人教B版高中数学选修(2-1)-2.1《曲线与方程》参考教案2

合集下载

高中数学人教B版选修2-1第二章《2.1.1 曲线与方程的概》优质课公开课教案教师资格证面试试讲教案

高中数学人教B版选修2-1第二章《2.1.1 曲线与方程的概》优质课公开课教案教师资格证面试试讲教案

高中数学人教B版选修2-1第二章《2.1.1 曲线与方程的概》优质课公开课教案教师资格证面试试讲教案
1教学目标
1.知识与能力:通过感受曲线的方程和方程的曲线这一概念的生成过程,初步理解曲线的方程和方程的曲线的概念。

2.过程与方法:理解曲线的方程与方程的曲线的概念和集合相等的关系、渗透转化与化归的思想与数形结合的思想。

3.情感态度与价值观:培养学生实事求是、合情推理、合作交流及独立思考等良好的个性品质,以及主动参与、勇于探索、敢于创新的精神。

2学情分析
新课标强调返璞归真,努力揭示数学概念、结论的发展背景,过程和本质,揭示人们探索真理的道路。

本节课在学生学习了集合和直线的方程、圆的方程知识的基础上,使学生理解数学概念、结论产生的背景和逐步形成的过程,体会孕育在其中的思想,把数学的学术形态转化为学生易于接受的教育形态。

为突破曲线的方程与方程的曲线定义的难点,选择学生认知结构中与新知最邻近“直线的方程”,“圆的方程”入手,以集合相等,辅助理解“曲线的方程”与“方程的曲线”,进一步强化了概念理解的深刻性。

无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。

3重点难点
1.教学重点:理解曲线的方程和方程的曲线的概念。

2.教学难点:对曲线与方程对应关系的理解。

4教学过程
4.1第一学时
教学活动
1【导入】曲线与方程
1.通过投影呈现几个教材内容的片断,为新课的学习作一些必要的铺垫.
片断1 数学2第三章中直线与方程的章头语:
……通过代数运算研究几何图形性质的方法,它是解析几何中最基本的研究方法。

