y x y x y ≥--≥+≤,若使z ax y =+取得最大值的最优解不唯一,则实数a 的取值集合是( ) A .{3,0}- B .{3,1}-C .{0,1}D .{3,0,1}-【答案】B 【解析】若0a =,结合图形可知不合题设,故排除答案A ,C ,D ,应选答案B .4.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .2B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.5.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A .[3,3];B .(,3]-∞C .3,)+∞D .(,3]3,)-∞-⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,11111133323222222a a a d a a a ⎛⎫=--=-+≤-⋅=- ⎪⎝⎭13a 时等号成立; 当10a <时,11113332222a a d a a ⎛⎫⎛⎫=--≥-⋅-= ⎪ ⎪⎝⎭⎝⎭13a =-立;∴实数d 的取值范围为(,3]3,)-∞⋃+∞.【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.6.在ABC V 中,,,a b c 分别为A ∠,B Ð,C ∠所对的边,函数32()1f x x bx x =+++的导函数为()f x ',当函数[]()ln ()g x f x '=的定义域为R 时,B Ð的取值范围为( )A .,63ππ⎡⎤⎢⎥⎣⎦B .,6ππ⎡⎫⎪⎢⎣⎭C .2,63ππ⎡⎤⎢⎥⎣⎦D .0,6π⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】首先求出函数的导数,依题意即222()3203a c f x x bx +-'=++>恒成立,所以()222(2)40b a c ∆=-+-<,再结合余弦定理即可求出B 的取值范围;【详解】解:因为32()1f x x bx x =+++,所以222()323a c f x x bx +-'=++,若()g x 的定义域为R ,则有()222(2)40b a c ∆=-+-<,即222a c b +->,结合余弦定理,222cos 22a cb B ac +-=>,故0,6B π⎛⎫∈ ⎪⎝⎭,故选:D. 【点睛】本题考查导数的计算,对数函数的定义域以及不等式恒成立问题,属于中档题.7.已知0a >,0b >,且()122y a b x =+为幂函数,则ab 的最大值为( ) A .18B .14C .12D .34【答案】A 【解析】 【分析】根据()122y a b x =+为幂函数,得到21a b +=,再将ab 变形为ab 122a b =⋅利用基本不【详解】因为()122y a b x =+为幂函数, 所以21a b +=, 又因为0a >,0b >,所以ab 2112122228a b a b +⎛⎫=⋅≤= ⎪⎝⎭,当且仅当21a b +=,2a b =即11,24a b ==取等号. 所以ab 的最大值为 18. 故选:A 【点睛】本题主要考查幂函数的定义和基本不等式的应用,还考查运算求解的能力,属于中档题.8.已知实数,x y 满足线性约束条件1020x x y x y ≥⎧⎪+≥⎨⎪-+≥⎩,则1y x +的取值范围为( )A .(-2,-1]B .(-1,4]C .[-2,4)D .[0,4]【答案】B 【解析】 【分析】 作出可行域,1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,观察可行域可得最小值. 【详解】作出可行域,如图阴影部分(含边界),1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,(1,3)A ,3(1)410QA k --==-,过Q 与直线0x y +=平行的直线斜率为-1,∴14PQ k -<≤.故选:B .【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1y x+表示动点(,)P x y 与定点(0,1)Q -连线斜率,由直线与可行域的关系可得结论.9.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +> D .112a b c+> 【答案】C 【解析】 【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案. 【详解】,a c b c >>,故2a b c +>,2a bc +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误; 故选:C . 【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.10.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】22x y +≥Q 且224x y+≤ ,422x y ∴≤≤⇒+≤ , 等号成立的条件是x y =,又x y +≥Q ,0,0x y >>21xy ∴≤⇒≤ , 等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.11.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.12.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( ) A.2⎫+∞⎪⎪⎣⎭B .[)1,+∞C.)+∞D .[)2,+∞【答案】C 【解析】 【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,20021122OMy k k k x k k +∴===+≥=2k =时取等号), 即直线OM斜率的取值范围为)+∞. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.13.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.14.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( ) A .169πB .89π C .1627πD .827π 【答案】A 【解析】 【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可. 【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-,∴圆柱的体积为23()(3)(02)2V r r r r π=-<<,则33333163331616442()(3)()9442939r r rV r r r r πππ++-=-=g g g g ….当且仅当33342r r =-,即43r =时等号成立.∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.15.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y x yx y ⎛⎫++=≤ ⎪⎝⎭, 解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x y x y +=联立,解得222x y ==, 即圆224x y +=与曲线C相切于点,(,(,, 则①和③都错误;由0xy <,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.16.