第五章 曲线拟合与最小二乘法
曲线拟合的最小二乘法实验

Lab04.曲线拟合的最小二乘法实验【实验目的和要求】1.让学生体验曲线拟合的最小二乘法,加深对曲线拟合的最小二乘法的理解;2.掌握函数ployfit和函数lsqcurvefit功能和使用方法,分别用这两个函数进行多项式拟合和非多项式拟合。
【实验内容】1.在Matlab命令窗口,用help命令查询函数polyfit和函数lsqcurvefit 功能和使用方法。
2.用多项式y=x3-6x2+5x-3,产生一组数据(xi,yi)(i=1,2,…,n),再在yi上添加随机干扰(可用rand产生(0,1)均匀分布随机数,或用randn产生N(0,1)均匀分布随机数),然后对xi和添加了随机干扰的yi用Matlab提供的函数ployfit用3次多项式拟合,将结果与原系数比较。
再作2或4次多项式拟合,分析所得结果。
3.用电压V=10伏的电池给电容器充电,电容器上t时刻的电压为,其中V0是电容器的初始电压,τ是充电常数。
对于下面的一组t,v数据,用Matlab提供的函数lsqcurvefit确定V0和τ。
t(秒) 0.5 1 2 3 4 5 7 9v(伏) 6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63 【实验仪器与软件】1.CPU主频在1GHz以上,内存在128Mb以上的PC;2.Matlab 6.0及以上版本。
实验讲评:实验成绩:评阅教师:200 年月日问题及算法分析:1、利用help命令,在MATLAB中查找polyfit和lsqcurvefit函数的用法。
2、在一组数据(xi,yi)(i=1,2,…,n)上,对yi上添加随机干扰,运用多项式拟合函数,对数据进行拟合(分别用2次,3次,4次拟合),分析拟合的效果。
3、根据t和V的关系画散点图,再根据给定的函数运用最小二乘拟合函数,确定其相应参数。
第一题:(1)>> help polyfitPOLYFIT Fit polynomial to data.P = POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) ofdegree N that fits the data Y best in a least-squares sense. P is arow vector of length N+1 containing the polynomial coefficients indescending powers, P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1).[P,S] = POLYFIT(X,Y,N) returns the polynomial coefficients P and astructure S for use with POLYVAL to obtain error estimates forpredictions. S contains fields for the triangular factor (R) from a QRdecomposition of the Vandermonde matrix of X, the degrees of freedom(df), and the norm of the residuals (normr). If the data Y are random,an estimate of the covariance matrix of P is(Rinv*Rinv')*normr^2/df,where Rinv is the inverse of R.[P,S,MU] = POLYFIT(X,Y,N) finds the coefficients of a polynomial inXHAT = (X-MU(1))/MU(2) where MU(1) = MEAN(X) and MU(2) = STD(X). Thiscentering and scaling transformation improves the numerical propertiesof both the polynomial and the fitting algorithm.Warning messages result if N is >= length(X), if X has repeated, ornearly repeated, points, or if X might need centering and scaling.Class support for inputs X,Y:float: double, singleSee also poly, polyval, roots.Reference page in Help browserdoc polyfit>>(2)>> help lsqcurvefitLSQCURVEFIT solves non-linear least squares problems.LSQCURVEFIT attempts to solve problems of the form:min sum {(FUN(X,XDATA)-YDATA).^2} where X, XDATA, YDATA and the valuesX returned by FUN can be vectors ormatrices.X=LSQCURVEFIT(FUN,X0,XDATA,YDATA) starts at X0 and finds coefficients Xto best fit the nonlinear functions in FUN to the data YDATA (in theleast-squares sense). FUN accepts inputs X and XDATA and returns avector (or matrix) of function values F, where F is the same size asYDATA, evaluated at X and XDATA. NOTE: FUN should returnFUN(X,XDATA)and not the sum-of-squares sum((FUN(X,XDATA)-YDATA).