陕西省中小学练习册答案-九年级上数学北师大版

合集下载

北师大版九年级上数学《第四章图形的相似》专题练习(含答案)

北师大版九年级上数学《第四章图形的相似》专题练习(含答案)

图形的相似专题练习1.已知△ABC∽△DEF,AB=1,BC=3,EF=5,则△ABC与△DEF的面积比是()A.1∶9 B.1∶25C.9∶25 D.3∶52.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OB∶OB′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为()图2A.4∶9 B.2∶5C.2∶3 D.2∶ 33.如果3A=2B(AB≠0),那么下列比例式中正确的是()A.ab=32B.ba=23C.a2=b3D.a3=b24.如图,在△ABC中,点D,E分别为边AB,AC上的点,且DE∥B C.若AD=5,BD=10,AE=3,则CE的长为()图4A.3 B.6C.9 D.125.在下面的图形中,相似的一组是(),A) ,B),C) ,D)图56.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是(),A) ,B),C) ,D)图67.为测量某河的宽度,小在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E,如图所示.若测得BE=90 m,EC=45 m,CD=60 m,则这条河的宽AB等于()图7A.120 m B.67.5 mC.40 m D.30 m8.如图,在△ABC中,∠A=70°,AB=4,AC=6,将△ABC沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似的是(),A) ,B),C) ,D)图89.如图,在△ABC 中,D ,E 两点分别在AB ,AC 边上,DE ∥B C .如果ADDB =32,AC =10,那么EC =________.图910.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好到古城墙CD 的顶端C 处.已知AB ⊥BD ,CD ⊥BD ,测得AB =2米,BP =3米,PD =15米,那么该古城墙的高度CD 是_________米.图1011.如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OD ,OB =3OC ),然后张开两脚,使A ,B 两个尖端分别在线段l 的两个端点上,若CD =3.2 cm ,则AB 的长为_________ cm.图1112.如图,已知矩形纸片ABCD 中,AB =1,剪去正方形ABEF ,得到的矩形ECDF 与矩形ABCD 相似,则AD 的长为__________.图1213.如图,在平面直角坐标系xOy中,以原点为位似中心,线段AB与线段A′B′是位似图形,若A(-1,2),B(-1,0),A′(-2,4),则B′的坐标为___________.图1314.如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0),A(2,1),B(1,-2).(1)以原点O为位似中心,在y轴的右侧画出△OAB的一个位似△OA1B1,使它与△OAB的位似比为2∶1,并分别写出点A,B的对应点A1,B1的坐标;(2)画出将△OAB向左平移2个单位,再向上平移1个单位后得△O2A2B2,并写出点A,B的对应点A2,B2的坐标;(3)△OA1B1和△O2A2B2是位似图形吗?若是,请在图中标出位似中心M,并写出点M的坐标.图1415.如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC =90°.(1)求证:△ADE∽△BEC;(2)若AD=1,BC=3,AE=2,求AB的长.图1516.如图,在正方形ABCD中,点E在边BC上(点E不与点B重合),连接AE,过点B作BF⊥AE于点F,交CD于点G.(1)求证:△ABF∽△BGC;(2)若AB=2,G是CD的中点,求AF的长.图1617.如图,BD,CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA的延长线于F,H,求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH.图1718.如图,一圆柱形油桶,高1.5 m,用一根2 m长的木棒从桶盖小口斜插桶内,至另一端的B处,抽出木棒后,量得上面没浸油的部分为1.2 m,求桶内油面高度.图1819.如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高1.5米的标杆BC,DE,两杆相距30米.测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H,B,F,D,G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度.图1920.如图1,把两块全等的含45°角的直角三角板ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合.把三角板ABC 固定不动,让三角板DEF绕点D旋转,两边分别与线段AB,BC相交于点P,Q,易说明△APD∽△CDQ.根据以上内容,回答下列问题:(1)如图2,将含30°角的三角板DEF(其中∠EDF=30°)的锐角顶点D与等腰△ABC(其中∠ABC=120°)的底边中点O重合,两边DF,DE分别与边AB,BC 相交于点P,Q.写出图中的相似三角形__△APD∽△CDQ__(直接填在横线上);(2)其他条件不变,将三角板DEF旋转至两边DF,DE分别与边AB的延长线、边BC相交于点P,Q.上述结论还成立吗?请你在图3上补全图形,并说明理由;(3)在(2)的条件下,连接PQ,△APD与△DPQ是否相似?请说明理由;(4)根据(1)(2)的解答过程,你能否将两三角板改为更一般的三角形,使得(1)中的结论仍然成立?若能,请说明两个三角形应满足的条件;若不能,请简要说明理由.,图1),图2),图3)图20参考答案【过关训练】1.C2.A3.C4.B5.C6.A7.A8.D 9.__4__10.__10__11._9.6__12._1+52__13.(-2,0)_14.解:(1)如答图,△OA1B1为所作,点A1,B1的坐标分别为(4,2),(2,-4);(2)如答图,△O2A2B2为所作,点A2,B2的坐标分别为(0,2),(-1,-1);(3)△OA1B1和△O2A2B2是位似图形,如答图,点M为所,位似中心M的坐标为(-4,2).15.[解:(1)证明:∵AD∥BC,AB⊥BC,∴AB⊥AD,∠A=∠B=90°,∴∠ADE+∠AED=90°.∵∠DEC=90°,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,∴△ADE∽△BE C.(2)∵△ADE∽△BEC,∴BEAD=BCAE,即BE1=32,∴BE=3 2,∴AB=AE+BE=7 2.16.解:(1)证明:∵四边形ABCD是正方形,∴∠ABE=∠BCG=90°.∵BF⊥AE,∴∠BAE+∠ABF=90°,∠CBG+∠ABF=90°,∴∠BAE=∠CBG,∴△ABF∽△GB C.(2)∵△ABF∽△BG C.∴ABBG=AFBC.∵AB=2,G是CD的中点,四边形ABCD是正方形,∴BC=2,CG=1,∴BG=BC2+CG2=5,∴25=AF2,解得AF=45 5.17.证明:(1)∵BD⊥AC,DG⊥BC,∴∠BDC=∠DGC=90°,∴∠DBC+∠DCG=∠GDC+∠DCG,∴∠GDC=∠DBC,∴△BDG∽△DCG,∴BG∶DG=DG∶CG,即DG2=BG·CG.(2)同(1)中的方法,同理可证△BGH∽△FGC,∴BG∶GF=GH∶CG,∴BG·CG=GF·GH.18.解:∵DE∥BC,∴△ADE∽△ABC,∴AEAC=ADAB,即AE1.5=1.22,解得AE=0.9 m,∴EC=1.5-0.9=0.6(m),即油面高0.6 m. 19.解:设AH=x,BH=y,由题意知,△AHF∽△CBF,△AHG∽△EDG,∴BFHF=CBAH,DGHG=DEAH,∴3x=1.5×(y+3),5x=1.5×(y+30+5),解得x=24.则旗杆AH的高度为24 m.20.__△APD∽△CDQ__解:(2)成立,如答图.理由如下:∵AB=BC,∴∠BAC=∠BC A.∵∠ABC=120°,∴∠BAC=∠BCA=30°,∴∠ADP+∠APD=180°-30°=150°.∵∠EDF=30°,∴∠ADP+∠CDQ=150°,∴∠APD=∠CDQ,∴△APD∽△CDQ. (3)△APD∽△DPQ.理由如下:∵△APD∽△CDQ,∴APCD=DPDQ.∵点D为AC的中点,∴CD=AD,∴APAD=DPDQ,即APDP=ADDQ.又∵∠P AD=∠PDQ=30°,∴△APD∽△DPQ.(4)△DEF满足∠EDF=α,△ABC满足顶角为(180°-2α)的等腰三角形即可.理由:∵∠ABC=180°-2α,∴∠A=∠C=α.∵∠ADP+∠APD=180°-α,∠ADP+∠QDC=180°-α,∴∠APD=∠CDQ.又∵∠A=∠C,∴△APD∽△CDQ.。