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.17.设x ∈R ,则“|1|1x -<”是“220x x --<”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】 1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.18.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32 B .53 C .74 D .95【答案】D【解析】【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案;【详解】当2m n +=时, Q 131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+ Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭, 当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.19.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m m n +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.20.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+…,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭ B .[3,2]-- C .[2,3)- D .[3,2]-【答案】D【解析】【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-…,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围.【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数; 又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称,则()()()222232323f s s f s s f s s -+--+=-+-…,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤.故选:D.【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.。
高考数学压轴专题新备战高考《不等式选讲》技巧及练习题
新数学《不等式选讲》期末复习知识要点一、141.空间中两条不相交的直线与另外两条异面直线都相交,则这两条直线的位置关系是( ) A .平行或垂直 B .平行C .异面D .垂直【答案】C 【解析】 【分析】利用反证法证明得解. 【详解】不妨设空间中不相交的两条直线为a b ,,另外两条异面直线为c d ,, 由于a b ,不相交,故a b ,平行或异面, 设a c ,确定的平面为α.不妨设a b ∥,①当b α⊂时,则a b ,与直线d 的交点都在α内,故d α⊂,而这与c d ,为异面直线矛盾;②当b α⊄时,由a b ∥可知b P α,又c α⊂,故b c ,没有公共点,与b c ,相交矛盾. 由①②知假设a b ∥错误,故a b ,为异面直线. 故选C. 【点睛】本题主要考查异面直线的判定和反证法,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.已知命题p :不等式11x m ->-的解集为R ,命题q :()(52)x f x m =--是减函数,若p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是( ) A .1≤m≤2 B .1≤m<2C .1<m≤2D .1<m<2【答案】B 【解析】 【分析】若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,化简p,q 为真时,对应m 的取值范围,然后按p 真q 假或p 假q 真求解即可. 【详解】若p 为真时,10m -<,即1m < ,若q 为真时,521m ->,即2m <,若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,当p 真q 假时,12m m <⎧⎨≥⎩ ,无解,若p 假q真时,12m m ≥⎧⎨<⎩,即 12m ≤<,故选B.【点睛】本题主要考查了含且、或命题的真假,及含绝对值不等式恒成立,指数型函数的增减性,属于中档题.3.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是 ( ) A .|a+b|+|a-b|>2 B .|a+b|+|a-b|<2 C .|a+b|+|a-b|=2 D .不能比较大小【答案】B 【解析】选B.当(a+b)(a-b )≥0时,|a+b|+|a-b|=|(a+b)+(a-b)|=2|a|<2, 当(a+b)(a-b)<0时,|a+b|+|a-b|=|(a+b)-(a-b)|=2|b|<2.4.设a >0,b >0,且ab -(a +b)≥1,则( )A .a ++1)B .a ++1C .a -1)2D .a +b >+1)【答案】A 【解析】 【分析】2a b +.所以ab≤14 (a +b)2,所以14(a +b)2-(a +b)≥ab -(a +b)≥1,再解不等式 (a +b) 2-4(a +b)-4≥0得解. 【详解】2a b +.所以ab≤14(a +b)2. 所以14(a +b)2-(a +b)≥ab -(a +b)≥1. 所以(a +b) 2-4(a +b)-4≥0.因为a >0,b >0,所以a +b≥2+ 故答案为:A 【点睛】本题主要考查基本不等式和不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.5.2018年9月24日, 英国数学家M.F 阿蒂亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动. 黎曼猜想来源于一些特殊数列求和, 记2221111.........,23S n 则()=+++++A .413S <<B .4332S <<C .322S << D .2S > 【答案】C 【解析】 【分析】由题意利用不等式放缩后裂项确定S 的范围即可. 【详解】由题意可知:222111123S n =+++++L L()111123341n n >+++++⨯⨯+L L 111111123341n n ⎛⎫⎛⎫⎛⎫=+-+-++-+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭L L 13122>+=, 且222111123S n =+++++L L()111112231n n <+++++⨯⨯-⨯L L 11111112231n n L L ⎛⎫⎛⎫⎛⎫=+-+-++-+ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭122n L =-+<,综上可得:322S <<. 本题选择C 选项. 【点睛】本题的核心是考查裂项求和的方法,使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.6.已知a ,b 均为正数,且20ab a b --=,则22214a b a b-+-的最小值为( )A .6B .7C .8D .9 【答案】B 【解析】 【分析】a ,b 均为正数,且ab ﹣a ﹣2b =0,可得21a b+=1,根据柯西不等式求出代数式的最小值即可. 