^2).((FUN(X,XDATA)-YDATA) is squared and summed implicitly in thealgorithm.)X=LSQCURVEFIT(FUN,X0,XDATA,YDATA,LB,UB) defines a set of lower andupper bounds on the design variables, X, so that the solution is in therange LB <= X <= UB. Use empty matrices for LB and UB if no boundsexist. Set LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf ifX(i) is unbounded above.X=LSQCURVEFIT(FUN,X0,XDATA,YDATA,LB,UB,OPTIONS) minimizes with thedefault parameters replaced by values in the structure OPTIONS, anargument created with the OPTIMSET function. See OPTIMSET for details.Used options are Display, TolX, TolFun, DerivativeCheck, Diagnostics,FunValCheck, Jacobian, JacobMult, JacobPattern, LineSearchType,LevenbergMarquardt, MaxFunEvals, MaxIter, DiffMinChange andDiffMaxChange, LargeScale, MaxPCGIter, PrecondBandWidth, TolPCG,OutputFcn, and TypicalX. Use the Jacobian option to specify that FUNalso returns a second output argument J that is the Jacobian matrix atthe point X. If FUN returns a vector F of m components when X has length n, then J is an m-by-n matrix where J(i,j) is the partialderivative of F(i) with respect to x(j). (Note that the Jacobian J isthe transpose of the gradient of F.)[X,RESNORM]=LSQCURVEFIT(FUN,X0,XDATA,YDATA,...) returns the valueof thesquared 2-norm of the residual at X: sum {(FUN(X,XDATA)-YDATA).^2}.[X,RESNORM,RESIDUAL]=LSQCURVEFIT(FUN,X0,...) returns the value of residual,FUN(X,XDATA)-YDATA, at the solution X.[X,RESNORM,RESIDUAL,EXITFLAG]=LSQCURVEFIT(FUN,X0,XDATA,YDATA,...) returnsan EXITFLAG that describes the exit condition of LSQCURVEFIT. Possiblevalues of EXITFLAG and the corresponding exit conditions are1 LSQCURVEFIT converged to a solution X.2 Change in X smaller than the specified tolerance.3 Change in the residual smaller than the specified tolerance.4 Magnitude of search direction smaller than the specified tolerance.0 Maximum number of function evaluations or of iterations reached.-1 Algorithm terminated by the output function.-2 Bounds are inconsistent.-4 Line search cannot sufficiently decrease the residual alongthecurrent search direction.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT]=LSQCURVEFIT(FUN,X0,XDATA,YDATA ,...)returns a structure OUTPUT with the number of iterations taken inOUTPUT.iterations, the number of function evaluations inOUTPUT.funcCount,the algorithm used in OUTPUT.algorithm, the number of CG iterations (ifused) in OUTPUT.cgiterations, the first-order optimality (if used)inOUTPUT.firstorderopt, and the exit message in OUTPUT.message.