北师大版数学九年级上册解答题专题训练50题含答案

北师大版数学九年级上册解答题专题训练50题含答案

北师大版数学九年级上册解答题专题训练50题含答案1.如图,点E 是菱形ABCD 对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且菱形AEFG ∽菱形ABCD ,连接,EB GD ,求证:GD EB =.【答案】证明见解析.【分析】由相似多边形的性质可得∠DAB=∠EAG ,根据角的和差关系可得∠EAB=∠GAD ,根据菱形的性质可得AE=AG ,AB=AD ,利用SAS 可证明∠EAB∠∠GAD ,即可证明GD=EB .【详解】∠菱形AEFG ∽菱形ABCD ,∠∠DAB=∠EAG,∠∠DAB+∠GAB=∠EAG+∠GAB ,即∠EAB=∠GAD ,∠四边形ABCD 、AEFG 都是菱形,∠AE=AG ,AB=AD ,在∠EAB 和∠GAD 中AE AG EAB GAD AB AD =⎧⎪∠=∠⎨⎪=⎩,∠∠EAB∠∠GAD ,∠GD=EB .【点睛】本题考查相似多边形的性质及全等三角形的判定与性质,根据多边形的性质得出∠DAB=∠EAG 是解题关键.52.如图,点O 是△ABC 内一点,连结OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连结,得到四边形DEFG .(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.53.如图,一次函数y=ax+5的图象与y轴相交于点C,与反比例函数y=kx的图象相交于点A(m,4),B(2,1),点D为OC中点,连接OA,OB,连接BD交OA于E.(1)求a ,k ,m 的值;(2)求直线OA 的方程;(3)求直线BD 的方程;(4)求△OBE 的面积. -OBE OBD ODE SS S =即可求得.1-=2OBE OBD ODE S S S ⨯=【点睛】本题是反比例函数与一次函数的交点问题,两条直线的交点,三角形的面积,求得交点坐标是解题的关键.54.如图,在ABC 中,点D 、E 分别在边AB 、BC 上,点F 是AE 上一点且B AFD ACD ∠=∠=∠,连接CF .(1)求证:AD AB AF AE⋅=⋅;(2)求证:AFC ACB∠=∠.直接证明ADF AEB∽根据相似三角)的结论得出2=AC AF∽,即可得证.,证明AFC ACE=∠,DAF EAB∠ADF AEB∽,AD AF=,AE AB⋅=⋅;AD AB AF AE∠=∠,(2)∠B ACD△∽△,ADC ACBAC AD∽,∠AFC ACE∠=∠,AFC ACE∠=∠.即AFC ACB【点睛】本题考查了相似三角形的性质与判定,题的关键.55.ABC 中,1AB AC ==,45BAC ∠=,将ABC 绕点A 按顺时针旋转α得到AEF ,连接BE ,CF ,它们交于D 点,①求证:BE CF =.②当120α=,求FCB ∠的度数.③当四边形ACDE 是菱形时,求BD 的长.37.5;③AE=AB ;∵ABC 绕点得到AEF ,EAF ∠=∠FAB +∠,即在AEB 和AFC 中,AE AF EAB FAC AB AC =∠=∠=,∴AEB AFC ≅,BE CF =;120,120,,30,,45BAC∠,67.5,-=;67.53037.5四边形ACDE是菱形,DE AE AC===,145,∴ABE为等腰直角三角形,=2BE AB=-BD BE【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.56.如图,四边形ABCD、BEFG均为正方形,连接AG、CE.(1)求证:AG=CE;(2)求证:AG∠CE.【答案】(1)证明见解析(2)证明见解析【详解】试题分析:(1)由ABCD、BEFG均为正方形,得出AB=CB,∠ABC=∠GBE=90°,BG=BE,得出∠ABG=∠CBE,从而得到∠ABG∠∠CBE,即可得到结论;(2)由∠ABG∠∠CBE,得出∠BAG=∠BCE,由∠BAG+∠AMB=90°,对顶角∠AMB=∠CMN,得出∠BCE+∠CMN=90°,证出∠CNM=90°即可.试题解析:(1)∠四边形ABCD、BEFG均为正方形,∠AB=CB,∠ABC=∠GBE=90°,BG=BE,∠∠ABG=∠CBE,在∠ABG和∠CBE中,∠AB=CB,∠ABG=∠CBE,BG=BE,∠∠ABG∠∠CBE(SAS),∠AG=CE;(2)如图所示:∠∠ABG∠∠CBE,∠∠BAG=∠BCE,∠∠ABC=90°,∠∠BAG+∠AMB=90°,∠∠AMB=∠CMN,∠∠BCE+∠CMN=90°,∠∠CNM=90°,∠AG∠CE.考点:1.全等三角形的判定与性质;2.正方形的性质.57.如图,在Rt∠ABC中,∠C=90°,AD是∠BAC的平分线,AB∠BD(1)求tan∠DAC的值.(2)若BD=4,求S△ABC.1AC BC=⨯22258.把一根长80cm的绳子剪成两段,并把每段绳子围成一个正方形.要使这两个正方形的面积和等于2250cm.应该怎样剪?即剪成一段长60cm,一段长为20cm的两段即可.【点睛】本题考查了一元二次方程的应用,根据题意找到等量关系并表示出两个正方形的边长是关键.59.如图,在∠ABC中,∠ACB=90°,∠ABC=30°,点D在AB边上,∠CDE是等边三角形.(1)如图1,当点E在AB边上时,CE与BE有何数量关系,请说明理由;(2)如图2,当点E在∠ABC内时,猜想CE与BE的数量关系,并加以证明;(3)再另画一种情况,写出相应结论.(不用证明)【答案】(1)CE=BE,理由详见解析;(2)CE=BE,证明详见解析;(3)详见解析【分析】(1)证出∠BCE=∠ABC,即可得出CE=BE;(2)取AB的中点O,连接OC、OE,证∠ACD∠∠OCE(SAS),得出∠A=∠COE,证出∠COE=∠BOE,证∠COE∠∠BOE(SAS),即可得出CE=BE;(3)当点E在∠ABC外时,CE=BE成立;取AB的中点O,连接OC、OE,同(2)得∠ACD∠∠OCE(SAS),得出∠A=∠COE=60°,证出∠COE=∠BOE,证∠COE∠∠BOE (SAS),即可得出CE=BE.【详解】解:(1)CE=BE,理由如下:∠∠CDE是等边三角形,∠∠ACE=60°,∠∠ACB=90°,∠∠BCE=90°﹣60°=30°,∠∠ABC=30°,∠∠BCE=∠ABC,∠CE=BE;(2)CE=BE,理由如下:取AB的中点O,连接OC、OE,如图2所示:∠∠A =∠COE =60°, ∠∠BOE =180°﹣60°﹣60°=60°,∠∠COE =∠BOE ,在∠COE 和∠BOE 中,OC OB COE BOE OE OE =⎧⎪∠=∠⎨⎪=⎩, ∠∠COE ∠∠BOE (SAS ),∠CE =BE .【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等边三角形的判定与性质、直角三角形斜边上的中线性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.60.(1)已知234xy z ==,求23x y z+的值; (2)已知2x=3y=4z ,求23x y z +的值.61.(1)计算:2(2)2|--(2)已知2(3)4x -=,求x 的值. (2)2(3)x -=32x -=±解得5x =或【点睛】本题考查了根式的化简运算,二次根式的加减运算,利用直接开平方法解一元二次方程,熟练掌握和运用各运算法则是解决此类题的关键.62.用小正方体搭一个几何体,使从前面、上面看到的图形如图所示,这样的几何体需要小正方体最多几块最少几块?【答案】最多9块;最少7块.【详解】试题分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.试题解析:由俯视图可得最底层有5个小正方体,由主视图可得第一列和第三列最多有4个小正方体,那么最多需要9个小正方体, 由俯视图可得最底层有5个小正方体, 由主视图可得第一列和第三列最少有2个小正方体, 那么最少需要7个小正方体,故答案为:最多9个和最少7个.点睛:本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,解决本题关键要掌握口诀:”俯视图打基础,正视图疯狂盖,左视图拆违章”就容易得到答案.63.如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连接BF .(1)求证:BD =CD ;(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?并说明理由;(3)在(2)的条件下,如果矩形AFBD 是正方形,确定△ABC 的形状并说明理由.【答案】(1)见解析;(2)当△ABC 满足:AB =AC 时,四边形AFBD 是矩形,见解析;(3)当矩形AFBD是正方形,△ABC 是等腰直角三角形,见解析【分析】(1)根据两直线平行,内错角相等求出∠AFE =∠DCE ,然后利用“角角边”证明△AEF 和△DEC 全等,根据全等三角形对应边相等可得AF =CD ,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD 是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB =90°,由等腰三角形三线合一的性质可知必须是AB =AC .(3)根据正方形的性质和等腰直角三角形的判定定理即可得到结论.【详解】(1)证明:∠AF∠BC ,∠∠AFE =∠DCE ,∠E 是AD 的中点,∠AE =DE ,在△AEF 和△DEC 中,AFE DCE AEF DEC AE DE ∠∠⎧⎪∠∠⎨⎪⎩===,∠∠AEF∠∠DEC (AAS ),∠AF =CD ,∠AF =BD ,∠DB =CD ;(2)当△ABC 满足:AB =AC 时,四边形AFBD 是矩形.理由如下:∠AF∠BD ,AF =BD ,∠四边形AFBD 是平行四边形,64.如图,一次函数y kx b =+与反比例函数4y x =的图象交于(),4A m 、()2,B n 两点,与坐标轴分别交于M 、N 两点.(1)求一次函数的解析式;(2)根据图象直接写出40kx b x+->中x 的取值范围; (3)求AOB 的面积.【答案】(1)y=-2x+6;(2) 0x <或12x <<;(3)3.【分析】(1)将点A 、点B 的坐标分别代入解析式即可求出m 、n 的值,从而求出两点坐标;(2)由图直接解答;(3)将∠AOB 的面积转化为S △AON -S △BON 的面积即可.65.