【详解】∵a ,b 均为正数,且ab ﹣a ﹣2b =0,∴21a b+=1. 则22214a b a b-+- 24a =+b 2﹣1, 又因为2a +b =(21a b +)(2a +b )22b a a b=++2≥2+2=4,当且仅当a =4,b =2时取等号.∴(24a +b 2)(1+1)≥(2a +b )2≥16,当且仅当a =4,b =2时取等号.∴24a +b 2≥8, ∴224a a-+b 2214a b -=+b 2﹣1≥7.故选:B . 【点睛】本题考查“乘1法”、基本不等式的性质、柯西不等式,考查了推理能力与计算能力,属于中档题.7.在平面内,已知向量(1,0)a =v ,(0,1)b =v ,(1,1)c =v,若非负实数,,x y z 满足1x y z ++=,且23p xa yb zc =++v v v v,则( )A .p vB .p v的最大值为C .p vD .p v的最大值为【答案】A 【解析】 【分析】求出p v 的坐标,表示p v ,即:p v 柯西不等式即可求得其最小值,问题得解.【详解】因为()1,0a =v ,()0,1b =v ,()1,1c =v,所以23p xa yb zc =++v v v v=()3,23x z y z ++,又非负实数,,x y z 满足1x y z ++=,所以01z ≤≤,所以p v =()()()()()222222223232132321x z y z x z y z ⎡⎤+++⨯+⎣⎦+++=+ ()()()()222322312292742555555x z y z x y z z ⎡⎤+⨯++⨯+++⎣⎦≥==≥=, 当且仅当()()31232,0x z y z z +⨯=+⨯=时,等号成立. 即:当且仅当41,,055x y z ===时,等号成立. 所以p v的最小值为25, 故选A. 【点睛】本题主要考查了柯西不等式的应用,还考查了向量的模及坐标运算,考查构造能力,属于中档题.8.如果关于x 的不等式34x x a -+-<的解集不是空集,则参数a 的取值范围是( ) A .()1,+∞ B .[)1,+∞C .(),1-∞D .(],1-∞ 【答案】A 【解析】 【分析】先求|x-3|+|x-4|的最小值是1,即得解. 【详解】由题得|x-3|+|x-4|<a 有解,由绝对值三角不等式得|x-3|+|x-4|≥|x -3-x+4|=1, 所以|x-3|+|x-4|的最小值为1, 所以1<a,即a >1. 故选:A 【点睛】本题主要考查绝对值三角不等式求最值,考查不等式的有解问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.猜测使2n a n >对任意正整数n 恒成立的最小正整数a 的值为( ) A .2 B .3C .4D .5【答案】B 【解析】 【分析】由题意结合选项利用特殊值排除选项A ,然后利用数学归纳法证明选项B 正确即可. 【详解】注意到当2,4a n ==时,2n a n >不成立,则2a =不合题意, 当3a =时,不等式即23n n >, 当1n =时,不等式即31>, 当2n =时,不等式即94>,下面用数学归纳法证明该式对于*,3n N n ∈≥成立, 当3n =时,不等式即279>,明显成立, 假设()*3,n k k k N=≥∈时不等式成立,即23kk >,则当1n k =+时,123333k k k +=⋅>, 而()()222*31221k k k k k N-+=--∈,结合二次函数的性质可知,当2k >时,22221222210k k -->⨯-⨯->,故当*3,k k N ≥∈时,()()2222310,31k k k k -+>>+.综上可得,23n n >对任意的n 均成立. 则最小正整数a 的值为3. 故选:B . 【点睛】本题主要考查数学归纳法的应用,排除法处理选择题的技巧等知识,意在考查学生的转化能力和计算求解能力.10.若存在x ,∈R ,使2x a 23x 1-+-≤成立,则实数a 的取值范围是( )A .[]75--,B .()57,C .[]57,D .][()57∞∞-⋃+,, 【答案】C 【解析】 【分析】先利用绝对值三角不等式求223x a x -+-的最小值,即得实数a 的取值范围. 【详解】由题得223=262|6|x a x x a x a -+--+-≥-, 所以|6|1,161,57a a a -≤∴-≤-≤∴≤≤. 故选C 【点睛】本题主要考查绝对值三角不等式和绝对值不等式的能成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.若函数()12f x x x a =+++的最小值3,则实数a 的值为( )A .5或8B .1-或5C .1-或4-D .4-或8【答案】D 【解析】试题分析:由题意,①当12a->-时,即2a >,3(1),2(){1,123(1),1a x a x a f x x a x x a x --+≤-=+--<≤-++>-,则当2ax =-时,min ()()1322a a f x f a a =-=-++-+=,解得8a =或4a =-(舍);②当12a -<-时,即2a <,3(1),1(){1,123(1),2x a x af x x a x ax a x --+≤-=-+--<≤-++>-,则当2a x =-时,min ()()1322a a f x f a a =-=-++-+=,解得8a =(舍)或4a =-;③当12a-=-时,即2a =,()31f x x =+,此时min ()0f x =,不满足题意,所以8a =或4a =-,故选D.12.设,x y ∈R ,且0xy ≠,则222241x y y x ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为( )A .9-B .9C .10D .0【答案】B 【解析】 【分析】利用柯西不等式得出最小值. 【详解】 (x 224y +)(y 221x+)≥(x 12y x y ⋅+⋅)2=9. 当且仅当xy 2xy=即xy= 时取等号. 故选:B . 【点睛】本题考查了柯西不等式的应用,熟记不等式准确计算是关键,属于基础题.13.设x ∈R ,则“31x <”是“1122x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】分别求解三次不等式和绝对值不等式确定x 的取值范围,然后考查充分性和必要性是否成立即可. 【详解】 由31x <可得1x <, 由1122x -<可得01x <<, 据此可知“31x <”是“1122x -<”的必要而不充分条件.故选B . 【点睛】本题主要考查不等式的解法,充分性与必要性的判定等知识,意在考查学生的转化能力和计算求解能力.14.已知()()31f x x x R =+∈,若()4f x a -<的充分条件是()1,0x b a b -<>,则a 、b 之间的关系是( )A .3b a ≤B .3a b ≤C .3a b >D .3b a >【答案】B 【解析】 【分析】解出不等式()4f x a -<和1x b -<,根据题中充分条件关系得出两解集之间的包含关系,然后得出不等式组,即可得出a 、b 之间的关系. 【详解】()31f x x =+Q ,且0a >,0b >,解不等式()4f x a -<,即33x a -<,解得1133a a x -<<+, 解不等式1xb -<,得11b x b -<<+.由于()4f x a -<的充分条件是1x b -<,则()1,11,133a a b b ⎛⎫-+⊆-+ ⎪⎝⎭,113113a b ab ⎧-≥-⎪⎪∴⎨⎪+≤+⎪⎩,可得3a b ≤.故选:B. 【点睛】本题考查绝对值不等式的求解,同时也考查了利用充分条件关系求参数之间的关系,一般转化为集合的包含关系来处理,考查化归与转化思想的应用,属于中等题.15.