高中数学选修2-1精品教案1:2.1.1 曲线与方程教学设计

高中数学选修2-1精品教案1:2.1.1 曲线与方程教学设计

2.1.1曲线与方程(一)教学目标1、知识与技能:能说出曲线的方程和方程的曲线的概念的定义,并结合具体例子对定义进行解释.可以求出简单曲线的方程,画出简单方程的曲线.2、过程与方法:把自己在理解或解决曲线的方程和方程的曲线问题过程中的经验、困难或者教训与老师和同学交流,获得更好的理解和方法的改进.3、情感、态度与价值观:加深对数形结合的理解.(二)教学重点与难点重点:通过理解方程的解与曲线上的点一一对应的关系,理解曲线的方程、方程的曲线的概念.难点:对曲线与方程的概念的理解.教具准备:与教材内容相关的资料.教学设想:通过学生的参与,激发学生学习数学的兴趣.(三)教学过程一.问题引入在必修2中我们过直线和圆,然而直线和圆我们在初中都做了非常系统、深入的研究,那么,与初中相比,高中研究的方法有什么不同呢?借助直线或圆的方程我们都研究过哪些问题?老师引导学生得出:用解析的方法,研究直线的位置关系(如平行、相交、重合),直线与圆的位置关系、圆与圆的位置关系……老师在学生回答的基础上从如下几个方面做总结提升:第一,对比初、高中对直线和圆的研究,我们发现,研究的问题都是相似的,但是研究的方法不同.初中是借助平面几何图形复杂的推理论证解决问题,而高中是利用方程,凭借几条简单的数的运算法则解决问题的.第二,在今后的学习中,我们会发现方程的作用很强大,利用方程我们可以研究更多的几何图形(曲线),对几何图形的认识会更加深入、更加细致.本节课,我们将继续研究一般曲线与方程的关系,进一步体会曲线、方程两个不同领域的对象是怎样结合在一起的.二.思考分析在平面直角坐标系中:问题1:直线x=5上的点到y轴的距离都等于5,对吗?提示:对.问题2:到y轴的距离都等于5的点都在直线x=5上,对吗?提示:不对,还可能在直线x=-5上.问题3:到y轴的距离都等于5的点的轨迹是什么?提示:直线x=±5.三.抽象概括曲线的方程、方程的曲线在直角坐标系中,如果某曲线C(看做点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.正确理解曲线与方程的概念(1)定义中两个条件是轨迹性质的体现.条件“曲线上点的坐标都是这个方程的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有的点都适合这个条件而无一例外(纯粹性);而条件“以这个方程的解为坐标的点都是曲线上的点”,阐明符合方程的点都在曲线上而毫无遗漏(完备性).(2)定义中的两个条件是判断一个方程是否为指定曲线的方程,一条曲线是否为所给定方程的曲线的依据,缺一不可.从逻辑知识来看:第一个条件表示f(x,y)=0是曲线C的方程的必要条件,第二个条件表示f(x,y)=0是曲线C的方程的充分条件.因此,在判断或证明f(x,y)=0为曲线C的方程时,必须注意两个条件同时成立.四.例题分析及练习[例1]分析下列曲线上的点与相应方程的关系:(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)与两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限两轴夹角平分线上的点与方程x+y=0之间的关系.[思路点拨]按照曲线的方程与方程的曲线的定义进行分析.[精解详析](1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解;但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此,|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)与两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5,但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此,与两坐标轴的距离的积等于5的点的轨迹方程不是xy=5.(3)第二、四象限两轴夹角平分线上的点的坐标都满足x +y =0;反之,以方程x +y =0的解为坐标的点都在第二、四象限两轴夹角的平分线上.因此,第二、四象限两轴夹角平分线上的点的轨迹方程是x +y =0.[感悟体会](1)这类题目主要是考查“曲线的方程与方程的曲线”的定义中所列的两个条件,正好组成两个集合相等的充要条件,二者缺一不可.这就是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则.(2)判断方程表示什么曲线,要对方程适当变形.变形过程中一定要注意与原方程的等价性,否则变形后的方程表示的曲线就不是原方程的曲线.另外,变形的方法还有配方法、因式分解法.训练题组11.命题“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是真命题,下列命题中正确的是( )A .方程f (x ,y )=0的曲线是CB .方程f (x ,y )=0的曲线不一定是CC .f (x ,y )=0是曲线C 的方程D .以方程f (x ,y )=0的解为坐标的点都在曲线C 上解析:“曲线C 上的点的坐标都是方程f (x ,y )=0的解”,但“以方程f (x ,y )=0的解为坐标的点”不一定在曲线C 上,故A 、C 、D 都不正确,B 正确.答案:B2.方程4x 2-y 2+6x -3y =0表示的图形是( )A .直线2x -y =0B .直线2x +y +3=0C .直线2x -y =0或直线2x +y +3=0D .直线2x +y =0和直线2x -y +3=0解析:方程可化为(2x -y )(2x +y +3)=0,即2x -y =0或2x +y +3=0.∴表示两条直线2x -y =0或2x +y +3=0.答案:C[例2] 已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上;(2)若点M (m 2,-m )在此方程表示的曲线上,求m 的值. [思路点拨] 对于(1),只需判断点P ,Q 的坐标是否满足方程即可;对于(2),就是把点M 的坐标代入方程,从而得到关于m 的方程,进而求出m 的值.[精解详析] (1)∵12+(-2-1)2=10,(2)2+(3-1)2=6≠10,∴点P (1,-2)在方程x 2+(y -1)2=10表示的曲线上,点Q (2,3)不在方程x 2+(y -1)2=10表示的曲线上.(2)∵点M (m 2,-m )在方程x 2+(y -1)2=10表示的曲线上,∴x =m 2,y =-m 适合上述方程,即(m 2)2+(-m -1)2=10.解之得m =2或m =-185,∴m 的值为2或-185. [感悟体会](1)判断点是否在某个方程表示的曲线上,就是检验该点的坐标是否是方程的解,是否适合方程.若适合方程,就说明点在曲线上;若不适合,就说明点不在曲线上.(2)已知点在某曲线上,可将点的坐标代入曲线的方程,从而可研究有关参数的值或范围问题.训练题组23.已知直线l :x +y -3=0及曲线C :(x -3)2+(y -2)2=2,则点M (2,1)( )A .在直线l 上,但不在曲线C 上B .在直线l 上,也在曲线C 上C .不在直线l 上,也不在曲线C 上D .不在直线l 上,但在曲线C 上解析:将M 点的坐标代入直线l 、曲线C 的方程验证可知点M 在直线l 上,也在曲线C 上. 答案:B4.如果曲线ax 2+by 2=4过A (0,-2),B (12,3),则a =________,b =________. 解析:曲线过A (0,-2),B (12,3)两点, ∴A (0,-2),B (12,3)的坐标就是方程的解.∴⎩⎪⎨⎪⎧4b =4,14a +3b =4,∴b =1,a =4. 答案:4 15.若曲线y 2-xy +2x +k =0过点(a ,-a )(a ∈R),求k 的取值范围.解:∵曲线y 2-xy +2x +k =0过点(a ,-a ),∴a 2+a 2+2a +k =0.∴k =-2a 2-2a =-2(a +12)2+12.∴k ≤12,∴k 的取值范围是(-∞,12]. 五.课堂小结与归纳1.求曲线的方程时,若题设条件中无坐标系,则需要恰当建系,要遵循垂直性和对称性的原则,即借助图形中互相垂直的直线为坐标轴建系,借助图形的对称性建系.一方面让尽量多的点落在坐标轴上,另一方面能使求出的轨迹方程形式简洁.2.求曲线的方程与求轨迹是有不同要求和区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.六.当堂训练1.“点M 在曲线y 2=4x 上”是“点M 的坐标满足方程y =-2x ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析:∵y =-2x ≤0,而y 2=4x 中y 可正可负,∴点M 在曲线y 2=4x 上,但M 不一定在y =-2x 上.反之点M 在y =-2x 上时,一定在y 2=4x 上.答案:B2.如图,图形的方程与图中曲线对应正确的是( )解析:A 中方程x 2+y 2=1表示的是以(0,0)为圆心,1为半径的圆,故A 错;B 中方程x 2-y 2=0可化为(x -y )(x +y )=0,表示两条直线x -y =0,x +y =0,故B 错;C 中方程lg x +lg y =1可化得y =1x(x >0),此方程只表示第一象限的部分,故C 错;D 中的方程y =|x |去绝对值得y =⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,表示两条射线,所以D 正确. 答案:D3.已知直线l :x +y -3=0及曲线C :(x -3)2+(y -2)2=2,则点M (2,1)( )A .在直线l 上,但不在曲线C 上B .在直线l 上,也在曲线C 上C .不在直线l 上,也不在曲线C 上D .不在直线l 上,但在曲线C 上解析:选B.将M (2,1)代入直线l 和曲线C 的方程,由于2+1-3=0,(2-3)2+(1-2)2=2,所以点M 既在直线l 上又在曲线C 上,故选B.4.直线x -y =0与曲线xy =1的交点是( )A .(1,1)B .(-1,-1)C .(1,1)、(-1,-1)D .(0,0)解析:选C.由⎩⎪⎨⎪⎧ y =x ,xy =1,得⎩⎪⎨⎪⎧ x =1y =1或⎩⎪⎨⎪⎧x =-1,y =-1. 5.方程x +|y -1|=0表示的曲线是( )解析:选B.方程x +|y -1|=0可化为|y -1|=-x ≥0,∴x ≤0,因此选B.6.若点P (2,-3)在曲线x 2-ky 2=1上,则实数k =________.解析:将P (2,-3)代入曲线方程得4-9k =1,∴k =13.答案:137.给出下列结论:①方程y x -2=1表示斜率为1,在y 轴上的截距为-2的直线; ②到x 轴距离为2的点的直线的方程为y =2;③方程(x 2-4)2+(y 2-4)2=0表示四个点.其中正确的结论的序号是__________.解析:①不正确.方程等价于y =x -2(x ≠2),∴原方程表示斜率为1,在y 轴上的截距为-2的直线,但除去点(2,0);到x 轴距离为2的点的直线的方程应是|y -0|=2,即y =2或y =-2,故②不正确;对于③,原方程可化为⎩⎪⎨⎪⎧ x 2-4=0y 2-4=0,即⎩⎪⎨⎪⎧x =±2y =±2,∴方程表示四个点,所以③正确.答案:③8.已知曲线C 的方程为x =4-y 2,说明曲线C 是什么样的曲线,并求该曲线与y 轴围成的图形的面积.解:由x =4-y 2,得x 2+y 2=4.又x ≥0,∴方程x = 4-y 2表示的曲线是以原点为圆心,2为半径的右半圆,从而该曲线C 与y 轴围成的图形是半圆,其面积S =12π·4=2π,所以所求图形的面积为2π.。