解方程:(1)270x x-=(2)2310-+=x x66.某种商品标价500元/件,经过两次降价后售价为405元/件,并且两次降价的百分率相同.求这种商品每次降价的百分率. 【答案】这种商品每次降价的百分率是10%.【分析】设每次降价的百分率为x ,用含有x 的代数式表示两次降价后的售价,与已知变化后的售价是相等的,从而列方程求解即可.【详解】设商品每次降价的百分率为x ,根据题意,得()25001405x -=,解得10.110x ==%,2 1.9x =(不合题意,舍去).答:这种商品每次降价的百分率是10%.【点睛】本题考查了一元二次方程的降低率问题,熟练掌握解题模型()21a x b -=是解题的关键.67.如图,在Rt △ABC 中,∠B=90°,AC=10cm ,BC=6cm ,现有两点P 、Q 的分别从点A 和点C 同时出发,沿边AB ,CB 向终点B 移动.已知点P ,Q 的速度分别为2cm/s ,1cm/s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于16cm 2若存在,请求出此时x 的值;若不存在,请说明理由.【答案】2【分析】根据四边形APQC 的面积=∠ABC 的面积−∠PBQ 的面积,列出方程,根据解的情况即可判断.【详解】解:∠∠B =90°,AC =10,BC =6,∠AB =8.∠BQ =6−x ,PB =8−2x ;假设存在x 的值,使得四边形APQC 的面积等于16cm 2,68.如图,已知菱形ABCD 中,分别以C 、D 为圆心,大于12CD 的长为半径作弧,两弧分别相交于M 、N 两点,直线MN 交CD 于点F ,交对角线AC 于点E ,连接BE 、DE .(1)求证:BE CE =;(2)若72ABC ∠=︒,求ABE ∠的度数.【答案】(1)见解析;(2)18°.【分析】(1)根据作图可知直线MN 是线段CD 的垂直平分线,根据垂直平分线的性质可得CE=DE ,根据菱形的性质,利用SAS 可证明BCE ∠DCE △,可得BE=DE ,即可得结论;(2)根据菱形及等腰三角形的性质可得BAC ACB ∠=∠=54°,根据BE CE =可得54EBC ACB ∠=∠=°,根据角的和差关系即可得答案.【详解】(1)由作图可知直线MN 是线段CD 的垂直平分线,∠CE DE =∠四边形ABCD 是菱形∠ACB ACD ∠=∠,BC CD =∠CE CE =∠BCE ∠DCE △∠BE DE =∠BE CE =(2)∠四边形ABCD 是菱形∠AB BC =∠BAC ACB ∠=∠,69.用指定方法解方程:(1)2x 2+4x ﹣3=0(配方法解)(2)5x 2﹣8x =﹣2(公式法解) 11012,1012;()根据配方法解方程的步骤求解即可;)根据公式法解方程的步骤求解即可.11012,1012;)整理得:5x 2﹣8x+2=0,b =﹣8,c =270.如图,在四边形ABCD 中,AB //CD ,90ABC ∠=︒,13cm AD CD ==,12cm BC =,M 、N 是线段AB 、CD 上两动点,M 点从点A 出发,以每秒2cm 的速度沿AB 方向运动,N 点从点D 出发,以每秒1cm 的速度沿DC 方向运动,M 、N 同时出发,同时停止,当M 运动到点B 时,M 、N 同时停止运动,设运动时间为t 秒.(1)求AB的长;(2)当t为何值时,四边形AMCN为平行四边形?(3)在M、N运动的过程中,是否存在四边形MBCN是矩形,若存在,请求出的t值;若不存在,请说明理由.371.解方程或不等式组(1)解方程:()()2323x x -=-;(2)解不等式组:12112x x -<⎧⎪⎨+≥⎪⎩.【答案】(1)13x =,25x =;(2)13x ≤< 【分析】(1)先移项再提取公因式即可. (2)分别解出各个不等式,再求出公共解即可. 【详解】(1)解:(x -3)(x -3-2)=0 x -3=0,x -5=0 13x =,25x =.(2)解:由∠得:3x < 由∠得:1x ≥∠原不等式组的解集13x ≤<【点睛】本题考查的知识点是解一元二次方程和方程组,解题的关键是熟练的掌握解一元二次方程和方程组.72.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点B 的坐标为(1,0),顶点C 的坐标为(4,2),对角线AC ∥x 轴,边AB 所在直线y 1=ax +b 与反比例函数y 2=kx(k<0)的图象交于A ,E 两点;(1)求y 1和y 2的函数解析式; (2)当y 1>y 2时,求x 的取值范围;(3)点P 是x 轴上一动点,当△P AC 是以AC 为斜边的直角三角形时,请直接写出点P 的坐标.73.对于平行线,我们有这样的结论:如图1,AB∠CD,AD,BC交于点O,则=.请利用该结论解答下面的问题:如图2,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°,AD=2,BD=2DC,求AC的长.【答案】3【详解】试题分析: 根据PQ∠BC可得,进而得出,再解答即可.试题解析:解:过点C作CE∠AB交AD的延长线于E,则=,又BD=2DC,AD=2,∠DE=1,∠CE∠AB,∠∠E=∠BAD=75°,又∠CAD=30°,∠ACE=75°,∠AC=AE=3.74.先化简,再求值:222111a a a a a +⎛⎫+÷ ⎪+--⎝⎭,其中a 是方程2230x x +-=的解.75.如图,一次函数y =mx +2与x 轴、y 轴分别交于点A (﹣1,0)和点B ,与反比例函数y =kx的图象在第一象限内交于点C (1,c ).(1)求m的值和反比例函数的表达式;(2)过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线AB和双曲线y=k交于点P、Q,且PQ=2QD,求点D的坐标.x解得a1=2,a2=﹣3(舍去),∠D(2,0).【点睛】本题考查一次函数,反比例函数的解析与图形,能够掌握数形结合思想是解决本题的关键.76.为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度:y(mg/L)与时间x(天)的变化规律如图所示,其中线段AC表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L,从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:x≥时,硫化物的浓度y与时间x的函数表达式;(1)在整改过程中,当3(2)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L?为什么?)解:3 4.5⨯=的反比例函数,该企业所排污水中硫化物的浓度可以在13.50>∴y 随x 的增大而减小,∴该企业所排污水中硫化物的浓度可以在【点睛】本题考查了反比例函数解析式的求法以及反比例函数图象性质,正确求出反比例函数解析式并且熟练掌握反比例函数以及有关性质.77.用适当的方法解下列方程 (1)()220x x x -+-=(2)((2x x x x =法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.78.已知关于x 的一元二次方程2250x mx m --+= (1)求证:该一元二次方程总有两个不相等的实数根.(2)若该一元二次方程有一个根大于3,另一个根小于3,求m 的取值范围.(3)若12x x ,是该方程的两个根,且()()1211x x n --=,试判断动点()P m n ,所形成的图像是否经过()62,,并说明理由. 【答案】(1)证明见解析 (2)4m >(3)动点()P m n ,所形成的图像经过()62,,理由见解析【分析】(1)直接利用一元二次方程根的判别式进行求解即可; (2)设该方程的两个实数根为12x x ,,则由根于系数的关系得到121225x x m x x m +==-,,再根据题意得到()()12330x x --<,由此建立关系m 的一元一次不等式,解不等式即可;(3)同(2)可以推出251m m n --+=,求出当6m =时,2n =即可得到结论. 【详解】(1)解:∠关于x 的一元二次方程为2250x mx m --+=, ∠()()()22242582044m m m m m ∆=---=-+=-+, ∠()240m -≥, ∠()2444m ∆=-+≥,∠该一元二次方程总有两个不相等的实数根; (2)解:设该方程的两个实数根为12x x ,, ∠121225x x m x x m +==-,,∠该一元二次方程有一个根大于3,另一个根小于3, ∠()()12330x x --<, ∠()1212390x x x x -++<, ∠25390m m --+<, 解得4m >;(3)解:动点()P m n ,所形成的图像经过()62,,理由如下: 同(2)得121225x x m x x m +==-,, ∠()()1211x x n --=, ∠()12121x x x x n -++=, ∠251m m n --+=, ∠4n m =-, 当6m =时,2n =,∠动点()P m n ,所形成的图像经过()62,. 【点睛】本题主要考查了一元二次方程根的判别式,根与系数的关系,解一元一次方程,一次函数图象的性质,熟知一元二次方程的相关知识是解题的关键. 79.问题背景:如图1,在四边形ABCD 中AB AD =,120BAD ∠=︒,90B ADC ∠=∠=︒,E 、F 分别是BC ,CD 上的点,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G ,使DG =BE ,连接AG ,先证明ABE ADG ≌△△,再证明AEF AGF △△≌,可得出结论,他的结论应是______.实际应用:如图2,在新修的小区中,有块四边形绿化ABCD ,四周修有步行小径,且AB =AD ,∠B +∠D =180°,在小径BC ,CD 上各修一凉亭E ,F ,在凉亭E 与F 之间有一池塘,不能直接到达,经测量得12EAF BAD ∠=∠,BE =10米,DF =15米,试求两凉亭之间的距离EF .【答案】问题背景:EF =BE +FD ;实际应用:两凉亭之间的距离EF为25米【分析】(1)根据△ABE ∠∠ADG 可得BE =DG ,根据△AEF ∠∠AGF 得EF =GF ,进而求得结果;(2)延长CD 至H ,使DH =BE ,可证得△ADH ∠∠ABE ,进而证得△F AH ∠∠F AE ,进一步求得EF .