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( )A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤【答案】A 【解析】 【分析】原不等式等价于210x x a ---<,设()21f x x x a =---,则由题意得()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之即可求得实数a 的取值范围. 【详解】不等式等价于210x x a ---<,设()21f x x x a =---,因为不等式21x x a <-+的解集是区间()3,3-的子集,所以()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之得5a ≤.故选:A. 【点睛】本题主要考查绝对值不等式的解法、二次函数的性质,体现化归与等价转化思想,属中等难度题.16.已知全集U =R ,{|13}P x x x =+-<,{|213}Q x x =-<,则集合P ,Q 之间的关系为( )A .集合P 是集合Q 的真子集B .集合Q 是集合P 的真子集C .P Q =D .集合P 是集合Q 的补集的真子集【答案】C 【解析】 【分析】先化简得{|12}P x x =-<<.求出{||21|3}{|12}Q x x x x =-<=-<<,由此得到P Q =. 【详解】|||1|3x x +-<Q ,∴当0x …时,|||1|1213x x x x x +-=-+-=-+<,解得1x >-.10x ∴-<…;当01x <…时,|||1|113x x x x +-=+-=<,成立;当1x >时,|||1|1213x x x x x +-=+-=-<,解得2x <.12x ∴<<. {|12}P x x ∴=-<<.{||21|3}{|12}Q x x x x =-<=-<<, P Q ∴=.故选:C . 【点睛】本题考查两个集合的关系的判断,考查集合与集合的包含关系等基础知识,考查运算求解能力,是基础题.17.不等式||x x x <的解集是( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10x x -<<或1}x >【答案】C 【解析】 【分析】原不等式即()||10x x -<,等价转化为①010x x >⎧⎨-<⎩,或 ②010x x <⎧⎨->⎩.分别求得①、②的解集,再取并集,即得所求. 【详解】解:不等||x x x <,即()||10x x -<,∴①010x x >⎧⎨-<⎩或 ②010x x <⎧⎨->⎩.解①可得01x <<,解②可得1x <-.把①②的解集取并集,即得原不等式的解集为{|01x x <<或1}x <-, 故选:C . 【点睛】本题主要考查绝对值不等式的解法,体现了分类讨论和等价转化的数学思想,属于中档题.18.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点()11,P x y ,()22,Q x y 之间的“折线距离”.则下列命题中:①若C 点在线段AB 上,则有(,)(,)(,)d A C d C B d A B +=②若点A ,B ,C 是三角形的三个顶点,则有(,)(,)(,)d A C d C B d A B +=.③到(1,0),(1,0)M N -两点的“折线距离”相等的点的轨迹是直线0x =.④若A 为坐标原点,B在直线0x y +-上,则(),d A B的最小值为 真命题的个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】根据“折线距离”的定义,证明①③④为真命题,②为假命题,由此确定正确选项.【详解】对于①,C 点在线段AB 上,设C 点坐标为()00,x y ,0x 在12,x x 之间,0y 在12,y y 之间,不妨设102102,x x x y y y <<<<,则(,)(,)d A C d C B +=01012020x x y y x x y y -+-+-+- 01012020x x y y x x y y =-+-+-+-21212121x x y y x x y y =-+-=-+-(),d A B =成立,故①正确.对于②,在三角形ABC 中,()()01012020,,d A C d C B x x y y x x y y +=-+-+-+-()()()()01200120x x x x y y y y ≥-+-+-+-()2121,x x y y d A B =-+-=,故②错误.对于③,到(1,0),(1,0)M N -两点的“折线距离”相等的点的集合是(){},|11x y x y x y ++=-+,即11x x +=-,即0x =.所以到(1,0),(1,0)M N -两点的“折线距离”相等的点的轨迹是直线0x =,即③正确.对于④,设(),B x y ,则(),d AB 1212x x y y x x x x =-+-=+≥+=(),d A B 的最小值为④正确.综上所述,正确的有①③④,共3个.故选:C.【点睛】本小题主要考查新定义运算的理解和运用,属于中档题.19.已知数列{}n a 的前n 项和2n S n =,数列{}n b 满足()1log 01n n a na b a a +=<<,n T 是数列{}n b 的前n 项和,若11log 2n a n M a +=,则n T 与n M 的大小关系是( ) A .n n T M ≥ B .n n T M >C .n n T M <D .n n T M ≤【答案】C【解析】【分析】先求出2462log ()13521n a n T n =⨯⨯⨯-L ,log n a M =,再利用数学归纳法证明*1321)242n n N n -⨯⨯⋯⨯<∈即得解. 【详解】因为2n S n =,所以11=1,21(2)n n n a a S S n n -=-=-≥适合n=1,所以=21n a n -. 所以2log 21n an b n =-, 所以24622462log log log log log ()1352113521n a a a a a n n T n n =+++=⨯⨯⨯--L111log =log (21)log 22n a n a a M a n +=+= 下面利用数学归纳法证明不等式*1321)242n n N n -⨯⨯⋯⨯∈ (1)当1n =时,左边12=,右边=<右边,不等式成立, (2)22414n n -<Q ,即2(21)(21)(2)n n n +-<.即212221n n n n -<+,∴<,∴< 假设当n k =时,原式成立,即1121232k k -⨯⨯⋯⨯<,那么当1n k =+时,即112121212322(1)2(1)k k k k k k -++⨯⨯⋯⨯⨯<=<++g , 即1n k =+时结论成立.根据(1)和(2)可知不等式对任意正整数n 都成立.所以246213521n n ⨯⨯⨯>-L因为0<a <1,所以2462log ()log 13521a a n n ⨯⨯⨯<-L所以n n T M <.故选:C【点睛】本题主要考查数列通项的求法,考查对数的运算和对数函数的性质,考查数学归纳法,意在考查学生对这些知识的理解掌握水平.20.若关于x 的不等式43x x a -++<有实数解,则实数a 的取值范围是( ) A .(7,)+∞B .[)7,+∞C .(1,)+∞D .(1,7)【答案】A【解析】【分析】 利用绝对值的意义可求得43x x -++的最小值为7,由此可得实数a 的取值范围,得到答案.【详解】 由题意43x x -++表示数轴上的x 对应点到4和3-对应点的距离之和,其最小值为7,再由关于x 的不等式43x x a -++<有实数解,可得7a >,即实数x 的取值范围是(7,)+∞,故选A.【点睛】本题主要考查了绝对值的意义,以及函数绝对值不等式的有解问题,其中根据绝对值的意义,求得43x x -++的最小值为7是解得关键,着重考查了推理与运算能力,属于中档试题.。