人教B版高中数学选修(2-1)-2.1《曲线与方程(第1课时)》教学课件1

人教B版高中数学选修(2-1)-2.1《曲线与方程(第1课时)》教学课件1
圆心为C(a,b),半径为r的圆C的方程为 (x a)2 ( y b)2 r2
如果M(x0,y0)是圆上的点,那么它到圆心的距离一定等于半 径,即 (x0 a)2 ( y0 b)2 r ,
也就是 (x0 a)2 ( y0 b)2 r 2,这说明它的坐标(x0,y0) 是方程 (x a)2 ( y b)2 r2 的解;
反过来,如果(x0,y0)是方程 (x a)2 ( y b)2 r2 的解,即 (x0 a)2 ( y0 b)2 r 2 ,也就是 (x0 a)2 ( y0 b)2 r ,即 以这个解为坐标的点到点(a,b)的距离为r,它一定在以 C(a,b)为圆心,r为半径的圆上。
点坐标。
四、应用举例
例3:已知 C1:x2+y2+6x-16=0; C2:x2+y2-4x-5=0 求证:对于λ≠-1的实数,方程
x2+y2+6x-16+λ(x2+y2-4x-5)=0 是通过两个已知圆交点的圆的方程。
过两圆交点的圆系
一般地,对于两条曲线F(x,y)=0和 G(x,y)=0,则过两条曲线交点的曲 线系方程是
这条曲线C叫做这个方程F(x,y)=0的曲线。 F(x, y) 0
y
M (x, y)
O

三、概念形成
概念1.曲线与方程之间的对应关系
思考与讨论
下面两个命题正确吗?
(1)到两个坐标轴距离相等的点的轨迹方程是y=x
(2)如图,MA和MB分别是动点M(x,y)与两个定点
A(-1,0),B(1,0)的连线,使∠AMB为直角的轨迹方程
(1+λ) x2+(1+λ)y2+(6-4λ)x-16-5λ=0,

高中数学新人教版B版精品教案《人教版B高中数学选修2-1 2.1.1 曲线与方程的概念》

高中数学新人教版B版精品教案《人教版B高中数学选修2-1 2.1.1 曲线与方程的概念》

§曲线与方程授课教师:王爽●教学目标一知识教学点:使学生了解曲线上的点与方程的解之间的一一对应关系,初步领会“曲线的方程”与“方程的曲线”的概念,从而为求已知曲线的方程奠定理论基础.二能力训练点:在形成曲线和方程概念的过程中,培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化“形”与“数”一致并相互转化的思想方法.三学科渗透点:从形数结合中受到辩证唯物主义的思想教育.●教学重点“曲线的方程”与“方程的曲线”的概念.解决办法:通过例子,揭内涵;讨论归纳,得出定义;变换表达,强化理解;初步运用,巩固提高;给出推论,升华定义.●教学难点难点在于对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延.据此可用举反例的方法来突破难点,促使学生对概念表述的严密性进行探索,自然地得出定义.●教学过程Ⅰ知识引入:和学生共同探讨圆锥曲线的形成过程以及如何研究圆锥曲线的性质。

由此提出用代数方法即方程的思想研究曲线问题,引出曲线和方程的关系。

Ⅱ讲授新课1.曲线与方程关系举例:(由最简单,学生最熟悉的直线和圆作为引例来研究)师:我们知道,两坐标轴所成的角位于第一、三象限的平分线的方程是-=0这就是说,如果点M(0,0)是这条直线上的任意一点,它到两坐标轴的距离一定相等,即0=0,那么它的坐标(0,0)是方程-=0的解;反过来,如果(0,0)是方程-=0的解,即0=0,那么以这个解为坐标的点到两轴的距离相等,它一定在这条平分线上(如左图有)一、三象限的平分线上的点(0,0)−−→←−−0=0−−→←−−(0,0)是方程-=0的解引例2:以坐标原点为圆心,半径等于1的圆的方程22 = 1由学生解释2.曲线与方程概念一般地,在直角坐标系中,如果其曲线c上的点与一个二元方程f,=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线3.引用实例,加深认识下列各题中,图所示的曲线C 的方程为所列方程,对吗?如果不对,是不符合关系⑴还是关系⑵? 曲线C 为△ABC 为中线AO,方程:X=0 曲线C 是过点(4,1)的反比例曲线图像4.例题讲解:例1 证明与两条坐标轴的距离之积是常数)0(>k k 的点的轨迹方程是k xy ±=。

高二数学选修2-1(B版)_《曲线与方程(第2课时)》参考学案

高二数学选修2-1(B版)_《曲线与方程(第2课时)》参考学案

§2.1.2 由曲线求它的方程、由方程研究曲线的性质1. 求曲线的方程;2. 通过曲线的方程,研究曲线的性质.一、课前准备复习1:已知曲线C 的方程为 22y x = ,曲线C 上有点(1,2)A ,A 的坐标是不是22y x = 的解?点(0.5,)t 在曲线C 上,则t =___ .复习2:曲线(包括直线)与其所对应的方程(,)0f x y =之间有哪些关系?二、新课导学※ 学习探究引入:圆心C 的坐标为(6,0),半径为4r =,求此圆的方程. 问题:此圆有一半埋在地下,求其在地表面的部分的方程.探究:若4AB =,如何建立坐标系求AB 的垂直平分线的方程.※ 典型例题例1、有一曲线,曲线上的每一点到x 轴的距离等于这点到(0,3)A 的距离的2倍,试求曲线的方程.变式:现有一曲线在x 轴的下方,曲线上的每一点到x 轴的距离减去这点到点(0,2)A ,的距离的差是2,求曲线的方程.小结:点(,)P a b 到x 轴的距离是 ;点(,)P a b 到y 轴的距离是 ;点(1,)P b 到直线10x y +-=的距离是 .例2、知一条直线l 和它上方的一个点F ,点F 到l 的距离是2,一条曲线也在l 的上方,它上面的每一点到F 的距离减去到l 的距离的差都是2,建立适当的坐标系,求这条曲线的方程.※ 动手试试练1.有一曲线,曲线上的每一点到x 轴的距离等于这点到直线10x y +-=的距离的2倍,试求曲线的方程.练2.曲线上的任意一点到(3,0)A -,(3,0)B 两点距离的平方和为常数26,求曲线的方程.三、总结提升※ 学习小结1. 求曲线的方程;2. 通过曲线的方程,研究曲线的性质.当堂检测1.方程[]2(3412)log (2)30x y x y --+-=的曲线经过点(0,3)A -,(0,4)B ,(4,0)C ,57(,)34D -中的( ). A .0个 B .1个 C .2个 D .3个2.已知(1,0)A ,(1,0)B -,动点满足2MA MB -=,则点M 的轨迹方程是( ).A .0(11)y x =-≤≤B .0(1)y x =≥C .0(1)y x =≤-D .0(1)y x =≥3.曲线y =与曲线0y x +=的交点个数一定是( ).A .0个B .2个C .4个D .3个4.若定点(1,2)A 与动点(,)P x y 满足4OP OA •=,则点P 的轨迹方程是 .5.由方程111x y -+-=确定的曲线所围成的图形的面积是 .6.以O 为圆心,2为半径,上半圆弧的方程是什么?在第二象限的圆弧的方程是什么?。