【详解】解:问题背景:∠∠ADC =90°,∠ADC +∠ADG =180°,∠∠ADG =90°,在△ABE 和△ADG 中,BE DG B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∠∠ABE ∠∠ADG (SAS ),∠AE =AG ,∠BAE =∠DAG ,∠∠EAF =60°,∠BAD =120°,∠∠BAE +DAF =120°-60°=60°,∠∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =60°=∠EAF ,在△AEF 和△AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∠∠AEF ∠∠AGF (SAS ),∠EF =FG ,∠FG =DG +DF =BE +DF ,∠EF =BE +DF ,故答案为:EF =BE +DF ;实际应用:如图2,延长CD 至H ,使DH =BE ,连接AH ,∠∠B +∠ADC =180°,∠ADH +∠ADC =180°,∠∠ADH =∠B ,80.如图,正方形ABCD中,点E、F分别在BC、CD上,且∠EAF=45°.(1)求证:EF=BE+DF;(2)若DF=4,EF=10,求四边形ABCD的边长.【答案】(1)见解析;(2)12【分析】(1)延长CD到点E′使DE′=BE,利用正方形的性质证明∠BAE∠∠DAE′,进而证明∠EAF∠∠E′AF(SAS),即可解决问题;(2)设正方形ABCD的边长为x,在Rt∠ECF中,CF=x﹣4,CE=x﹣6,利用勾股定理可得(x﹣4)2+(x﹣6)2=100,求出x即可解决问题.【详解】(1)延长CD 到点E ′使DE ′=BE,如图,∠四边形ABCD 为正方形,∠∠BAD =90°,AB =AD ,∠ABE =∠ADE ′=90°,在∠BAE 和∠DAE ′中,90AB ADE ABE ADE BE DE ︒=⎧⎪∠=∠=⎨⎪=''⎩',∠∠BAE ∠∠DAE ′(SAS ),∠AE =AE ′,∠BAE =∠DAE ′,∠∠EAF =45°,∠BAD =90°,∠∠BAE +∠DAF =45°,∠∠DAE ′+∠DAF =45°,∠∠F AE ′=45°,在∠EAF 和∠E ′AF 中,45AE AE EAF E AF AF AF ︒=⎧⎪∠=∠=⎨⎪='⎩',∠∠EAF ∠∠E ′AF (SAS ),∠EF =E ′F ,∠E ′F =DF +DE ′,E ′D =BE ,∠EF =BE +DF ;(2)设正方形ABCD 的边长为x ,则CF =x ﹣4,∠BE =EF −DF =10−4=6,∠CE =x ﹣6,在Rt ∠ECF 中,由勾股定理得:(x ﹣4)2+(x ﹣6)2=100,整理得,x 2﹣10x ﹣24=0,解得x=12 或x=﹣2(舍去),∠正方形的边长为12.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,一元二次方程的解法等知识,第(1)问是典型的证线段的和差问题,常常有两种证法:截长法与补短法,本题用到补短法,因此关键是作适当的辅助线并证三角形全等,这也是难点所在;第(2)问把线段关系归结到Rt∠ECF中,用勾股定理建立方程解决.81.如图∠,四边形ABCD是边长为4的正方形,M是正方形对角线BD(不含B、D 两个端点)上任意一点,将∠BAM绕点B逆时针旋转60°得到∠BEN,连接EA、MN;P 是AD的中点,连接PM.(1)AM+PM的最小值等于;(2)求证:∠BNM是等边三角形;(3)如图∠,以B为坐标原点建立平面直角坐标系,若点M使得AM+BM+CM的值最小,求M点的坐标.四边形P 是AD PA PD ∴=PC DP ∴=BA BC =ABM ∴∆≅AM CM ∴=AM PM ∴+PM CM PC +,25AM PM ∴+,AM PM ∴+的最小值为故答案为:25.)证明:由旋转的性质可知60︒,BMN ∆是等边三角形,BM MN =∴AM BM ∴+EN NM MC EC +,E ∴,N ,,C 共线时,AB BE =,ABE ∠6030EBP ∴∠=︒=︒,12EP BE ∴=,3PB =(4,0) C,设直线EC解得k b ⎧=⎪⎨=⎪⎩82.如图,在Rt△ABC中,∠C=90°,AC=BC=6,点D为AC中点,点E为边AB 上一动点,点F为射线BC上一动点,且∠FDE=90°.(1)当DF∠AB时,连接EF,求∠DEF的余切值;(2)当点F在线段BC上时,设AE=x,BF=y,求y关于x的函数关系式,并写出x 的取值范围;(3)连接CE,若△CDE为等腰三角形,求BF的长.)232x;(的长,再由三角形的中位线定理求出的长,由锐角三角函数的定义即可求出,由平行线的性质及等腰三角形的性质可求出的表达式,再由相似三角形的判定定理求出∠HDE∠∠3283.如图,正方形ABCD和正方形OPEF中,边AD与边OP重合,8AB=,1 4OF AB=,点M、N分别在正方形ABCD的边BC、CD上,且45CNM︒∠=.将正方形OPEF以每秒2个单位的速度向右平移,当点F与点B重合时,停止平移.设平移时间为t秒.(1)请求出t的取值范围;(2)猜想:正方形OPEF的平移过程中,OE与NM的位置关系.并说明理由.(3)连结DE、BE.当BDE∆的面积等于7时,试求出正方形OPEF的平移时间t的值.备用图84.数学活动课上,励志学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:∠∠BCE∠∠ACF,∠AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH∠AD于点H,求证:AE=2FH;在证明这道题时,励志学习小组成员小颖同学进行如下书写,请你将此证明过程补充完整,证明:设DH=x,由由题意,CD=2x,Array∴AD=2AB=4x,∴AH=AD ﹣DH=3x ,∴CH∴AD ,,(3)深入探究在(2)的条件下,励志学习小组成员小漫同学探究发现2AE AF +=,试判断小漫同学的结论是否正确,并说明理由【答案】(1)∠见解析,∠见解析;(2)见解析;(3)正确【详解】(1)先证△ABC ,△ACD 都是等边三角形,再证△BCE 和△ACF 全等即可; (2)先证△ACE ∠∠HCF ,再利用相似三角形的性质即可得出答案;(3)利用(2)中证得的结论利用等量代换即可得出答案.解:(1)∠∠四边形ABCD 是平行四边形,∠BAD =120°,∠∠D =∠B =60°,∠AD =AB ,∠∠ABC ,△ACD 都是等边三角形,∠∠B =∠CAD =60°,∠ACB =60°,BC =AC ,∠∠ECF =60°,∠∠BCE +∠ACE =∠ACF +∠ACE =60°,∠∠BCE =∠ACF ,在△BCE 和△ACF 中,B CAF BC ACBCE ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠∠BCE ∠∠ACF .∠∠∠BCE ∠∠ACF ,85.如图,在ABC ∆中,90A ∠=,3AB =,4AC =,点,M Q 分别是边,AB BC 上的动点(点M 不与,A B 重合),且MQ BC ⊥,过点M 作BC 的平行线MN ,交AC 于点N ,连接NQ ,设BQ 为x .(1)试说明不论x 为何值时,总有QBM ∆∠ABC ∆;(2)是否存在一点Q ,使得四边形BMNQ 为平行四边形,试说明理由;(3)当x 为何值时,四边形BMNQ 的面积最大,并求出最大值.86.如图,ABC为正三角形,2AB=,AD为ABC的BC边上中线,点P为中线AD 上一动点,连接CP,取CP的中点F,将线段CF以点C为旋转中心,逆时针旋转60︒,得到线段CE,连接AE,DE.(1)如图1,若AP CP =,求CED ∠;(2)在点P 运动过程中,探究直线DE 与AB 的位置关系,请就图2给出证明; (3)若将题目中“点P 在中线AD 上运动”改为“点P 为射线DA 上一动点”,其他条件不变,在点P 运动过程中,线段AE 是否存在最小值?若存在,说明理由并求出AE 的最小值;若不存在,请说明理由. ∠ABC 为正三角形,°,60=︒,BCF -∠∠ABC 是正三角形,12CAD ∠=AP CP =,ACP ∠=∠180APC ∠=∠ABC 是正三角形,30CAD =︒2AB =,12==BD AB 1111,3012DE AB BDE BE AE AB ⊥∠∴∠=∴=∴=∠AE 的最小值为87.在学完菱形后,某数学兴趣小组尝试利用手中的数学工具一三角板和圆规作出一个内角为60°的菱形,下面是他们探究过程中的讨论片段,请仔细阅读,并完成相应的任务.小明:可以尝试利用含60°角的三角板和圆规作出菱形.如图,将三角极ABC 放置在图纸上、延长直角边BA .以点C 为圆心、CA 长为半径作弧,以点A 为圆心、AC 长为半径作弧,交BA 的延长线于点E ,交上弧于点D ,连楼CD ,DE ,则四边形ACDE 即为所求作的菱形.小华:我可以在不利用三角板的前提下,作出符合要求的菱形,如图∠,作半圆O 及其直径AB 、分到以点OB 为圆心、大于12OB 的长为半径作弧,两弧交于点MN ,作直线MN 交半圆O 于点C ;以点C 为圆心、OC 长为半径作弧,交半圆O 于点D ,连接AD ,CD ,CO ,则四边形AOCD 即为所求作的菱形.任务:(1)小明的做法中,判断四边形ACDE 是菱形的依据可能是______(填序号) ∠四条边都相等的四边形是菱形 ∠对角线互相垂直的四边形是菱形∠有一组邻边相等的平行四边形是菱形 ∠对角线互相垂直的平行四边形是菱形(2)你认为小华作出的四边形AOCD 是有一个角为60°度的菱形吗?请判断并说理由.(3)如图∠,小齐利用含45°角的三角板ABC 和圆规构造了菱形ABMN ,已知点P 是线段MC 上的一个点,AB =10,当15PAB ∠=︒时,请直接写出点P 到直线MN 的距离.四条边均相等.(2)连接BC、OD,可证明∠OBC、∠OCD、∠OAD均为等边三角形,进而可得结论.(3)P点可能在线段MB或线段BC上,分两种情况讨论,分别过点P作MN的垂线,结合特殊直角三角形的三边比例关系可快速求解答案.(1)如图,连接AD,由题意得:AC=CD=AD,∠三角形ACD为等边三角形,∠∠CAD=60°,∠∠BAC=60°,∠∠EAD=60°,∠AD=AE,∠∠ADE为等边三角形,∠AD=AE=DE,∠四边形ACDE是菱形;此依据是四边都相等的四边形是菱形,故答案为:∠.(2)四边形AOCD是有一个角为60°度的菱形,理由如下:如图,连接BC、OD,由题意可得:MN为OB的中垂线,∠BC=OC,∠OB=OC,。