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA]=LSQCURVEFIT(FUN,X0,XDAT A,YDATA,...)returns the set of Lagrangian multipliers, LAMBDA, at the solution:LAMBDA.lower for LB and LAMBDA.upper for UB.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA,JACOBIAN]=LSQCURVEFIT(FU N,X0,XDATA,YDATA,...)returns the Jacobian of FUN at X.ExamplesFUN can be specified using @:xdata = [5;4;6]; % example xdataydata = 3*sin([5;4;6])+6; % example ydatax = lsqcurvefit(@myfun, [2 7], xdata, ydata)where myfun is a MATLAB function such as:function F = myfun(x,xdata)F = x(1)*sin(xdata)+x(2);FUN can also be an anonymous function:x = lsqcurvefit(@(x,xdata) x(1)*sin(xdata)+x(2),[2 7],xdata,ydata)If FUN is parameterized, you can use anonymous functions to capture theproblem-dependent parameters. Suppose you want to solve the curve-fittingproblem given in the function myfun, which is parameterized by its secondargument c. Here myfun is an M-file function such asfunction F = myfun(x,xdata,c)F = x(1)*exp(c*xdata)+x(2);To solve the curve-fitting problem for a specific value of c, first assignthe value to c. Then create a two-argument anonymous function that capturesthat value of c and calls myfun with three arguments. Finally, pass thisanonymous function to LSQCURVEFIT:xdata = [3; 1; 4]; % example xdataydata = 6*exp(-1.5*xdata)+3; % example ydatac = -1.5; % define parameterx = lsqcurvefit(@(x,xdata) myfun(x,xdata,c),[5;1],xdata,ydata) See also optimset, lsqnonlin, fsolve, @, inline.Reference page in Help browserdoc lsqcurvefit>>第二题:1 三次线性拟合clear allx=0:0.5:5;y=x.^3-6*x.^2+5*x-3;y1=y;for i=1:length(y)y1(i)=y1(i)+rand;enda=polyfit(x,y1,3);b=polyval(a,x);plot(x,y,'*',x,b),aa =1.0121 -6.1033 5.1933 -2.4782② 二次线性拟合clear allx=0:0.5:20;y=x.^3-6*x.^2+5*x-3;y1=y;for i=1:length(y)y1(i)=y1(i)+rand;enda=polyfit(x,y1,2);b=polyval(a,x);plot(x,y,'*',x,b),aa =23.9982 -232.0179 367.9756③ 四次线性拟合clear allx=0:0.5:20;y=x.^3-6*x.^2+5*x-3;y1=y;for j=1:length(y)y1(j)=y1(j)+rand;enda=polyfit(x,y1,4);b=polyval(a,x);plot(x,y,'*',x,b),aa =-0.0001 1.0038 -6.0561 5.2890 -2.8249 >>第三题:1 拟合曲线为:f(x)=定义函数:function f=fun(a,x)f=a(1)-(a(1)-a(2))*exp(-a(3)*x);主程序:clear allclcx=[0.5 1 2 3 4 5 7 9];y=[6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63];a0=[1 1 1];a=lsqcurvefit('fun',a0,x,y);y1=a(1)-(a(1)-a(2))*exp(-a(3)*x);plot(x,y,'r*',x,y1,'b')V1=a(2)tei=1/a(3)Optimization terminated: relative function value changing by less than OPTIONS.TolFun.。
第5章曲线拟合

大时,插值效果显然是不理想的。此外,由实验或观测
提供的数据个数往往很多,如果用插值法,势必得到次 数较高的插值多项式,这样计算起来很烦琐。