数学人教B版选修2-1学案: 2.1 曲线与方程 含解析 精品

数学人教B版选修2-1学案: 2.1 曲线与方程 含解析 精品

数学人教B 选修2-1第二章2.1 曲线与方程1.了解曲线与方程的对应关系.2.了解两条曲线交点的求法.3.了解用坐标法研究几何性质.4.掌握求曲线的方程和由方程研究曲线的性质.1.点的轨迹方程一般地,一条曲线可以看成________________的轨迹,所以曲线的方程又常称为____________的点的轨迹方程.【做一做1】到A (2,-3)和B (4,-1)的距离相等的点的轨迹方程是( )A .x -y -1=0B .x -y +1=0C .x +y -1=0D .x +y +1=02.曲线的方程与方程的曲线的定义(1)在平面直角坐标系中,如果曲线C 与方程F (x ,y )=0之间具有如下关系:①__________________________________;②__________________________________.那么,曲线C 叫做方程F (x ,y )=0的曲线,方程F (x ,y )=0叫做曲线C 的方程.在曲线的方程的定义中,曲线上的点与方程的解之间的关系①和②缺一不可,而且两者是对曲线上的任意一点以及方程的任意一个实数解而言的.从集合的角度来看,设A 是曲线C 上的所有点组成的点集,B 是所有以方程F (x ,y )=0的实数解为坐标的点组成的点集,则由关系①可知A ⊆B ,由关系②可知B ⊆A ;若同时具有关系①和②,就有A =B .(2)曲线C 用集合的特征性质描述法,可以描述为C ={M (x ,y )|F (x ,y )=0}.【做一做2】下面各对方程中,表示相同曲线的一对方程是( )A .y =x 与x =y 2B .y =x 与x y=1 C .||y =||x 与x 2-y 2=0D .y =lg x 2与y =2lg x3.两曲线的交点已知两条曲线C 1:F (x ,y )=0和C 2:G (x ,y )=0,求这两条曲线的交点坐标,只要求方程组⎩⎪⎨⎪⎧F (x ,y )=0G (x ,y )=0的________就可以得到.曲线的交点问题需转化为二元方程组的求解问题,那么,解二元方程组的一切思路方法和相关知识,都是求两曲线交点的基本依据和方法.【做一做3】曲线y =x 2+1和y =x +m 有两个不同的交点,则( )A .m ∈RB .m ∈⎝⎛⎭⎫0,34 C .m =34D .m ∈⎝⎛⎭⎫34,+∞1.曲线与方程的定义的理解剖析:(1)定义中的第①条“曲线C 上的点的坐标都是方程F (x ,y )=0的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有点都符合这个条件而毫无例外(纯粹性).(2)定义中的第②条“以方程F (x ,y )=0的解为坐标的点都在曲线C 上”,阐明符合条件的所有点都在曲线上而毫无遗漏(完备性).(3)定义的实质是平面曲线的点集{M |p (M )}和方程F (x ,y )=0的解集{(x ,y )|F (x ,y )=0}之间的一一对应关系,由曲线和方程的这一对应关系,既可以通过方程研究曲线的性质,又可以由曲线求它的方程.2.曲线方程的求法剖析:求曲线的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标;(2)写出适合条件p 的点M 的集合P ={M ︱p (M )};(3)用坐标表示条件p (M ),列出方程F (x ,y )=0;(4)化方程F (x ,y )=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.一般地,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可以适当说明.另外,也可以根据情况省略步骤(2),直接列出曲线方程.题型一 曲线与方程的概念【例1】若曲线C 上的点的坐标满足方程F (x ,y )=0,则下列说法正确的是( )A .曲线C 的方程是F (x ,y )=0B .方程F (x ,y )=0的曲线是CC .坐标不满足方程F (x ,y )=0的点都不在曲线C 上D .坐标满足方程F (x ,y )=0的点都在曲线C 上反思:(1)判定曲线与方程的对应关系有两种方法:等价转换和特值讨论.它们使用的依据是曲线的纯粹性和完备性.(2)处理“曲线与方程”的概念题,可采用直接法,也可采用特值法.题型二 曲线方程的求法【例2】已知△ABC ,A (-2,0),B (0,-2),第三个顶点C 在曲线y =3x 2-1上移动,求△ABC 的重心G 的轨迹方程.分析:在这个问题中,动点C 与点G 之间有关系,写出C 与G 之间的坐标关系,并用G 的坐标表示C 的坐标,然后代入C 的坐标所满足的关系式中,化简整理即得所求.【例3】长为3的线段AB 的端点A ,B 分别在x ,y 轴上移动,动点C (x ,y )满足AC =2CB ,求动点C 的轨迹方程.分析:A ,B 分别在x ,y 轴上移动,可设A(x 0,0),B(0,y 0),又动点C (x ,y )满足AC =2CB ,代入即可得方程.反思:求曲线的方程的关键是找到曲线上动点的运动规律,并利用坐标把这种规律翻译成代数方程.1方程x 2+xy =x 表示的曲线是( )A .一个点B .一条直线C .两条直线D .一个点和一条直线2已知方程2x 2-xy +1=0表示的图形为C ,则下列点不在C 上的为( )A .⎝⎛⎭⎫12,3B .(-3,5)C .⎝⎛⎭⎫-2,-92D .⎝⎛⎭⎫2,92 3在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP ·OA =4.则点P 的轨迹方程是____________.4点P (2,-3)在曲线x 2-ay 2=1上,则a =__________.5已知k ∈R ,则直线y =3x +k 与圆x 2+y 2=16无公共点时,k 的取值范围为__________.答案:基础知识·梳理1.动点依某种条件运动 满足某种条件【做一做1】C2.(1)①曲线C 上点的坐标都是方程F (x ,y )=0的解 ②以方程F (x ,y )=0的解为坐标的点都在曲线C 上【做一做2】C3.实数解【做一做3】D 已知条件可转化为联立后的方程组有两组不同的解,即方程x 2-x +1-m =0的判别式大于零,即(-1)2-4(1-m )>0,解得m >34. 典型例题·领悟【例1】C 方法一:上述说法写成命题的形式为“若点M (x ,y )是曲线C 上的点,则点M 的坐标适合方程F (x ,y )=0”.其逆否命题为:“若点M 的坐标不适合方程F (x ,y )=0,则点M 不在曲线C 上”.故选C.方法二:本题亦可考虑特值法,作直线l :y =1.考查l 与F (x ,y )=y 2-1=0的关系,知选项A ,B ,D 三种说法均不正确.故选C.【例2】解:设△ABC 的重心坐标为G (x ,y ),顶点C 的坐标为(x 1,y 1),由重心坐标公式得⎩⎨⎧ x =-2+0+x 13,y =0-2+y 13⇒⎩⎪⎨⎪⎧x 1=3x +2,y 1=3y +2,代入y 1=3x 21-1,得3y +2=3(3x +2)2-1.则有y =9x 2+12x +3,故所求轨迹方程为y =9x 2+12x +3.【例3】解:∵长为3的线段AB 的端点A ,B 分别在x ,y 轴上移动,故可设A (x 0,0),B (0,y 0).又动点C (x ,y )满足AC =2CB ,∴(x -x 0,y )=2(0-x ,y 0-y ),即(x -x 0,y )=(-2x ,2y 0-2y ),∴⎩⎪⎨⎪⎧ x -x 0=-2x y =2y 0-2y ⇒⎩⎪⎨⎪⎧ x 0=3x ,y 0=32y .又∵|AB |=3,即x 20+y 20=9,∴(3x )2+⎝⎛⎭⎫32y 2=9.整理得动点C 的轨迹方程为x 2+y 24=1. 随堂练习·巩固1.C x 2+xy =x 因式分解得x (x +y )=x ,即x (x +y -1)=0,即x =0或x +y -1=0.2.B3.x +2y =4 设P (x ,y ),由OP ·OA =4知x +2y =4.4.13 将点P 的坐标代入方程中即可求得a =13. 5.k >8或k <-8 无公共点时圆心到直线的距离大于半径,即|k |2>4,∴k >8或k <-8.。