北师大版九年级上册数学第二章一元二次方程(解析版)

北师大版九年级上册数学第二章一元二次方程(解析版)

第二章一元二次方程一、单选题1.下列各方程中,一定是关于X的一元二次方程的是()A. 2x2+3=2x (5+x)B, ax2+c=0C.(a+1)炉+6升1=0D. (^2+l) x2- 3x+l=0【答案】D【解析】4.*+3=M5+、)整理得,10x-3=0,故不是一元二次方程;B.当a=0时,。

炉+。

=0不是一元二次方程:C.当a=-l时,(什1濡+6升1=0不是一元二次方程:D. aa2>0,二届+1 翔,匚d+lM -3x+l = 0 是一元二次方程:故选D.2.关于工的一元二次方程(。

-1)/+»/_] = 0的一个根是0,则。

值为()A. 1B. -1C. 1 或—1D. i【答案】B【解析】把0代入原方程,再根据原方程是一元二次方程,得到关于a的方程及不等式,解之即可.解:根据题意得:解得:a=-\.故选:B.3.下列说法不正确的是()A.方程工2=%有一根为0B.方程/一1=0的两根互为相反数C.方程(x-l)2-l = 0的两根互为相反数D.方程N—x + 2 = 0无实数根【答案】C【解析】解:A./=x,移项得:x2—x = 0,因式分解得:x(x-l)=0,解得x=0或x=l,所以有一根为0,此选项正确;B. ?-1 = 0,移项得:W=i,宜接开方得:x=l或x=-l,所以此方程的两根互为相反数,此选项正确:C. *-1)2-1 = 0,移项得:(X -1>=1,直接开方得:x-l=l或解得x=2或x=0,两根不互为相反数,此选项错误:D./ 7+2 = 0,找出a=l, b=-l, c=2,则二=l-8=-7V0,所以此方程无实数根,此选项正确.所以说法错误的选项是C.故选C.4.用配方法解一元二次方程2/—3x —1=0,配方正确的是().A. 3 工一一4)1716B.3丫X- -4J【答案】A【解析】按照配方法的步骤进行求解即可得答案.解:2X 2-3X -1 = 0移项得2/—3x = l ,,3 1二次项系数化1的厂--A = 一,3 配方得Y-二X + 2 1716故选:A本题考查了配方法解一元二次方程,配方法的一般步骤为(1)把常数项移到等号的右边:(2)把二次项的 系数化为1:(3)等式两边同时加上一次项系数一半的平方.5 .关于x 的一元二次方程(m-l )x?-2mx + m+l = 0,下列说法正确的是().【答案】C【解析】根据一元二次方程判别式的性质分析,即可得到答案.(m-l )x 2 - 2mx+ m + l = O 的判别式为: X —— 13 7=-+ 3 4;A.方程无实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.方程的根无法确定△二(一2〃。

北师大版九年级上学期数学全册试题及参考答案

北师大版九年级上学期数学全册试题及参考答案
D.∠CAB=∠CAD
3.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是( )
A.168 cm2B.336 cm2C.672 cm2D.84 cm2
4.菱形的周长为16,两邻角度数的比为1:2,此菱形的面积为( )
A.4 B.8 C.10 D.12
5.下列语句中,错误的是( )
A.菱形是轴对称图形,它有两条对称轴
A.对角线相等B.对角相等C.对边相等D.对角线互相平分
8.若矩形的对角线长为4cm,一条边长为2cm,则此矩形的面积为()
A.8 cm2B.4 cm2C.2 cm2D.8cm2
9.如图所示,在矩形ABCD中,∠DBC=29°,将矩形沿直线BD折叠,顶点C落在点E处,则∠ABE的度数是()
A.29° B.32° C.22° D.61°
12.如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后,得到正方形EFCG,EF交AD于H,求DH的长.
13.如图,P为正方形ABCD的对角线上任一点,PE⊥AB于E,PF⊥BC于F,判断DP与EF的关系,并证明.
拓展、探究、思考
14.如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连结DP交AC于点Q.
9.菱形的面积为24 cm2,一对角线长为6 cm,则另一对角线长为______,边长为______.
10.菱形的面积为8 平方厘米,两条对角线的比为1: ,那么菱形的边长为_______.
三、解答题
11.如图所示,在菱形ABCD中,点E,F分别在CD,BC上,且CE=CF,求证:AE=AF
12.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求:
三、11.△ADE≌△ABFAE=AF.

北师大版九年级数学上册第一章特殊的平行四边形综合练习题(含答案,教师版)

北师大版九年级数学上册第一章特殊的平行四边形综合练习题(含答案,教师版)

北师大版九年级数学上册第一章特殊的平行四边形综合练习题(含答案,教师版)北师大版九年级数学上册第一章特殊的平行四边形综合练习题1.如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立平面直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是(D)A.(a-b,a) B.(b,a) C.(a-b,0) D.(b,0)2.如图,菱形ABCD边长为6,∠BAD=120°,点E,F分别在AB,AD上且BE=AF,则EF的最小值为(A).A.B..D3.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C4.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A′B′D′,分别连接A′C,A′D,B′C,则A′C+B′C5.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),当EP+BP最短时,点P6.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA =5,OC =3.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为(-95,125).7.如图,∠MON =90°,矩形ABCD 的顶点A ,B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB =4,BC =1,在运动过程中,点D 到点O8.如图,在矩形纸片ABCD 中,AB =8,BC =6,点E 是AD 的中点,点F 是AB 上一动点.将△AEF 沿直线EF 折叠,点A 落在点A ′处.在EF 上任取一点G ,连接GC ,GA ′,CA ′,则△CGA ′周长的最小值为9.如图,在△ABC 中,∠ABC =90°,BD 为AC 的中线,过点C 作CE ⊥BD 于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG =BD ,连接BG ,DF.(1)求证:四边形BDFG 为菱形;(2)若AG =13,CF =6,则四边形BDFG 的周长为20.证明:∵∠ABC =90°,BD 为AC 的中线,∴BD =12AC.∵AG ∥BD ,BD =FG ,∴四边形BDFG 是平行四边形.∵CF ⊥BD ,∴CF ⊥AG.又∵点D 是AC 中点,∴DF =12AC.∴BD =DF.∴四边形BDFG 是菱形.10.如图,E ,F 分别是矩形ABCD 的边AD ,AB 上的点,EF =EC ,且EF ⊥EC. (1)求证:AE =DC ; (2)若DC =2,则BE =2.证明:在矩形ABCD 中,∠A =∠D =90°,∴∠EFA +∠AEF =90°. ∵EF ⊥EC ,∴∠FEC =90°. ∴∠AEF +∠CED =90°. ∴∠EFA =∠CED. 在△AEF 和△DCE 中,∠A =∠D ,∠EFA =∠CED ,EF =CE ,∴△AEF ≌△DCE(AAS).∴AE =DC.11.已知:在矩形ABCD 中,BD 是对角线,AE ⊥BD 于点E ,CF ⊥BD 于点F. (1)如图1,求证:AE =CF ;(2)如图2,当∠ADB =30°时,连接AF ,CE ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD 面积的18.解:(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,AB ∥CD ,AD ∥BC. ∴∠ABE =∠CDF. ∵AE ⊥BD ,CF ⊥BD ,∴∠AEB =∠CFD =90°.在△ABE 和△CDF 中,∠ABE =∠CDF ,∠AEB =∠CFD ,AB =CD ,∴△ABE ≌△CDF(AAS).∴AE =CF. (2)S △ABE =S △CDF =S △BCE =S △ADF =18S 矩形ABCD .12.如图,在四边形ABCD 中,BC ∥AD ,BC =12AD ,点E 为AD 的中点,点F 为AE 的中点,AC⊥CD ,连接BE ,CE ,CF.(1)判断四边形ABCE 的形状,并说明理由;(2)如果AB =4,∠D =30°,点P 为BE 上的动点,求△PAF 周长的最小值.解:(1)四边形ABCE 是菱形,理由如下:∵点E 是AD 的中点,∴AE =12AD.∵BC =12AD ,∴AE =BC.∵BC ∥AD ,∴四边形ABCE 是平行四边形.∵AC ⊥CD ,点E 是AD 的中点,∴CE =AE =DE. ∴四边形ABCE 是菱形.(2)∵四边形ABCE 是菱形.∴AE =EC =AB =4,点A ,C 关于BE 对称.2AE=2.∴当PA+PF最小时,△PAF的周长最小,即点P为CF与BE的交点时,△PAF的周长最小.此时△PAF的周长为PA+PF+AF=CF+AF.∵CE=DE,∴∠ECD=∠D=30°,∠ACE=90°-30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,∴CF⊥AE.∴CF=AC2-AF2=2 3.△PAF周长的最小值为CF+AF=23+2.13.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,垂足为F,交直线MN于点E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB的中点时,四边形CDBE是什么特殊四边形?说明你的理由;(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形CDBE是正方形?请说明你的理由.解:(1)证明:∵DE⊥BC,∴∠DFB=90°.∵∠ACB=90°,∴∠ACB=∠DFB.∴AC∥DE.∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形.∴CE=AD.(2)四边形CDBE是菱形.理由:∵CE=AD,∴BD=CE.∵BD∥CE,∴四边形CDBE是平行四边形.∵∠ACB=90°,D为AB的中点,∴CD=BD.∴四边形CDBE是菱形.(3)当∠A=45°时,四边形CDBE是正方形.理由:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°.∴AC=BC.∵D为AB的中点,∴CD⊥AB.∴∠CDB=90°.又∵四边形CDBE是菱形,∴四边形CDBE是正方形.14.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连接EC,连接AP并延长交CD于点F,连接BP,交CE于点H.(1)若∠PBA∶∠PBC=1∶2,判断△PBC的形状,并说明理由;(2)求证:四边形AECF为平行四边形.解:(1)△PBC是等边三角形,理由如下:在矩形ABCD中,∠ABC=90°,∵∠PBA∶∠PBC=1∶2,∴∠PBC=60°.由折叠的性质,得PC=BC.∴△PBC是等边三角形.(2)证明:由折叠的性质,得△EBC≌△EPC.∴BE=PE.∴∠EBP=∠EPB.∵E为AB的中点,∴BE=AE.∴AE=PE.∴∠EPA=∠EAP.∵∠EBP +∠EPB +∠EPA +∠EAP =180°,∴∠EPB +∠EPA =90°. ∴∠BPA =90°,即BP ⊥AF.由折叠的性质,得BP ⊥CE ,∴AF ∥CE. ∵四边形ABCD 是矩形,∴AE ∥CF. ∴四边形AECF 为平行四边形.15.如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处,直线MN 交BC 于点M ,交AD 于点N.(1)求证:CM =CN ;(2)若△CMN 的面积与△CDN 的面积比为3∶1,求MNDN的值.解:(1)证明:由折叠的性质,得∠ENM =∠DNM ,又∵∠ANE =∠CND ,∴∠ANM =∠CNM. ∵四边形ABCD 是矩形,∴AD ∥BC. ∴∠ANM =∠CMN. ∴∠CMN =∠CNM. ∴CM =CN.(2)过点N 作NH ⊥BC 于点H ,则四边形NHCD 是矩形,∴HC =DN ,NH =DC. ∵S △CMN S △CDN =12MC ·NH12ND ·NH =MC ND=3,∴MC =3ND =3HC.∴MH =2HC.设DN =x ,则HC =x ,MH =2x. ∴CM =CN =3x.在Rt △CDN 中,DC =CN 2-DN 2=22x. 在Rt △MNH 中,MN =MH 2+HN 2=23x. ∴MN DN =23x x=2 3. 16.在正方形ABCD 中,点E ,F 分别在边BC ,AD 上,DE =EF ,过点D 作DG ⊥EF 于点H ,交AB 边于点G.(1)如图1,求证:DE =DG ;(2)如图2,将EF 绕点E 逆时针旋转90°得到EK ,点F 对应点K ,连接KG ,EG.若H 为DG 的中点,在不添加任何辅助线及字母的情况下,请直接写出图中所有与EG 长度相等的线段(不包括EG).解:(1)证明:∵四边形ABCD 是正方形,∴AD =DC ,AD ∥BC ,∠DAG =∠DCE =90°. ∴∠DEC =∠EDF.∵DE =EF ,∴∠EFD =∠EDF. ∴∠EFD =∠DEC.∵DG ⊥EF ,∴∠GHF =90°. ∴∠DGA +∠AFH =180°. ∵∠AFH +∠EFD =180°,∴∠DGA =∠EFD =∠DEC. 在△DAG 和△DCE 中,∠DGA =∠DEC ,∠DAG =∠DCE ,DA =DC ,∴△DAG ≌△DCE(AAS).∴DG =DE.(2)与线段EG 相等的线段有:DE ,DG ,GK ,KE ,EF.17.如图,BD 是正方形ABCD 的对角线,线段BC 在其所在的直线上平移,将平移得到的线段记为PQ ,连接PA ,过点Q 作QO ⊥BD ,垂足为O ,连接OA ,OP.(1)如图1所示,求证:AP =2OA ;(2)如图2所示,PQ 在BC 的延长线上,如图3所示,PQ 在BC 的反向延长线上,猜想线段AP ,OA 之间有怎样的数量关系?请直接写出你的猜想,不需证明.解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABD =∠CBD =45°. ∵QO ⊥BD ,∴∠BOQ =90°. ∴∠BQO =∠CBD =45°.∴OB =OQ. ∵PQ =BC ,∴AB =PQ.在△ABO 和△PQO 中,OB =OQ ,∠ABO =∠PQO ,AB =PQ ,∴△ABO ≌△PQO(SAS).∴OA =OP ,∠AOB =∠POQ. ∵∠BOP +∠POQ =90°,∴∠BOP +∠AOB =90,即∠AOP =90°. ∴△AOP 是等腰直角三角形.∴AP =2OA.(2)当PQ 在BC 的延长线上时,线段AP ,OA 之间的数量关系为AP =2OA ;当PQ 在BC 的反向延长线上时,线段AP ,OA 之间的数量关系为AP =2OA.。