高考数学压轴专题最新备战高考《不等式选讲》经典测试题及答案解析
数学《不等式选讲》知识点一、141.设0x 为函数()sin f x x π=的零点,且满足001()112x f x ++<,则这样的零点有( ) A .18个 B .19个C .20个D .21个【答案】D 【解析】从题设可得00()x k x k k Z ππ=⇒=∈,又001()sin()sin()(1)222k f x x k ππππ+=+=+=-,故(1)11k k +-<,当k 取奇数时,12k <,则1,3,5,7,9,11k =±±±±±±,共12个数;当k 取偶数时,10k <,则0,2,4,6,8k =±±±±,共9个数,所以这样的零点的个数共有21个,应选答案D 。
点睛:解答本题的关键是如何理解“设0x 为函数()sin f x x π=的零点”这一题设信息,通过函数零点的概念建立三角方程,进而得到00()x k x k k Z ππ=⇒=∈,为求解下面的不等式001112x f x ⎛⎫++< ⎪⎝⎭提供了附加条件,最后运用分类整合的思想使得问题获解。
2.若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =( )A .2-B .2C .3D .3-【答案】D 【解析】 【分析】由绝对值不等式的性质可知,()22329ax ax -⇔-<<,从而可得到()229ax -=的两个解为2151,33x x -==,即可求出a 的值. 【详解】由题意可知0a ≠,()22329ax ax -⇔-<<,即22450a x ax --<, 故一元二次方程22450a x ax --=的解为2151,33x x -==, 则1212224455,39a x x x x a a +==-=-=-,解得3a =-. 故答案为D. 【点睛】本题主要考查了绝对值不等式的解法,考查了学生的计算能力,属于基础题.3.设集合{}1,R A x x a x =-<∈,{}15,R B x x x =<<∈.若A B =∅I ,则实数a 的取值范围是()A .{}06a a ≤≤B .{}64a a a ≤≥或C .{}06a a a ≤≥或D .{}24a a ≤≤【答案】C 【解析】 【分析】根据公式()0x a a a x a <>⇔-<<解出集合A ,再根据交集的运算即可列出关系式,求解即可。
高考数学压轴专题专题备战高考《不等式》单元汇编含答案
数学《不等式》高考复习知识点一、选择题1.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .8【答案】C 【解析】 【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点C 时,z 取得最大值.【详解】解:作出约束条件表示的可行域是以(1,0),(1,0),(2,3)-为顶点的三角形及其内部,如下图表示:当目标函数经过点()2,3C 时,z 取得最大值,最大值为7.故选:C. 【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.2.变量,x y 满足约束条件1{2314y x y x y ≥--≥+≤,若使z ax y =+取得最大值的最优解不唯一,则实数a 的取值集合是( ) A .{3,0}- B .{3,1}-C .{0,1}D .{3,0,1}-【答案】B 【解析】若0a =,结合图形可知不合题设,故排除答案A ,C ,D ,应选答案B .3.若直线过点,则的最小值等于( )A .5B .C .6D .【答案】C 【解析】∵直线过点,∴,∴,∵,∴,,,当且仅当时,等号成立,故选C.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.4.若33log (2)1log a b ab +=+42a b +的最小值为( )A .6B .83C .163D .173【答案】C 【解析】 【分析】由33log (2)1loga b ab +=+213b a+=,且0,0a b >>,又由12142(42)3a b a b b a ⎛⎫+=++ ⎪⎝⎭,展开之后利用基本不等式,即可得到本题答案.【详解】因为33log (2)1loga b ab +=+()()3333log 2log 3log log 3a b ab ab +=+=,所以,23a b ab +=,等式两边同时除以ab 得213b a+=,且0,0a b >>, 所以12118211642(42)()(8)(8216)3333a b a b a b b a b a +=++=++≥+=, 当且仅当82a b b a=,即2b a =时取等号,所以42a b +的最小值为163.故选:C. 【点睛】本题主要考查利用基本不等式求最值,其中涉及对数的运算,考查计算能力,属于中等题.5.若实数,x y 满足不等式组2,36,0,x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩则3x y +的最小值等于( )A .4B .5C .6D .7【答案】A 【解析】 【分析】首先画出可行域,利用目标函数的几何意义求z 的最小值. 【详解】解:作出实数x ,y 满足不等式组2360x y x y x y +≥⎧⎪-≤⎨⎪-≥⎩表示的平面区域(如图示:阴影部分)由20x y x y +-=⎧⎨-=⎩得(1,1)A ,由3z x y =+得3y x z =-+,平移3y x =-, 易知过点A 时直线在y 上截距最小, 所以3114min z =⨯+=. 故选:A .【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题.6.若实数,,a b c ,满足222a b a b ++=,2222a b c a b c ++++=,,则c 的最大值是( ) A .43B .2log 3C .25D .24log 3【解析】 【分析】利用基本不等式求出2a b +的最小值后可得221a b a b ++-的最大值,从而可得2c 的最大值,故可得c 的最大值. 【详解】因为222a b a b ++=,故222a b a b ++=≥= 整理得到24a b +≥,当且仅当1a b ==时等号成立.又因为2222a b c a b c ++++=,故2114211212133a b ca b a b +++==+≤+=--,当且仅当1a b ==时等号成立,故max 24log 3c =. 故选:D. 【点睛】本题考查基本不等式的应用以及指数不等式的解,应用基本不等式求最值时,需遵循“一正二定三相等”,如果多变量等式中有和式和积式的关系,则可利用基本不等式构造关于和式或积式的不等式,通过解不等式来求最值,求最值时要关注取等条件的验证.7.已知实数x ,y满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C.D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,x y +≥ (2)当0y <时,x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2d ==,所以24d =,即22xy +最小值为4.【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.8.