高中数学选修2-1 第二章 第一节《2.1曲线与方程》全套教案 - 副本

2.1曲线与方程课时分配:1.第一课曲线和方程1个课时2.第二课四种命题1个课时3.第三课四种命题间的相互关系1个课时1.1.1命题【教材分析】“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。

学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。

根据以上分析,确立教学重点是:理解曲线的方程和方程的曲线的概念;难点是:对曲线与方程对应关系的理解。

由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。

【教学目标】一、知识目标:1.了解曲线上的点的坐标与方程的解之间的一一对应关系;2.初步理解“曲线的方程”与“方程的曲线”的概念;3.学会根据已学知识为切入点,引起关注,引发数学思考进而分析、判断、归纳结论4.强化“形”与“数”一致并相互转化的思想方法。

二、能力目标:1.通过直线方程和圆的方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;2.在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;3.能用所学集合知识理解新的概念,从中体会转化化归的思想方法,提高思维品质,发展应用意识。

三、情感目标:1.以现实生活中飞逝的流星,雨后的彩虹,从古代的石拱桥到现代繁华都市的立交桥的图片激发学生学习曲线与方程的兴趣。

通过两个问题的引入,让学生感受从特殊到一般的认知规律;2.通过问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。

【教法分析】本节课从问题引入→推广→得概念→概念挖掘深化→具体应用的思考,始终让学生主动参与,亲身实践,独立思考,与合作探究相结合,在生生合作,师生互动中,使学生真正成为知识的发现者和知识的研究者,不仅使学生对本节课的知识结构有一个清晰的认识,而且对所用到的数学方法和涉及的数学思想也得以领会,这样既可以使学生完成知识建构,又可以培养其能力。

人教版高中数学选修2-1第二章 2.1曲线与方程同步教案(基础)