北师大版九年级数学上册第三章概率练习题(含答案)

北师大版九年级数学上册第三章概率练习题(含答案)

概率练习题1.在一个不透明的布袋中,有大小、形状完全相同,颜色不同的15个球,从中摸出红球的概率为,则袋中红球的个数为( )A.10B.15C.5D.2 2.已知粉笔盒里有4支红色粉笔和n 支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是,则n 的值是( ) A .4 B .6 C .8D .103.为估计某地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.由这些信息,我们可以估计该地区有黄羊( )A 、400只B 、600只C 、800只D 、1000只4.在配紫色游戏中,转盘被平均分成“红”、“黄”、“蓝”、“白”四部分,转动转盘两次,配成紫色的概率为( )A.13B.14C.15D.185.小颖将一枚质地均匀的硬币连续掷了三次,你认为三次都是正面朝上的概率是( )A.12B.13C.14D.186.下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值; ④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率. A .1 B .2 C .3 D .4257.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是( )A.34B.15C.25D.358.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是( ) A.掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B.同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C.掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D.在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹赢9.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是________.10.有30张牌,牌面朝下,每次抽出一张记下花色再放回,洗牌后再抽,经历多次试验后,记录抽到红桃的频率为20%,则红桃大约有张.11.为估计某地区黄羊的只数,先捕捉20只黄羊分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊只。

北师大版九年级上册数学1.1 菱形的性质与判定同步练习(附答案)

第一章特殊平行四边形1.1 菱形的性质与断定第1课时菱形的性质1.有一组__邻边__相等的平行四边形是菱形.2.菱形是__轴__对称图形,菱形的四边__相等__,菱形的对角线__互相垂直__.知识点一:菱形的定义1.四边形ABCD的对角线互相平分,要使它成为菱形,还需要添加一个条件,这个条件是(B)A.AB=CD B.AB=BCC.AD=BC D.AC=BD2.如图,在▱ABCD中,∵∠1=∠2,∴BC=DC.∴▱ABCD是菱形__有一组邻边相等的平行四边形是菱形__.(请在横线上填上理由)知识点二:菱形的性质3.假设菱形两条对角线的长分别为6和8,那么这个菱形的周长为(A)A.20B.16C.12D.104.(易错题)如图,在菱形ABCD中,对角线AC,BD交于点O,以下说法错误的选项是(B)A.AB∥DC B.AC=BDC.AC⊥BD D.OA=OC,第4题图),第5题图) 5.如图,在菱形ABCD中,不一定成立的是(C)A.四边形ABCD是平行四边形B.AC⊥BDC.△ABC是等边三角形D.∠CAB=∠CAD6.在菱形ABCD中,∠A=60°,AB=5,那么△ABD的周长是(C)A.10 B.12 C.15 D.207.菱形的一个内角为120°,边长为8,那么它较短的对角线长是(C)A.3 B.4 C.8 D.8 38.如图,菱形ABCD中,对角线AC,BD相交于点O,点H为AD边中点,菱形ABCD 的周长为28,那么OH的长等于(A)A.B.4C.7 D.149.(2021·烟台)如图,在菱形ABCD中,点M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接OB.假设∠DAC=28°,那么∠OBC的度数为(C) A.28°B.52°C.62°D.72°10.如图,四边形ABCD是菱形,对角线AC与BD相交于点O,AB=5,AO=4,求BD的长.解:∵四边形ABCD是菱形,∴AC⊥BD且BO=DO.在Rt△AOB中,∵AB=5,AO=4,由勾股定理,得BO=3,∴BD=611.(2021·上海)如图,AC,BD是菱形ABCD的对角线,那么以下结论一定正确的选项是(B)A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍,第11题图),第12题图) 12.如图,菱形ABCD,其顶点A,B在数轴上对应的数分别为-4和1,那么BC=__5__.13.如图是根据四边形的不稳定性制作的边长均为15 cm的可活动菱形衣架.假设墙上钉子间的间隔AB=BC=15 cm,那么∠1=__120__°.,第13题图),第14题图) 14.(2021·白银)如图,四边形ABCD是菱形,点O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白局部.当菱形的两条对角线的长分别为6和8时,那么阴影局部的面积为__12__.15.(2021·宜宾)菱形的周长为20 cm,两个相邻的内角的度数之比为1∶2,那么较长的对角线长度是16.如图,四边形ABCD是菱形,点E,F分别是边CD,AD的中点.求证:AE=CF.解:证明:∵四边形ABCD是菱形,∴AD=CD.∵点E,F分别是CD,AD的中点,∴DE=12CD,DF=12AD,∴DE=DF.又∵∠ADE=∠CDF,∴△AED≌△CFD(SAS),∴AE=CF17.如图,在菱形ABCD中,AC为对角线,点E,F分别是边BC,AD的中点.(1)求证:△ABE≌△CDF;(2)假设∠B=60°,AB=4,求线段AE的长.解:(1)证明:∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D,∵点E,F分别是边BC,AD的中点,∴BE=DF,∴△ABE≌△CDF(SAS)(2)易得△ABC是等边三角形,点E为BC的中点,从而AE⊥BC,AE=2318.如图,在菱形ABCD中,点F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.解:(1)证明:连接AC.∵BD是菱形ABCD的对角线,∴BD垂直平分AC.∴AE=EC(2)点F是线段BC的中点.理由:∵ABCD是菱形,∴AB=CB.又∵∠ABC=60°,∴△ABC是等边三角形.∴∠BAC=60°.∵AE=EC,∴∠EAC=∠ACE.∵∠CEF=60°,∴∠EAC=30°.∴AF是△ABC的角平分线.又∵△ABC是等边三角形,∴BF=CF.∴点F是线段BC的中点第2课时菱形的断定对角线__互相垂直__的平行四边形是菱形;__四边相等__的四边形是菱形.知识点:菱形的断定1.小明和小亮在做一道习题,假设四边形ABCD是平行四边形,请补充条件,使得四边形ABCD是菱形.小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为以下说法正确的选项是(B)A.小明、小亮都正确B.小明正确,小亮错误C.小明错误,小亮正确D.小明、小亮都错误2.以下命题中正确的选项是(D)A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直的平行四边形是菱形3.如图,以下条件之一能使▱ABCD是菱形的是(D)①AC⊥BD;②∠BAD=90°;③AB=BC;④BD平分∠ABC.A.①③B.②③C.③④D.①③④,第3题图),第4题图) 4.如下图,在△ABC中,AB=AC,∠A<90°,BC,CA,AB的中点分别为点D,F,E,那么四边形AFDE是(A)A.菱形B.长方形C.正方形D.以上都不对5.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如下图,能得到四边形ABCD 是菱形的根据是(B)A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形,第5题图),第6题图) 6.(易错题)如图,以下条件能断定四边形ABCD为菱形的有(C)①AB=BC=CD=DA;②AC,BD互相垂直平分;③平行四边形ABCD,且AC⊥BD;④平行四边形ABCD,且AC=BD.A.1个B.2个C.3个D.4个7.(2021·淄博)▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是__AD=DC(答案不唯一)__.8.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件__OA=OC或AD=BC或AD∥BC或AB=BC__,使四边形ABCD成为菱形.(只需添加一个即可)9.(2021·舟山):如图,在▱ABCD中,点O为对角线BD的中点,过点O的直线EF 分别交AD,BC于E,F两点,连接BE,DF.(1)求证:△DOE ≌△BOF ; (2)当∠DOE 等于多少度时,四边形BFDE 为菱形?请说明理由. 解:(1)证明:∵▱ABCD 中,点O 为对角线BD 的中点,∴BO =DO ,∠EDB =∠FBO ,在△EOD 和△FOB 中⎩⎨⎧∠EDO =∠OBF ,DO =BO ,∠EOD =∠FOB ,∴△DOE ≌△BOF (ASA )(2)当∠DOE =90°时,四边形BFDE 为菱形,理由:∵△DOE ≌△BOF ,∴BF =DE ,又∵BF ∥DE ,∴四边形EBFD 是平行四边形,∵BO =DO ,∠EOD =90°,∴EB =DE ,∴四边形BFDE 为菱形10.(2021·徐州)假设顺次连接四边形的各边中点所得的四边形是菱形,那么该四边形一定是( C )A .长方形B .对角线相等的梯形C .对角线相等的四边形D .对角线互相垂直的四边形11.如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下: 甲:连接AC ,作AC 的垂直平分线MN 分别交AD ,AC ,BC 于点M ,O ,N ,连接AN ,CM ,那么四边形ANCM 是菱形.乙:分别作∠A ,∠B 的平分线AE ,BF ,分别交BC ,AD 于点E ,F ,连接EF ,那么四边形ABEF 是菱形.根据两人的作法可判断( C )A .甲正确,乙错误B .乙正确,甲错误C .甲、乙均正确D .甲、乙均错误12.(2021·十堰)如图,在△ABC 中,点D 是BC 的中点,点E ,F 分别在线段AD 及其延长线上,且DE =DF.给出以下条件:①BE ⊥EC ;②BF ∥CE ;③AB =AC.从中选择一个条件使四边形BECF 是菱形,你认为这个条件是__③__.(只填写序号)13.(2021·新疆)如图,△ABC ,按如下步骤作图:①分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交点P ,Q 两点; ②作直线PQ ,分别交AB ,AC 于点E ,D ,连接CE ;③过点C 作CF ∥AB 交PQ 于点F ,连接AF.(1)求证:△AED ≌△CFD ;(2)求证:四边形AECF 是菱形.解:(1)由作图知:PQ 为线段AC 的垂直平分线,∴AE =CE ,AD =CD ,∵CF ∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED ,在△AED 与△CFD 中,⎩⎨⎧∠EAC =∠FCA ,AD =CD ,∠CFD =∠AED ,∴△AED ≌△CFD(2)∵△AED ≌△CFD ,∴AE =CF ,∵EF 为线段AC 的垂直平分线,∴EC =EA ,FC =FA ,∴EC =EA =FC =FA ,∴四边形AECF 为菱形14.(2021·南京)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,过点E 作EF ∥AB 交BC 于点F.(1)求证:四边形DBFE 是平行四边形;(2)当△ABC 满足什么条件时,四边形DBFE 是菱形?为什么?解:(1)证明:∵点D ,E 分别是AB ,AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,又∵EF ∥AB ,∴四边形DBFE 是平行四边形 (2)当AB =BC 时,四边形是菱形.理由如下:∵点D 是AB 的中点,∴BD =12AB ,∵DE 是△ABC 的中位线,∴DE =12BC ,∵AB =BC ,∴BD =DE ,又∵四边形DBFE 是平行四边形,∴四边形DBFE 是菱形15.某校九年级学习小组在探究学习过程中,用两块完全一样的且含60°角的直角三角形ABC 与AFE 按如图①所示位置放置,现将Rt △AEF 绕A 点按逆时针方向旋转角α(0°<α<90°),如图②,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)求证:AM =AN ;(2)当旋转角α=30°,四边形ABPF 是什么样的特殊四边形?并说明理由.解:(1)证明:∵α+∠EAC =90°,∠NAF +∠EAC =90°,∴α=∠NAF.又∵∠B =∠F ,AB =AF ,∴△ABM ≌△AFN ,∴AM =AN (2)四边形ABPF 是菱形.理由:∵α=30°,∠EAF =90°,∴∠BAF =120°.又∵∠B =∠F =60°,∴∠B +∠BAF =60°+120°=180°,∠F +∠BAF =60°+120°=180°.∴AF ∥BC ,AB ∥EF.∴四边形ABPF 是平行四边形.又∵AB =AF ,∴四边形ABPF 是菱形。