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=, 即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=, 所以()2tan tan 2tan 2tan 11tan tan 13tan 3tan tan αββαβαββββ--===+++,又因为β为锐角,所以tan 0β>,根据基本不等式213tantanββ≤=+当且仅当tanβ=时等号成立,因为,22ππαβ⎛⎫-∈-⎪⎝⎭,且函数tany x=在区间,22ππ⎛⎫-⎪⎝⎭上单调递增,则αβ-的最大值为6π.故选:B.【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.9.已知点(2,0)M,点P在曲线24y x=上运动,点F为抛物线的焦点,则2||||1PMPF-的最小值为()AB.1)C.D.4【答案】D【解析】【分析】如图所示:过点P作PN垂直准线于N,交y轴于Q,则11PF PN PQ-=-=,设(),P x y,0x>,则2||4||1PMxPF x=+-,利用均值不等式得到答案.【详解】如图所示:过点P作PN垂直准线于N,交y轴于Q,则11PF PN PQ-=-=,设(),P x y,0x>,则()()22222224||||44||1x y x xPM PPMxF xQP x x-+-+====+≥-,当4xx=,即2x=时等号成立.故选:D.【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.10.已知x、y满足约束条件122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩,若22z x y=+,则实数z的最小值为()A 2B.25C.12D.2【答案】C【解析】【分析】作出不等式组所表示的可行域,利用目标函数的几何意义求出22x y+的最小值,进而可得出实数z的最小值.【详解】作出不等式组122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩所表示的可行域如下图所示,22z x y =+表示原点到可行域内的点(),x y 的距离的平方,原点到直线10x y +-=的距离的平方最小,()222min212x y+==⎝⎭. 由于22z x y =+,所以,min 12z =. 因此,实数z 的最小值为12. 故选:C. 【点睛】本题考查线性规划中非线性目标函数最值的求解,考查数形结合思想的应用,属于中等题.11.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C .232D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+.得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D . 【点睛】本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.12.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.13.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m的最小值为( ) A .125B .125-C .32D .32-【答案】B 【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B. 【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.14.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( )A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B【解析】 由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项. 点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.15.若实数x ,y ,对任意实数m ,满足()()222122211x y m x y m x y m ⎧-≤-⎪⎪+≥+⎨⎪-+-≤⎪⎩,则由不等式组确定的可行域的面积是( )A .14πB .12π C .π D .32π 【答案】A【解析】【分析】画出约束条件的可行域,然后求解可行域的面积.【详解】实数x ,y ,对任意实数m ,满足2221222(1)()1x y m x y m x y m --⎧⎪++⎨⎪-+-⎩„…„的可行域如图: 可行域是扇形,14个圆,面积为:211144ππ⨯⨯=. 故选:A .【点睛】本题考查线性规划的应用,考查数形结合以及计算能力,意在考查学生对这些知识的理解掌握水平.16.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( ) A .22⎫+∞⎪⎪⎣⎭ B .[)1,+∞ C .)2,⎡+∞⎣ D .[)2,+∞【答案】C【解析】【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果.【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=,设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,20021122OM y k k k x k k +∴===+≥=k =时取等号), 即直线OM斜率的取值范围为)+∞.故选:C .【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.17.已知实数x y ,满足1030350x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则()22(4)2z x y =-+-的最小值为( ) AB .5C .3D .52【答案】D【解析】【分析】由题意作出其平面区域,22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,求阴影内的点到点(4,2)P 的距离的平方最小值即可.【详解】 解:由题意作出实数x ,y 满足1030350x y x y x y -+⎧⎪+-⎨⎪--⎩……„平面区域, 22(4)(2)z x y =-+-可看成阴影内的点到点(4,2)P 的距离的平方,则22(4)(2)z x y =-+-的最小值为P 到350x y --=的距离的平方,解得,2252d ⎛⎫==; 所以min 52z =故选:D .【点睛】本题考查了简单线性规划,作图要细致认真,用到了表达式的几何意义的转化,属于中档题.18.已知函数()lg f x x =,0a b >>,()()f a f b =,则22a b a b+-的最小值等于( ). A 5B .3C .23 D .22【答案】D【解析】 试题分析:因为函数()lg f x x =,0a b >>,()()f a f b =所以lg lg a b =- 所以1a b=,即1ab =,0a b >> 22a b a b+-22()2()22()a b ab a b a b a b a b a b -+-+===-+---2()22a b a b ≥-⨯=- 当且仅当2a b a b-=-,即2a b -=时等号成立 所以22a b a b+-的最下值为2故答案选D考点:基本不等式.19.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.20.已知x ,y 满足约束条件1,22,326,x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩,若22x y z +≥恒成立,则实数z 的最大值为( )AB .25C .12D .2【答案】C【解析】【分析】画出约束条件所表示的平面区域,根据22x y +的几何意义,结合平面区域求得原点到直线10x y +-=的距离的平方最小,即可求解.