换句话说 :求一条曲线,使数据点均在离此曲线的 为此 ,我们希望从给定的数据 (xi,yi)出发,构造 上方或下方不远处 ,所求的曲线称为拟合曲线 ,它 一个近似函数 ,不要求函数 完全通过所 ( x) ( x) 既能反映数据的总体分布,又不至于出现局部较大 有的数据点,只要求所得的近似曲线能反映数 的波动,更能反映被逼近函数的特性 据的基本趋势,如图 5-7所示。 ,使求得的逼 近函数与已知函数从总体上来说其偏差按某种方
(3)可化为线性拟合的非线性拟合
有些非线性拟合曲线可以通过适当的变量替
换转化为线性曲线,从而用线性拟合进行处理,
对于一个实际的曲线拟合问题,一般先按观测值 在直角坐标平面上描出散点图,看一看散点的分 布同哪类曲线图形接近,然后选用相接近的曲线 拟合方程。再通过适当的变量替换转化为线性拟
合问题,按线性拟合解出后再还原为原变量所表
,
(4)超定方程组的最小二乘解 A (aij ) mn ,b是m维已知 设线性方程组Ax=b中, 向量,x是n维解向量,当m>n,即方程组中 方程的个数多于未知量的个数时,称此方程组 为超定方程组。一般来说,超定方程组无解( 此时为矛盾方程组),这时需要寻求方程组的一 个“最近似”的解. 记 r b Ax ,称使 r 2 ,即 r 最小的解 x * 为 方程组Ax=b的最小二乘解。
m F ( a 0 , a1 ) 2 ( a 0 a1 xi y i ) 0 a i 1 0 m F ( a 0 , a1 ) 2 ( a 0 a1 xi y i )xi 0 a1 i 1
标准曲线的最小二乘法拟合和相关系数

标准曲线的最小二乘法拟合和相关系数(合肥工业大学控释药物研究室尹情胜)1 目的用最小二乘法拟合一组变量(,,i=1-n)之间的线性方程(y=ax+b),表示两变量间的函数关系;(开创者:德国数学家高斯)一组数据(,,i=1-n)中,两变量之间的相关性用相关系数(R)来表示。
(开创者:英国统计学家卡尔·皮尔逊)2 最小二乘法原理用最小二乘法拟合线性方程时,其目标是使拟合值()与实测值()差值的平方和(Q)最小。
式(1)3 拟合方程的计算公式与推导当Q最小时,;得到式(2)、式(3):式(2)式(3)由式(3)和式(4),得出式(4)和式(5):式(4)式(5)式(4)乘以n,式(5)乘以,两式相减并整理得斜率a:斜率(k=xy/xx,n*积和-和积)式(6)截距b的计算公式为公式(5),也即:截距b=(y-x)/n,差平均差)式(7)4 相关系数的意义与计算公式相关系数(相关系数的平方称为判定系数)是用以反映变量之间相关关系密切程度的统计指标。
相关系数(也称积差相关系数)是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。
相关系数r xy取值在-1到1之间。
r xy = 0时,称x,y不相关;| r xy | = 1时,称x,y完全相关,此时,x,y之间具有线性函数关系;| r xy | < 1时,X的变动引起Y的部分变动,r xy的绝对值越大,x的变动引起y的变动就越大,|r xy | > 0.8时称为高度相关,当0.5< | r xy|<0.8时称为显著相关,当0.3<| r xy |<0.5时,成为低度相关,当| r xy | < 0.3时,称为无相关。
(式(7)5 临界相关系数的意义5.1 临界相关系数中显著性水平(α)与置信度(P)的关系显著性水平取0.05,表示置信度为95%;取0.01,置信度就是99%。
第5章-1 曲线拟合(线性最小二乘法)

Y=0.25x2+0.25x-0.25
拟合曲线为: y=0.25x2+0.25x-0.25
课堂练习
设给定观测数据如下,求线性拟合函数 y=ax2+bx+c
上题答案
▪ Xi4和354 ▪ Xi3和100 ▪ Xi2和=30 ▪ Xi和10 ▪ Xiyi和30 ▪ Yi和9
▪ N=4
▪ Xi2yi和106
▪ 354a+100b+30c=106 ▪ 100a+30b+10c=30 ▪ 30a+10b+4c=9
解得:a=1.1 b=-0.7
所以:线性拟合曲线函数为: y=1.1x-0.7
例2:试用二次曲线 y=ax2+bx+c 拟合下列数据:
xi
-3
-2 -1 0
1
23
Yi 4
2
3 0 -1 -2 -5
求得方程组为:
196a 28b
28a
+28c=-7 =-39
+7c=1
解得: b =-39/28 a=-11/84 c=2/3
4:拟合2次曲线y=ax2+bx+c
分析:
误差平方和表达公式:
Q=∑(y^i-yi)2
因为y=ax2+bx+c 所以 Q= ∑(axi2+bxi+c -yi) 2
又根据:Q分别对a、b、c求偏导值为0,最后求得公式为:
∑xi4 a + ∑xi3 b + ∑xi2 c = ∑xi 2yi ∑xi3
a + ∑xi2 b + ∑xi c = ∑xi yi ∑xi2 a +
最小二乘法拟合曲线求最大值

最小二乘法拟合曲线求最大值
最小二乘法是一种拟合曲线的方法,它是通过优化平方误差最小化来找到拟合曲线的参数。
最小二乘法可以用来拟合各种类型的曲线,包括直线、多项式、指数和对数函数等。
如果要找到拟合曲线的最大值,可以通过以下步骤进行:
1. 根据数据点的坐标,使用最小二乘法找到最佳拟合曲线的参数。
这可以通过使用线性回归或多项式回归的方法来实现。
2. 使用找到的曲线参数,求曲线的导数。
导数表示曲线在每个点上的斜率。
3. 找到导数等于零的点。
这些点可能是拟合曲线的极值点,包括最大值和最小值。
4. 比较这些极值点的函数值,找到最大值。
需要注意的是,最小二乘法本身不能直接找到曲线的最大值,它只能通过拟合曲线函数的参数来间接推断最大值所在的位置。
因此,在找到最佳拟合曲线的参数后,还需要进行额外的导数计算和极值点分析才能找到实际的最大值点。
此外,如果数据点中存在噪声或异常值,最小二乘法可能会受到影响,导致拟合曲线得到的最大值并不准确。
在实际应用中,可能需要使用其他方法来处理这些问题。
最小二乘法与曲线拟合

值点。
问题:二次函数Q=f(x1,x2,…,xn)是否存在最小值?