学生姓名性别年级学科数学授课教师上课时间年月日第()次课共()次课课时:2 课时教学课题人教版选修2-1第二章 2.1曲线与方程同步教案(基础)教学目标知识目标:掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.能力目标:通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养综合运用各方面知识的能力.情感态度价值观:通过对求轨迹方程的常用技巧与方法的介绍,掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.教学重点与难点重点:曲线轨迹方程难点:曲线与方程关系与联系教学过程(一)曲线的方程、方程的曲线知识梳理在直角坐标系中,如果某曲线C(看做点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.练习:在平面直角坐标系中,已知A(2,0),B(-2,0).问题1:平面上任一点P(x,y)到A的距离是多少?提示:|P A|=x-22+y2.问题2:平面上到A,B两点距离相等的点(x,y)满足的方程是什么?提示:x-22+y2=x+22+y2.问题3:到A,B两点距离相等的点的运动轨迹是什么?提示:轨迹是一条直线.1.求曲线的方程的步骤2.解析几何研究的主要问题(1)根据已知条件,求出表示曲线的方程.(2)通过曲线的方程,研究曲线的性质.正确理解曲线与方程的概念(1)定义中两个条件是轨迹性质的体现.条件“曲线上点的坐标都是这个方程的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有的点都适合这个条件而无一例外(纯粹性);而条件“以这个方程的解为坐标的点都是曲线上的点”,阐明符合方程的点都在曲线上而毫无遗漏(完备性).(2)定义中的两个条件是判断一个方程是否为指定曲线的方程,一条曲线是否为所给定方程的曲线的依据,缺一不可.从逻辑知识来看:第一个条件表示f(x,y)=0是曲线C的方程的必要条件,第二个条件表示f(x,y)=0是曲线C的方程的充分条件.因此,在判断或证明f(x,y)=0为曲线C的方程时,必须注意两个条件同时成立.例题精讲[例1]分析下列曲线上的点与相应方程的关系:(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)与两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限两轴夹角平分线上的点与方程x+y=0之间的关系.巩固训练1.命题“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是真命题,下列命题中正确的是( ) A .方程f (x ,y )=0的曲线是C B .方程f (x ,y )=0的曲线不一定是C C .f (x ,y )=0是曲线C 的方程D .以方程f (x ,y )=0的解为坐标的点都在曲线C 上 2.方程4x 2-y 2+6x -3y =0表示的图形是( ) A .直线2x -y =0 B .直线2x +y +3=0C .直线2x -y =0或直线2x +y +3=0D .直线2x +y =0和直线2x -y +3=0例题精讲[例2] 已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上; (2)若点M (m2,-m )在此方程表示的曲线上,求m 的值.巩固训练3.已知直线l :x +y -3=0及曲线C :(x -3)2+(y -2)2=2,则点M (2,1)( ) A .在直线l 上,但不在曲线C 上 B .在直线l 上,也在曲线C 上 C .不在直线l 上,也不在曲线C 上 D .不在直线l 上,但在曲线C 上4.如果曲线ax 2+by 2=4过A (0,-2),B (12,3),则a =________,b =________.5.若曲线y 2-xy +2x +k =0过点(a ,-a )(a ∈R),求k 的取值范围.例题精讲[例3] 已知圆C :x 2+(y -3)2=9,过原点作圆C 的弦OP ,求OP 中点Q 的轨迹方程.巩固训练6.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹是什么.7.已知△ABC,A(-2,0),B(0,-2),第三个顶点C在曲线y=3x2-1上移动,求△ABC的重心的轨迹方程.【方法技巧】1.求曲线的方程时,若题设条件中无坐标系,则需要恰当建系,要遵循垂直性和对称性的原则,即借助图形中互相垂直的直线为坐标轴建系,借助图形的对称性建系.一方面让尽量多的点落在坐标轴上,另一方面能使求出的轨迹方程形式简洁.2.求曲线的方程与求轨迹是有不同要求和区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.课后作业【基础巩固】1.“点M 在曲线y 2=4x 上”是“点M 的坐标满足方程y =-2x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件2.如图,图形的方程与图中曲线对应正确的是( )3.一动点C 在曲线x 2+y 2=1上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是( ) A .(x +3)2+y 2=4 B .(x -3)2+y 2=1 C .(2x -3)2+4y 2=1D .(x +32)2+y 2=14.方程x 2+y 2-3x -2y +k =0表示的曲线经过原点的充要条件是k =________.5.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A ―→·PB ―→=x 2,则点P 的轨迹方程是________. 6.求方程(x +y -1)x -y -2=0表示的曲线. 【能力提升】7.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( )A.4x-3y-16=0或4x-3y+16=0B.4x-3y-16=0或4x-3y+24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=08.过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.星火教育一对一辅导教案学生姓名性别女年级高二学科数学授课教师贺老师上课时间年月日第()次课共()次课课时:2 课时教学课题人教版选修2-1第二章 2.1曲线与方程(基础)同步复习教案教学目标知识目标:掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.能力目标:通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养综合运用各方面知识的能力.情感态度价值观:通过对求轨迹方程的常用技巧与方法的介绍,掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.教学重点与难点重点:曲线轨迹方程难点:曲线与方程关系与联系教学过程(二)曲线的方程、方程的曲线知识梳理在直角坐标系中,如果某曲线C(看做点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.练习:在平面直角坐标系中,已知A(2,0),B(-2,0).问题1:平面上任一点P(x,y)到A的距离是多少?提示:|P A|=x-22+y2.问题2:平面上到A,B两点距离相等的点(x,y)满足的方程是什么?提示:x-22+y2=x+22+y2.问题3:到A,B两点距离相等的点的运动轨迹是什么?提示:轨迹是一条直线.1.求曲线的方程的步骤2.解析几何研究的主要问题(1)根据已知条件,求出表示曲线的方程.(2)通过曲线的方程,研究曲线的性质.正确理解曲线与方程的概念(1)定义中两个条件是轨迹性质的体现.条件“曲线上点的坐标都是这个方程的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有的点都适合这个条件而无一例外(纯粹性);而条件“以这个方程的解为坐标的点都是曲线上的点”,阐明符合方程的点都在曲线上而毫无遗漏(完备性).(2)定义中的两个条件是判断一个方程是否为指定曲线的方程,一条曲线是否为所给定方程的曲线的依据,缺一不可.从逻辑知识来看:第一个条件表示f(x,y)=0是曲线C的方程的必要条件,第二个条件表示f(x,y)=0是曲线C的方程的充分条件.因此,在判断或证明f(x,y)=0为曲线C的方程时,必须注意两个条件同时成立.例题精讲[例1]分析下列曲线上的点与相应方程的关系:(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)与两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限两轴夹角平分线上的点与方程x+y=0之间的关系.巩固训练1.命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是真命题,下列命题中正确的是()A.方程f(x,y)=0的曲线是CB .方程f (x ,y )=0的曲线不一定是C C .f (x ,y )=0是曲线C 的方程D .以方程f (x ,y )=0的解为坐标的点都在曲线C 上 2.方程4x 2-y 2+6x -3y =0表示的图形是( ) A .直线2x -y =0 B .直线2x +y +3=0C .直线2x -y =0或直线2x +y +3=0D .直线2x +y =0和直线2x -y +3=0例题精讲[例2] 已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上; (2)若点M (m2,-m )在此方程表示的曲线上,求m 的值.巩固训练3.已知直线l :x +y -3=0及曲线C :(x -3)2+(y -2)2=2,则点M (2,1)( ) A .在直线l 上,但不在曲线C 上 B .在直线l 上,也在曲线C 上 C .不在直线l 上,也不在曲线C 上 D .不在直线l 上,但在曲线C 上4.如果曲线ax 2+by 2=4过A (0,-2),B (12,3),则a =________,b =________.5.若曲线y 2-xy +2x +k =0过点(a ,-a )(a ∈R),求k 的取值范围.