【详解】由题意,画出约束条件122326x y x y x y +≥⎧⎪-≥-⎨⎪+≤⎩所表示的平面区域,如图所示,要使得22x y z +≥恒成立,只需()22min z x y ≥+,因为22x y +表示原点到可行域内点的距离的平方,结合平面区域,可得原点到直线10x y +-=的距离的平方最小,其中最小值距离为2d ==,则212d =,即12z ≤ 所以数z 的最大值12. 故选:C .【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出约束条件所表示的平面区x y 的几何意义求解是解答的关键,着重考查了数形结合思想,以及计算能域,结合22力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新数学《不等式》复习资料一、选择题1.已知函数1()cos 2(2)sin 2f x m x m x =+-,其中12m ≤≤,若函数()f x 的最大值记为()g m ,则()g m 的最小值为( ) A .14-B .1 C.D1【答案】D 【解析】 【分析】2()sin (2)sin 2mf x m x m x =-+-+,令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,结合12m ≤≤可得()221122(2)31144t m m m g m y m m m=-+-===+-,再利用基本不等式即可得到答案.【详解】 由已知,221()(12sin )(2)sin sin (2)sin 22m f x m x m x m x m x =-+-=-+-+, 令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,因为12m ≤≤, 所以对称轴为2111[0,]222m t m m -==-∈,所以 ()221122(2)3111144t m m m g m y m m m =-+-===+-≥=,当且仅当m =. 故选:D 【点睛】本题考查换元法求正弦型函数的最值问题,涉及到二次函数的最值、基本不等式的应用,考查学生的数学运算能力,是一道中档题.2.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A.B .4C.D .2【答案】B【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.3.已知实数x ,y 满足不等式||2x y +≥,则22x y +最小值为( )A .2B .4C .22D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,2x y +≥ (2)当0y <时,2x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2222211d -==+,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.4.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5B 45C 5D 25【答案】C 【解析】 【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离, 所以AB ()()2242325-+-=故选:C . 【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.5.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=, 即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=,所以()2tan tan2tan2tan11tan tan13tan3tantanαββαβαββββ--===+++,又因为β为锐角,所以tan0β>,根据基本不等式213tantanββ≤=+当且仅当tanβ=时等号成立,因为,22ππαβ⎛⎫-∈-⎪⎝⎭,且函数tany x=在区间,22ππ⎛⎫-⎪⎝⎭上单调递增,则αβ-的最大值为6π.故选:B.【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.6.已知x,y满足约束条件1,22,326,x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩,若22x y z+≥恒成立,则实数z的最大值为()AB.25 C.12D.2【答案】C【解析】【分析】画出约束条件所表示的平面区域,根据22x y+的几何意义,结合平面区域求得原点到直线10x y+-=的距离的平方最小,即可求解.【详解】由题意,画出约束条件122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩所表示的平面区域,如图所示,要使得22x y z+≥恒成立,只需()22minz x y≥+,因为22x y+表示原点到可行域内点的距离的平方,结合平面区域,可得原点到直线10x y+-=的距离的平方最小,其中最小值距离为2212211d -==+,则212d =,即12z ≤所以数z 的最大值12. 故选:C .【点睛】本题主要考查了简单的线性规划的应用,其中解答中正确作出约束条件所表示的平面区域,结合22x y +的几何意义求解是解答的关键,着重考查了数形结合思想,以及计算能力.7.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.8.已知107700,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,表示的平面区域为D ,若“(,),2x y x y a ∃+>”为假命题,则实数a 的取值范围是( ) A .[5,)+∞ B .[2,)+∞C .[1,)+∞D .[0,)+∞【答案】A 【解析】 【分析】作出不等式组表示的可行域,结合目标函数的几何意义可得目标函数最大值,再根据特称命题和全称命题的真假关系得出“(,),2x y x y a ∀+≤”为真命题,由恒等式的思想可得实数a 的取值范围.【详解】绘制不等式组表示的可行域如图中阴影部分(含边界)所示,令2Z x y =+得2y x Z =-+,结合目标函数的几何意义可得目标函数在点A 处取得最大值, 联立直线方程10770x y x y -+=⎧⎨--=⎩得点47,33A ⎛⎫⎪⎝⎭,所以2Z x y =+的最大值为5,因为“(,),2x y R x y a ∃∈+>”为假命题,所以“(,),2x y x y a ∀+≤”为真命题,所以实数a 的取值范围是5a ≤, 故选:A.【点睛】本题考查线性规划问题的最值,以及特称命题与全称命题的关系和不等式的恒成立思想,属于中档题.9.若直线过点,则的最小值等于( )A .5B .C .6D .【答案】C 【解析】∵直线过点,∴,∴,∵,∴,,,当且仅当时,等号成立,故选C.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.10.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数; 又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.11.已知,a b 都是正实数,则222a ba b a b+++的最大值是( )A .2B .3-C .1D .43【答案】A 【解析】 【分析】设2,2m a b n a b =+=+,将222a b a b a b+++,转化为2222233a b n ma b a b m n +=--++,利用基本不等式求解. 