若最小值存在,如何求出该最小值点?
2.最小二乘解的存在唯一性
N i 1
xi2 m
N i 1
xim
yi
三、解的存在唯一性
定理:设x1,x2,…,xN互异,且N>m+1,则上面的
正则方程组有唯一的解。
证明:只需证明矛盾方程组的系数矩阵A的秩rankA=m+
矛盾方程组的系数矩阵A是N×(m+1)的矩阵,记
A的前m+1行构成m+1阶子矩阵
1
A1
1
n
aNj
xj
bN
j1
2a1k
a2k
a
Nk
(
Ax
b
)
Q
故
x1
Q
x2
Q
2
AT
(
Ax
b)
2(
AT
Ax
AT
b)
xn
令
Q 0
(k 1,2,, n)
2 f
x2x1
2 f
P0
2 f
x22 P0
2 f
2 f
x2xn
2 f
P0
《数值分析》第5章 曲线拟合与函数插值

例如用函数
y Aebx
(5.8)
去拟合一组给定的数据,其中 A和 b是待定参这数时. ,可以在 (5.8) 式两端取
对数,得
ln y ln A bx
记 y ln y,a ln A,则上式可写成 y a b. x这样,仍可用最小二乘法解出
和 a (从而b 也就确定了 和 A) ,于b 是得到拟合函数
区间 [a,b]上是存在的,但往往不知道其具体的解析表达式,只能通过观察、
测量或实验得到一些离散点上的函数值.
我们希望对这种理论上存在的函数用一个比较简单的表达式近似地给出整体 上的描述.
此外,有些函数虽然有明确的解析表达式,但却过于复杂而不便于进行理论 分析和数值计算,我们同样希望构造一个既能反映函数特性又便于计算的简 单函数,近似替代原来的函数.
图5-1 人口增长的线性模型
5.1.1 最小二乘问题
设人口 y 与年份 x之间的函数关系为
y a bx
(5.1)
其中 a和 b 是待定参数. 由图5-1可知, (xi , yi并) 不是严格地落在一条直线上,
因此,不论怎样选择 和 a,都b不可能使所有的数据点
(x均i ,满yi )足关系
式 (5.1) .