例题精讲[例3] 已知圆C :x 2+(y -3)2=9,过原点作圆C 的弦OP ,求OP 中点Q 的轨迹方程.巩固训练6.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹是什么.7.已知△ABC,A(-2,0),B(0,-2),第三个顶点C在曲线y=3x2-1上移动,求△ABC的重心的轨迹方程.【方法技巧】1.求曲线的方程时,若题设条件中无坐标系,则需要恰当建系,要遵循垂直性和对称性的原则,即借助图形中互相垂直的直线为坐标轴建系,借助图形的对称性建系.一方面让尽量多的点落在坐标轴上,另一方面能使求出的轨迹方程形式简洁.2.求曲线的方程与求轨迹是有不同要求和区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.课后作业【基础巩固】1.“点M在曲线y2=4x上”是“点M的坐标满足方程y=-2x”的()A.充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件2.如图,图形的方程与图中曲线对应正确的是( )3.一动点C 在曲线x 2+y 2=1上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是( )A .(x +3)2+y 2=4B .(x -3)2+y 2=1C .(2x -3)2+4y 2=1D .(x +32)2+y 2=1 4.方程x 2+y 2-3x -2y +k =0表示的曲线经过原点的充要条件是k =________.5.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A ―→·PB ―→=x 2,则点P 的轨迹方程是________.6.求方程(x +y -1)x -y -2=0表示的曲线.【能力提升】7.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( )A .4x -3y -16=0或4x -3y +16=0B .4x -3y -16=0或4x -3y +24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=08.过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.答案:.[例1][思路点拨]按照曲线的方程与方程的曲线的定义进行分析.[精解详析](1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解;但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此,|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)与两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5,但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此,与两坐标轴的距离的积等于5的点的轨迹方程不是xy =5.(3)第二、四象限两轴夹角平分线上的点的坐标都满足x +y =0;反之,以方程x +y =0的解为坐标的点都在第二、四象限两轴夹角的平分线上.因此,第二、四象限两轴夹角平分线上的点的轨迹方程是x +y =0.1.解析:“曲线C 上的点的坐标都是方程f (x ,y )=0的解”,但“以方程f (x ,y )=0的解为坐标的点”不一定在曲线C 上,故A 、C 、D 都不正确,B 正确.答案:B2.解析:方程可化为(2x -y )(2x +y +3)=0,即2x -y =0或2x +y +3=0.∴表示两条直线2x -y =0或2x +y +3=0.答案:C[例2] [精解详析] (1)∵12+(-2-1)2=10,(2)2+(3-1)2=6≠10,∴点P (1,-2)在方程x 2+(y -1)2=10表示的曲线上,点Q (2,3)不在方程x 2+(y -1)2=10表示的曲线上.(2)∵点M (m 2,-m )在方程x 2+(y -1)2=10表示的曲线上,∴x =m 2,y =-m 适合上述方程, 即(m 2)2+(-m -1)2=10.解之得m =2或m =-185, ∴m 的值为2或-185. 3.解析:将M 点的坐标代入直线l 、曲线C 的方程验证可知点M 在直线l 上,也在曲线C 上. 答案:B4.解析:曲线过A (0,-2),B (12,3)两点, ∴A (0,-2),B (12,3)的坐标就是方程的解. ∴⎩⎪⎨⎪⎧4b =4,14a +3b =4,∴b =1,a =4. 答案:4 15.解:∵曲线y 2-xy +2x +k =0过点(a ,-a ),∴a 2+a 2+2a +k =0.∴k =-2a 2-2a =-2(a +12)2+12. ∴k ≤12, ∴k 的取值范围是(-∞,12]. [例3] [思路点拨] 关键是寻找Q 点满足的几何条件.可以考虑圆的几何性质,如CQ ⊥OP ,还可考虑Q 是OP 的中点.[精解详析] 法一:(直接法)如图,因为Q 是OP 的中点,所以∠OQC =90°.设Q (x ,y ),由题意,得|OQ |2+|QC |2=|OC |2,即x 2+y 2+[x 2+(y -3)2]=9,所以x 2+(y -32)2=94(去掉原点). 法二:(定义法)如图所示,因为Q 是OP 的中点,所以∠OQC =90°,则Q 在以OC为直径的圆上,故Q点的轨迹方程为x 2+(y -32)2=94(去掉原点). 法三:(代入法)设P (x 1,y 1),Q (x ,y ),由题意,得 ⎩⎨⎧ x =x 12,y =y 12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y . 又因为x 21+(y 1-3)2=9,所以4x 2+4(y -32)2=9, 即x 2+(y -32)2=94(去掉原点). 6.解:设动点C 的坐标为(x ,y ).∵△ABC 为以A 为顶点的等腰三角形,∴|AB |=|AC |,∴(x -4)2+(y -2)2=(4-3)2+(2-5)2,即(x -4)2+(y -2)2=10(x ≠3,5).所以点C 的轨迹方程为(x -4)2+(y -2)2=10,它表示以(4,2)为圆心,以10为半径且去掉(3,5),(5,-1)的圆.7.解:设△ABC 的重心为G (x ,y ),顶点C 的坐标为(x 1,y 1).由重心坐标公式得⎩⎨⎧ x =-2+0+x 13,y =0-2+y 13,∴⎩⎪⎨⎪⎧x 1=3x +2,y 1=3y +2.代入y 1=3x 21-1,得 3y +2=3(3x +2)2-1.∴y =9x 2+12x +3即为所求轨迹方程.1.解析:∵y =-2x ≤0,而y 2=4x 中y 可正可负,∴点M 在曲线y 2=4x 上,但M 不一定在y =-2x 上.反之点M 在y =-2x 上时,一定在y 2=4x 上.答案:B2.解析:A 中方程x 2+y 2=1表示的是以(0,0)为圆心,1为半径的圆,故A 错;B 中方程x 2-y 2=0可化为(x -y )(x +y )=0,表示两条直线x -y =0,x +y =0,故B 错;C 中方程lg x +lg y =1可化得y =1x(x >0),此方程只表示第一象限的部分,故C 错;D 中的方程y =|x |去绝对值得y =⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,表示两条射线,所以D 正确. 答案:D3.解析:设动点C 的坐标为(x 0,y 0),P 点坐标为(x ,y ),则由中点坐标公式可得x =x 0+32,y =y 0+02, 即x 0=2x -3,y 0=2y .又动点C (x 0,y 0)在曲线x 2+y 2=1上,∴(2x -3)2+4y 2=1.答案:C4.解析:由两点式,得直线AB 的方程是y -04-0=x +12+1, 即4x -3y +4=0,线段AB 的长度|AB |=(2+1)2+42=5.设C 的坐标为(x ,y ),则12×5×|4x -3y +4|5=10, 即4x -3y -16=0或4x -3y +24=0.答案:B5.解析:若曲线过原点,则(0,0)适合曲线的方程,即有k =0.答案:06.解析: uu u r PA =(-x -2,-y ),uu u rPB =(3-x ,-y ), 则uu u r PA ·uu u rPB =(-x -2)(3-x )+(-y )2=x 2,化简得y 2=x +6.答案:y 2=x +67.解:(x +y -1)x -y -2=0写成 ⎩⎪⎨⎪⎧ x +y -1=0,x -y -2≥0,或x -y -2=0.由⎩⎪⎨⎪⎧ x +y -1=0,x -y -2≥0,得⎩⎪⎨⎪⎧ x +y -1=0,x ≥32,∴⎩⎪⎨⎪⎧ x +y -1=0,x -y -2≥0,表示射线x +y -1=0(x ≥32),∴原方程表示射线x +y -1=0(x ≥32)或直线x -y -2=0.8.解:法一:如图,设点M 的坐标为(x ,y ).∵M 为线段AB 的中点,∴A 点坐标是(2x,0),B 点坐标是(0,2y ).∵l 1,l 2均过点P (2,4),且l 1⊥l 2,∴P A ⊥PB .当x ≠1时,k P A ·k PB =-1.而k P A =4-02-2x =21-x ,k PB =4-2y 2-0=2-y1,∴21-x ·2-y1=-1.整理,得x +2y -5=0(x ≠1).当x =1时,A ,B 点的坐标分别为(2,0),(0,4),∴线段AB 的中点坐标是(1,2),它满足方程x +2y -5=0.综上所述,点M 的轨迹方程是x +2y -5=0.法二:设M 的坐标为(x ,y ),则A ,B 两点坐标分别是(2x,0),(0,2y ).连接PM ,如图.∵l 1⊥l 2,∴2|PM |=|AB |.而|PM |=(x -2)2+(y -4)2,|AB |=(2x )2+(2y )2,∴2(x -2)2+(y -4)2=4x 2+4y 2.化简,得x +2y -5=0,即为所求轨迹方程.法三:∵l 1⊥l 2,OA ⊥OB ,∴O ,A ,P ,B 四点共圆,且该圆的圆心为M .∴|MP |=|MO |.∴点M 的轨迹为线段OP 的中垂线. ∵k OP =4-02-0=2,OP 的中点坐标为(1,2), ∴点M 的轨迹方程是y -2=-12(x -1), 即x +2y -5=0.。