【详解】设2,2m a b n a b =+=+, 所以22,33m n n ma b --==,所以2222222333a b n m a b a b m n +=--≤-=-++, 当且仅当233n mm n=时取等号.所以222a b a b a b +++的最大值是23-. 故选:A 【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.12.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( )A .2⎫+∞⎪⎪⎣⎭B .[)1,+∞C .)+∞D .[)2,+∞【答案】C 【解析】【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,20021122OMy k k k x k k +∴===+≥=2k =时取等号), 即直线OM斜率的取值范围为)+∞. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.13.在ABC ∆中,222sin a b c C ++=,则ABC ∆的形状是 ( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等边三角形【答案】D 【解析】 【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫- ⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案. 【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=- ⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立,而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭, 因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭ 所以03C π-=,即3C π=,又a b =, 所以ABC ∆是等边三角形,故选D 项.【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.14.若两个正实数x ,y 满足142x y +=,且不等式2m 4y x m +<-有解,则实数m 的取值范围是 ( )A .(1,2)-B .(,2)(1,)-∞-+∞UC .()2,1-D .(,1)(2,)-∞-+∞U 【答案】D【解析】【分析】将原问题转化为求最值的问题,然后利用均值不等式求最值即可确定实数m 的取值范围.【详解】 若不等式24y x m m +<-有解,即2()4min y m m x ->+即可, 142x y +=Q ,1212x y∴+=, 则121221112121124422482y y x y x x x y y x ⎛⎫⎛⎫+=++=+++≥+=+=+⨯=+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当28x y y x =,即2216y x =,即4y x =时取等号,此时1x =,4y =, 即()24min y x +=, 则由22m m ->得220m m -->,即()()120m m +->,得2m >或1m <-,即实数m 的取值范围是()(),12,-∞-⋃+∞,故选D .【点睛】本题主要考查基本不等式的应用,利用不等式有解转化为最值问题是解决本题的关键.15.已知M 、N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )A .17 B.34 C .32 D .172【答案】A【解析】【分析】先作可行域,再根据图象确定MN 的最大值取法,并求结果.【详解】作可行域,为图中四边形ABCD 及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN 的最大值为BD=21417+=,选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( )A .10B .9C .8D .7【答案】B【解析】【分析】 由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值.【详解】由2x y xy +=得:211x y+= ()212222559x y x y x y x y y x ⎛⎫∴+=++=++≥+= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号)2x y ∴+的最小值为9故选:B【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.17.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( ) A .4B .3 C.2 D .2【答案】D【解析】【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值. 【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+.得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2. 故选:D .【点睛】 本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.18.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32 B .53 C .74 D .95【答案】D【解析】【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案;【详解】当2m n +=时, Q 131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+ Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭, 当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.19.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225*********n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.20.已知实数,x y 满足线性约束条件1020x x y x y ≥⎧⎪+≥⎨⎪-+≥⎩,则1y x +的取值范围为( )A .(-2,-1]B .(-1,4]C .[-2,4)D .[0,4] 【答案】B【解析】【分析】 作出可行域,1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,观察可行域可得最小值.【详解】 作出可行域,如图阴影部分(含边界),1y x +表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,(1,3)A ,3(1)410QA k --==-,过Q 与直线0x y +=平行的直线斜率为-1,∴14PQ k -<≤.故选:B .【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1y x +表示动点(,)P x y 与定点(0,1)Q -连线斜率,由直线与可行域的关系可得结论.。