s0 10, s1 545, s2 29785, u0 18.09, u1 987.78
于是正规方程组为
10 545 a 18.09 545 29785 b 987.78
5.1.2 最小二乘拟合多项式
解得 a 0.570,4 b 0.02,27于是 A ea 1.76,90所求拟合函数为
21 91
441
a1
163
91 441 2275 a2 777
解得 a0 26.8,a1 14.08,57 a2 ,2因此所求拟合多项式为
曲线最小二乘法拟合

最小二乘法拟合曲线算法1、概述给定数据点P(x i ,y i ),其中i=1,2,…,n 。
求近似曲线y= φ(x)。
并且使得近似曲线与y=f(x)的偏差最小。
近似曲线在点pi 处的偏差δi = φ(x i )-y ,i=1,2,...,n 。
按偏差平方和最小的原则选取拟合曲线,这种方法为最小二乘法,偏差平方和公式为:min σ2 = (φ(x i −y i ))2ni =1n i =12、推导过程1)设拟合多项式为:y = a 0+ a 1x +⋯+a k x k2)各点到这条曲线的距离之和,即偏差平方如下:R 2= [y i −(a 0+ a 1x +⋯+a k x k )]2ni =13)多项式系数为学习对象,为了求得符合条件的系数值,对上面等式的a i 分别求导,得:−2 y i − a 0+ a 1x +⋯+a k x k =0ni=1−2 y i − a 0+ a 1x +⋯+a k x k x =0ni=1……−2 y i − a 0+ a 1x +⋯+a k x k x k =0ni=14)将等式移项化简,得:a 0+ a 1x +⋯+a k x k = y i ni =1n i =1a 0+ a 1x +⋯+a k x k x = y i x ni =1n i =1……a 0+ a 1x +⋯+a k x k x k = y i x k ni =1n i =15)依上式得矩阵为:x i0 ni=1⋯x i kni=1⋮⋱⋮x i k ni=1⋯x i2kni=1a0⋮a k=y i x i0ni=1⋮y i x i kni=1上边等式左边为1+K阶对称矩阵,解此矩阵方程即可得到曲线系数a k6)对于AX=B,A为对称矩阵,对称矩阵可以分解为一个下三角矩阵、一个上三角矩阵(下三角矩阵的转置)和一个对角线矩阵相乘。
即A=LDL T所以AX=LDL T X=B,令DL T X=Y -> LY=B,其中L为下三角矩阵,且已知,可求出Y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要求严格地通过所有数据点 (xi,也yi )就是说拟合函数(x)在
《 xi 处的偏差(亦称残差)
计 算
i (xi ) f (xi ) (i 0,1,, n)
方
法 不都严格地等于零。但是,为了使近似曲线能尽量反
与
实 习
映所给数据点的变化趋势,要求
i
按某种度量标准
》 最小。若记向量e 0 ,1,,n T ,即要求向量e 的某种
为方此或,我下们方不希远望处从,所给求定的的曲数线据称为(xi拟,yi)合出曲发线,构,它造既一能个
近反似映函数数据的(总x),体不分要布求,又函不数至于(x出) 完现全局通部较过大所的有波的
数动据,更点能,反只映要被求逼近所函得数的的近特似性曲,使线求能得反的逼映近数函据数的
《 基与本已趋知势函,数如从总图体5-上1所来示说。其偏差按某种方法度量达
。作拟合直线 y(x) a0 a1x ,该直线不是通过所有的
数据点 xi , yi ,而是使偏差平方和
《
m
计
F (a0 , a1 ) (a0 a1xi yi )2
算
i 1
方 为最小,其中每组数据与拟合曲线的偏差为
法
与 实 习 》
y(xi ) yi a0 a1xi yi i 1,2,, m
计
算 方
到最小,这就是最小二乘法。
法 与
y
•
实
••
习
••
》 图5-1
•
• •
曲线拟合示意图
••
•
•
•
•
••
o
x
第五章 曲线拟合与最小二乘法
与函数插值问题不同,曲线拟合不要求曲线通过
所有已知点,而是要求得到的近似函数能反映数据的
基本关系。在某种意义上,曲线拟合更有实用价值。
《
在对给出的实验(或观测)数据 (xi , yi )(i 0,1,, n)
与 实
,如果要求所得的近似函数曲线精确无误地通过所有的
习 》
点(xi,yi),就会使曲线保留着一切测试误差。当个别数据