人教版高中数学选修(2-1)-2.1《曲线与方程》教学设计

2.1曲线与方程2.1.1曲线与方程(杨军君)一、教学目标(一)学习目标1.了解曲线上的点与方程的解之间的一一对应关系;2.初步领会“曲线的方程”与“方程的曲线”的概念;3.学会根据已有的情景资料找规律,培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化“形”与“数”一致并相互转化的思想方法. (二)学习重点“曲线的方程”与“方程的曲线”的概念.(三)学习难点怎样利用定义验证曲线是方程的曲线、方程是曲线的方程.二、教学设计(一)预习任务设计1.预习任务(1)读一读:阅读教材第34页至第35页.(2)想一想:什么是曲线的方程与方程的曲线?(3)写一写:以前学习过的直线的方程与圆的方程.2.预习自测1.如果曲线C上的点的坐标满足方程(,)0F x y=,则下面说法正确的是()A.曲线C的方程是(,)0F x y=B.方程(,)0F x y=的曲线是CC.坐标不满足方程(,)0F x y=的点不在曲线C上D.坐标满足(,)0F x y=的点在曲线C上【知识点】曲线的方程与方程的曲线.【解题过程】利用曲线与方程的关系判断,条件中曲线C上的点的坐标(,)x y都是方程(,)0F x y=的解,满足了曲线和方程的概念条件,而且阐明曲线C上没有坐标不满足方程(,)0F x y=的点,故C正确.【思路点拨】有关曲线方程与方程曲线应正确理解概念的两方面内容.【答案】C(二)课堂设计1. 新知讲解探究一结合实例,认识曲线与方程●活动①归纳提炼概念在本节课之前,我们研究过直线的各种方程,建立了二元一次方程与直线的对应关系:在平面直角坐标系中,任何一条直线都可以用一个二元一次方程来表示,同时任何一个二元一次方程也表示着一条直线.引例1:作出方程x-y=0表示的直线.借助多媒体让学生再一次从直观上深刻体会:必须同时满足:(1)直线上的点的坐标都是方程的解和(2)以这个方程的解为坐标的点都是直线上的点,即方程的解的集合与直线上所有点的集合之间建立了一一对应关系,那么直线(图形)方程(数量)变式:作出函数2xy=的图象.类比方程2xy=与如图所示的抛物线.这条抛物线是否与这个二元方程2xy=也能建立这种对应关系呢?(按照例1的分析方式的得出答案是肯定的.)。

人教版高中选修2-12.1曲线与方程课程设计 (2)

人教版高中选修2-12.1曲线与方程课程设计本课程设计主要针对高中数学选修2中第12章1节的内容,即曲线与方程。

本章内容对于数学必修课程的学习非常有帮助,因此在本次选修课程设计中亦十分重要。

本设计将针对曲线与方程的基本概念、学习方法、实际应用等方面进行探究和学习。

第一节:基本概念1.1 曲线与方程的概念本节将介绍曲线与方程的基本概念,旨在使学生对曲线与方程的概念有更加准确的理解。

同时,本节还将简要介绍一些基本符号及其运用。

1.1.1 曲线的概念曲线是二维平面内的一条线。

数学中的曲线可用一个或多个方程来描述。

1.1.2 方程的概念方程是表示数学对象之间的平等关系的等式。

在本课程中,我们将主要学习代数方程。

1.2 常见曲线类型本节将介绍常见的曲线类型,包括直线、抛物线、非线性函数等。

通过观察曲线的形状和方程式,学生可以更好地理解曲线与方程的关系。

1.2.1 直线直线是一条无限延伸的曲线,在平面直角坐标系中可用一般式或截距式来表示。

1.2.2 抛物线抛物线是一个二次函数图像,它可以在一定范围内表示各种曲线。

在平面直角坐标系中,抛物线可用标准式或一般式表示。

1.3 曲线与方程的关系在本节中,我们将讨论曲线与方程之间的关系。

通过学习曲线和方程之间的联系,学生可以更好地理解平面直角坐标系的形式化表示。

1.3.1 坐标系中的曲线在平面直角坐标系中,曲线是由其方程所确定的点的集合。

通过理解曲线与其方程之间的关系,学生可以更好地理解坐标系中的曲线形状。

1.3.2 曲线方程的求解求解一条曲线的方程可以帮助学生更好地理解曲线的特点。

在本节中,我们将学习如何求解一条曲线的方程。

1.3.3 曲线方程的应用在实际中,曲线方程有着广泛的应用领域。

在本节中,我们将通过一些实际例子介绍曲线方程的应用。

第二节:学习方法2.1 学习曲线与方程的方法本节将介绍学习曲线与方程的方法。

通过针对不同学生群体的学习需求,本节将展示一些有效的学习方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1曲线与方程
一、教学目标
(一)知识教学点
使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.
(二)能力训练点
通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力.
(三)学科渗透点
通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.
二、教材分析
1.重点:求动点的轨迹方程的常用技巧与方法.
(解决办法:对每种方法用例题加以说明,使学生掌握这种方法.)
2.难点:作相关点法求动点的轨迹方法.
(解决办法:先使学生了解相关点法的思路,再用例题进行讲解.)
教具准备:与教材内容相关的资料。

教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.
三、教学过程
学生探究过程:
(一)复习引入
大家知道,平面解析几何研究的主要问题是:
(1)根据已知条件,求出表示平面曲线的方程;
(2)通过方程,研究平面曲线的性质.
曲线方程是对常见曲线圆、椭圆、双曲线以及抛物线进行研究的基础,本节课将对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析.
(二)几种常见求轨迹方程的方法
1.直接法
由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出
等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.
例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;
(2)过点A(a,o)作圆O∶x2+y2=R2 (a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.
对(1)分析:
动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.
解:设动点P(x,y),则有|OP|=2R或|OP|=0.
即x2+y2=4R2或x2+y2=0.
故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.
对(2)分析:
题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:
设弦的中点为M(x,y),连结OM,
则OM⊥AM.
∵k OM·k AM=-1,
其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).
2.定义法
利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.
直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.。

相关文档
最新文档