北师大版初中数学九年级上册第一章综合测试试卷-含答案01

第一章单元综合测试一、单选题1.已知四边形ABCD 是平行四边形,AC ,BD 相交于点O ,下列结论错误的是( ) A .OA OC =,OB OD =B .当AB CD =时,四边形ABCD 是菱形C .当90ABC ∠=︒时,四边形ABCD 是矩形D .当AC BD =且AC BD ⊥时,四边形ABCD 是正方形2.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,8AC =,6BD =,点E 是CD 上一点,连接OE ,若OE CE =,则OE 的长是( )A .2B .52C .3D .4 3.如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 单位中点,过点E 作EF BD ⊥于F ,EG AC ⊥与G ,则四边形EFOG 的面积为( )A .14SB .18SC .112S D .116S 4.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 的中点.若菱形ABCD 的周长为32,则OE 的长为( )A .3B .4C .5D .65.如图,正方形ABCD 的面积为1,M 是AB 的中点,则图中阴影部分的面积是( )A .310B .13C .25D .496.如图,正方形ABCD 的边长8AB =,E 为平面内一动点,且4AE =,F 为CD 上一点,2CF =,连接EF ,ED ,则2EF ED +的最小值为( )A .B .C .12D .10二、填空题7.如图,在菱形ABCD 中,50B ∠=︒,点E 在CD 上,若AE AC =,则BAE ∠=________.8.如图,在矩形ABCD 中,E ,F 分别为边AB ,AD 的中点,BF 与EC ,ED 分别交于点M ,N .已知4AB =,6BC =,则MN 的长为________.9.如图,在矩形ABCD 中,9AB =,AD =,点P 是边BC 上的动点(点P 不与点B ,点C 重合),过点P 作直线PQ BD ∥,交CD 边于Q 点,再把PQC △沿着动直线PQ 对折,点C 的对应点是R 点,则CQP ∠=________.10.如图,正方形ABCD 中,点E 为对角线AC 上一点,且AE AB =,则BEA ∠的度数是________度.三、作图题11.在正方形ABCD 中,E 是CD 边上的点,过点E 作EF BD ⊥于F .(1)尺规作图:在图中求作点E ,使得EF EC =;(保留作图痕迹,不写作法) (2)在(1)的条件下,连接FC ,求BCF ∠的度数.四、综合题12.如图,ABCD 的对角线AC ,BD 相交于点O ,过点O 作EF AC ⊥,分别交AB ,DC 于点E 、F ,连接AF 、CE .(1)若32OE =,求EF 的长;(2)判断四边形AECF 的形状,并说明理由.13.如图,在ABC △中,AB AC =,点D 、E 分别是线段BC 、AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:A BDE F E △≌△;(2)求证:四边形ADCF 为矩形.14.如图,四边形ABCD 的对角线AC ,BD 交于点O ,过点D 作DE BC ⊥于E ,延长CB 到点F ,使BF CE =,连接AF ,OF .(1)求证:四边形AFED 是矩形;(2)若7AD =,2BE =,45ABF ∠=︒,试求OF 的长.15.如图,点E 是正方形ABCD 外一点,点F 是线段AE 上一点,且EBF △是等腰直角三角形,其中90EBF ∠=︒,连接CE 、CF(1)求证:ABF CBE △≌△;(2)判断CE 与EF 的位置关系,并说明理由.16.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:HEA CGF ∠∠=;(2)当AH DG =时,求证:菱形EFGH 为正方形.第一章单元综合测试答案解析一、 1.【答案】B【解析】∵四边形ABCD 是平行四边形,OA OC =∴,OB OD =,故A 正确,∵四边形ABCD 是平行四边形,AB CD =,不能推出四边形ABCD 是菱形,故B 错误,∵四边形ABCD 是平行四边形,90ABC ∠=︒, ∴四边形ABCD 是矩形,故C 正确,∵四边形ABCD 是平行四边形,AC BD =,AC BD ⊥, ∵四边形ABCD 是正方形.故D 正确.故答案为:B . 2.【答案】B【解析】∵四边形ABCD 是菱形,8AC =,6BD =,142CO AC ==∴,132OD BD ==,AC BD ⊥,5DC =∴,90EOC DOE ∠+∠=︒,90DCO ODC ∠+∠=︒,OE CE =∵,EOC ECO ∠=∠∴,DOE ODC ∠=∠∴,DE OE =∴,1522OE CD ==∴故答案为:B . 3.【答案】B【解析】∵四边形ABCD 是菱形,OA OC =∴,OB OD =,AC BD ⊥,12S AC BD =⨯, EF BD ⊥∵于F ,EG AC ⊥于G ,∴四边形EFOG 是矩形,EF OC ∥,EG OB ∥,∵点E 是线段BC 的中点,EF ∴、EG 都是OBC △的中位线,1124EF OC AC ==∴,1124EG OB BD ==,∴矩形EFOG 的面积11111=44828EF EG AC BD AC BD S ⎛⎫=⨯=⨯=⨯⨯ ⎪⎝⎭;答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

北师大版九年级数学上册--第三单元 《用树状图或表格求概率》练习1题(含答案)