的误差较大时,插值效果显然是不理想的。此外,由实验
或观测提供的数据个数往往很多,如果用插值法,势必得
到次数较高的插值多项式,这样计算起来很烦琐。
换句话说:求一条曲线,使数据第点五章均曲在线离拟合此与曲最小线二的乘上法
《
计 寻求次数不超过m (m<<N ) 的多项式,
算 方 法
y a0 a1x a2 x 2 an x m
与
实 习
来拟合所给定的数据,与线性拟合类似,使偏差的
》 平方和
为最小
N
m
Q ( yi a j xij )2
i 1
j0
第五章 曲线拟合与最小二乘法
N
m
Q ( yi a j xij ) 2
用最小二乘法求以上数据的拟合函数
解:把表中所给数据画在坐标纸上,将会看到数据点
的分布可以用一条直线来近似地描述,设所求的 。
第五章 曲线拟合与最小二乘法
拟解合得直线为ay0(x) 3a.90 37a41x,记x1=a11.367, .x426=216.37, x3 =1.95
x4即=得2.2拟8,合y1直=线14.094y, y2=3.9163.78444, y73.=41682.467x5,
即得如下正规方程组
a0m
m
a1
m i 1
xi
m
m i 1
yi
m
《
计 算
a1 i1 xi2
a0
i 1
xi
xi yi
i 1
例5. 1 设有某实验数据如下:
方 法
i
1
2
与 实 习 》
xi
1.36
1.37
yi
14.094 16.844
(5.1)
3 1.95 18.475
4 2.28 20.963
y4=20.963
《计算则正规方程组为4a04 a1
4 i 1
xi
4
4 i 1
yi
4
方 法 与
a0 i1 xi a1 i1 xi2 i1 xi yi
实
习
其中
4
xi 7.32
4
xi2 13.8434
4
yi 70.376
4
xi yi 132 .12985
》
i 1
i 1
i1
i0
n
i0
(xi )
f (xi)
2 2
》即
n
n
2
e 2 2
2 i
(xi ) f (xi )
i0
i0
为最小。这种要求误差(偏差)平方和最小的拟合
称为曲线拟合的最小二乘法。
(1)直线拟合
第五章 曲线拟合与最小二乘法
设已知数据点 xi , yi , i 1,2,, m,分布大致为一条直线
第五章 曲线拟合与最小二乘法
第五章 曲线拟合与最小二乘法
如果已知函数f(x)在若干点xi(i=1,2,…,n)处
的值yi,便可根据插值原理来建立插值多项式作为f(x)的近
似。但在科学实验和生产实践中,往往会遇到这样一种
《
计 算
情况,即节点上的函数值并不是很精确的,这些函数值
方 法
是由实验或观测得到的数据,不可避免地带有测量误差
i 1
将以上数据代入上式正规方程组,得
4a0 7.32a1 70.376 7.32a0 13.8434a1 132.12985
(2)多项式拟合
第五章 曲线拟合与最小二乘法
有时所给数据点的分布并不一定近似地呈一条直
线,这时仍用直线拟合显然是不合适的,可用多项式
拟合。对于给定的一组数据 xi , yi , i 1,2,, N
根据最小二乘原理,应取 a0 和 a1 使 F(a0 , a1)
,故 a0 和 a1 应满足下列条件:
有极小值
F (a0 , a1 )
a0
F (a0 , a1 )
a1
m
2 (a0
i 1
m
2 (a0
i 1
a1 xi a1 xi
yi ) 0 yi )xi
0
第五章 曲线拟合与最小二乘法
计 算
作曲线拟合时,怎样才算拟合得最好呢
?一般希望各
方 法
实验(或观测)数据与拟合曲线的偏差的平方和最小,这
与 实
就是最小二乘原理。
习
》 两种逼近概念:
插值: 在节点处函数值相同.
拟合: 在数据点处误差平方和最小
第五章 曲线拟合与最小二乘法
函数插值是插值函数P(x)与被插函数f(x)在节处函数值
相同,即 P(xi ) f (xi ) (i 0,1,, n)而曲线拟合函数(x)不
i 1
j 0
由于Q可以看作是关于 ( j=0,1,2,…, m)的多
范数 e 最小,如 e的1-范数 e 或∞-范数 1
e
即
第五章 曲线拟合与最小二乘法
n
n
e 1
i
(xi ) f (xi )
i0
i0
或
e
max i
i
max i
(xi
)
f (xi)
《 最小。为了便于计算、分析与应用,通常要求 e的
计
算 2-范数
方
1
1
法 与 实 习
e
2
n
2 i
2