用树状图或表格求概率一、填空题: 用列表的方法求下列各事件发生的概率,并用所得的结果填空.1.从1、2、3、4、5这五个数字中,先随意抽取一个,然后从剩下的四个数中再抽取一个,则两次抽到的数字之和为偶数的概率是 ;2.有五条线段,其长度分别为1、3、5、7、9,从中任取三条,以这三条线段为边能够成一个三角形的概率是 ;3.现有10个型号相同的杯子,其中一等品7个,二等品2个,三等品1个,从中任取两个杯子都是一等品的概率是 .4.三个袋中各装有2个球,其中第一个袋和第二个袋中各有一个红球和一个黄球,第三个袋中有一个黄球和一个黑球,现从三个袋中各摸出一个球,则摸出的三个球中有2个黄球和一个红球的概率为_________.5.已知函数5y x =-,令12x =,1,32,2,52,3,72,4,92,5,可得函数图象上的十个点.在这十个点中随机取两个点11()P x y ,,22()Q x y ,,则P Q ,两点在同一反比例函数图象上的概率是___________. 二、选择题:1.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率为( )A.112 B.13 C.512 D.122.同时掷两颗均匀的骰子,下列说法中正确的是( ).(1)“两颗的点数都是3”的概率比“两颗的点数都是6”的概率大;(2)“两颗的点数相同”的概率是16; (3)“两颗的点数都是1”的概率最大;(4)“两颗的点数之和为奇数”与“两颗的点数之和为偶数”的概率相同.A. (1)、(2)B. (3)、(4)C. (1)、(3)D. (2)、(4)三、解答题:1.有两组卡片,第一组卡片共3张,分别写着2、2、3;第二组卡片共5张,分别写着1、2、2、3、3. 试用列表的方法求从每组中各抽取一张卡片,两张都是2的概率.2.小明、小芳做一个“配色”的游戏.右图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,或者转盘A 转出了蓝色,转盘B 转出了红色,则红色和蓝色在一起配成紫色,这种情况下小芳获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小明获胜;在其它情况下,则小明、小芳不分胜负.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)此游戏的规则,对小明、小芳公平吗?试说明理由.23. 在一次数学竞赛中,某选手对其中的两道“四选一”的单项选择题(即每题给出,,,四个选项,其中有且只有一个正确选项)毫无把握,便从给定的四个选项中随机选择一个作为答案.(1)请你用树状图表示该同学对这两道题选项的选择的所有可能结果;(2)求这两道试题都被该同学选对的概率.24. 一不透明的袋子中装有个大小、质地都相同的乒乓球,球面上分别标有数字,,.先从袋中任意取出一球后放回,搅匀后再从袋中任意取出一球.若把两次号码之积作为一个两位数的十位上的数字,两次号码之和作为这个两位数的个位上的数字,求所组成的两位数是偶数的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)25. “石头、剪刀、布”是广为流传的游戏,游戏时比赛各方每次做“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”、“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人每次都是等可能地做这三种手势,那么:(1)一次比赛中三人不分胜负的概率是多少?(2)比赛中一人胜,二人负的概率是多少?红 蓝 红 黄 红 蓝 黄26. 一个不透明的口袋中装有个分别标有数字,,,的小球,它们的形状、大小完全相同.小红先从口袋中随机摸出一个小球记下数字为;小颖在剩下的个小球中随机摸出一个小球记下数字为.(1)小红摸出标有数字的小球的概率是________;(2)请用列表法或画树状图的方法表示出由,确定的点所有可能的结果;(3)若规定:点在第一象限或第三象限小红获胜;点在第二象限或第四象限则小颖获胜.请分别求出两人获胜的概率.。

北师大版数学九年级上册:第一章 特殊平行四边形——特殊平行四边形的折叠问题(含答案)

第一章特殊平行四边形特殊平行四边形的折叠问题▶类型一菱形中的折叠问题1.对角线长分别为6和8的菱形ABCD如图1-ZT-1所示,O为对角线的交点,过点O折叠菱形,使B,B'两点重合,MN是折痕.若B'M=1,则CN的长为()图1-ZT-1A.7B.6C.5D.42.如图1-ZT-2,将菱形ABCD折叠,使点B落在AD边上的点F处,折痕为CE.若∠D=70°,则∠AEF=°.图1-ZT-23.如图1-ZT-3,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与点B,D重合),折痕为EF,若DG=2,BG=6,则BE的长为.图1-ZT-3▶类型二矩形中的折叠问题4.[2020·枣庄]如图1-ZT-4,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE 折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()图1-ZT-4A.3√3B.4C.5D.65.[2020·青岛]如图1-ZT-5,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()图1-ZT-5A.√5B.32√5C.2√5D.4√56.[2020·衢州]如图1-ZT-6,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为()图1-ZT-6A.√2B.√2+12C.√5+12D.437.如图1-ZT-7,在矩形ABCD中,AB=6,BC=8,E为AD的中点,F为AB上一点,将△AEF沿EF 折叠后,点A恰好落到CF上的点G处,求折痕EF的长.图1-ZT-7▶类型三正方形中的折叠问题8.[2020·广东]如图1-ZT-8,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上的点B'处,则BE的长度为()图1-ZT-8A.1B.√2C.√3D.29.如图1-ZT-9,在平面直角坐标系中,正方形OABC的顶点A的坐标为(0,2),E是线段BC上一点,且∠AEB=67.5°,沿AE折叠正方形后点B落在点F处,那么点F的坐标为.图1-ZT-9参考答案1.D [解析] 连接AC ,BD ,如图.∵O 为菱形ABCD 对角线的交点,∴OC=12AC=3,OB=OD=12BD=4,∠COD=90°.在Rt △COD 中,CD=√32+42=5. ∵AB ∥CD ,∴∠MBO=∠NDO. 又∵∠BOM=∠DON ,OB=OD , ∴△OBM ≌△ODN ,∴DN=BM.∵过点O 折叠菱形ABCD ,使B ,B'两点重合,MN 是折痕, ∴BM=B'M=1,∴DN=1, ∴CN=CD-DN=5-1=4.故选D .2.30 [解析] ∵四边形ABCD 是菱形,∠D=70°, ∴∠B=70°,∠A=110°.∵将菱形ABCD 折叠,使点B 落在AD 边上的点F 处, ∴∠B=∠EFC=70°,CF=BC=CD , 则∠CFD=∠D=70°, ∴∠AFE=180°-70°-70°=40°,∴∠AEF=180°-∠A-∠AFE=30°.故答案为30. 3.2.8[解析] 如图,过点E 作EH ⊥BD 于点H.由折叠的性质可知EG=EA. 由题意得BD=DG+BG=8. ∵四边形ABCD 是菱形,∴AD=AB ,∠ABD=∠CBD=12∠ABC=60°,∴△ABD 为等边三角形,∠BEH=30°, ∴AB=BD=8.设BE=x ,则EG=AE=8-x.在Rt △EHB 中,BH=12x ,EH=√BE 2-BH 2=√32x.在Rt △EHG 中,EG 2=EH 2+GH 2, 即(8-x )2=(√32x )2+(6-12x )2,解得x=2.8,即BE=2.8. 故答案为2.8.4.D [解析] ∵将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处, ∴AF=AB ,∠AFE=∠B=90°,∴EF ⊥AC , ∵∠EAC=∠ECA ,∴AE=CE ,∴AF=CF , ∴AC=2AB=6. 故选D .5.C [解析] ∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠EFC=∠AEF . 由折叠得∠EFC=∠AFE ,∴∠AFE=∠AEF ,∴AE=AF=5. 由折叠得FC=AF ,OA=OC ,∴BC=3+5=8. 在Rt △ABF 中,AB=√AF 2-BF 2=√52-32=4. 在Rt △ABC 中,AC=√AB 2+BC 2=√42+82=4√5, ∴OA=OC=2√5.故选C .6.A [解析] 由折叠补全图形如图所示.∵四边形ABCD 是矩形,∴∠ADC=∠A=90°,AD=BC=1,CD=AB. 由第一次折叠得∠ADE=12∠ADC=45°, ∴∠AED=∠ADE=45°, ∴AE=AD=1.在Rt △ADE 中,根据勾股定理,得DE=√2AD=√2. 由第二次折叠知CD=DE=√2, ∴AB=√2. 故选A .7.解:∵四边形ABCD 是矩形,∴AB=CD=6,BC=AD=8,∠A=∠D=90°.如图,连接CE.∵E 为AD 的中点, ∴AE=DE=4.由折叠可得AE=GE ,∠EGF=∠A=90°, ∴DE=GE.又∵∠D=90°,∴∠EGC=∠D=90°. 又∵CE=CE.∴Rt △CDE ≌Rt △CGE (HL), ∴CD=CG=6.设AF=x ,则GF=x ,BF=6-x ,则CF=6+x. 在Rt △BCF 中,BF 2+BC 2=CF 2, 即(6-x )2+82=(6+x )2,解得x=83,∴AF=83.在Rt △AEF 中,EF=√AE 2+AF 2=√42+(83) 2=43√13. 8.D [解析] ∵四边形ABCD 是正方形, ∴AB ∥CD ,∠A=90°, ∴∠EFD=∠BEF=60°.∵将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上, ∴∠BEF=∠FEB'=60°,BE=B'E , ∴∠AEB'=180°-∠BEF-∠FEB'=60°, ∴∠AB'E=30°,∴B'E=2AE. 设BE=x ,则B'E=x ,AE=3-x ,∴2(3-x)=x,解得x=2.故选D.9.(-√2,2-√2)[解析] 如图,过点F作FD⊥CO于点D,FG⊥AO于点G.∵∠AEB=67.5°,沿AE折叠后点B落在点F处,∴∠BAE=∠EAF=22.5°,AF=AB=2,∴∠F AG=45°,∴FG=AG=√2,∴GO=2-√2,∴点F的坐标为(-√2,2-√2).故答案为(-√2,2-√2).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档