高中数学双曲线单元测试题

合集下载

双曲线、抛物线测试题(含答案)

双曲线、抛物线测试题(含答案)

双曲线、抛物线测试题 (每小题5分,共120分)1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)抛物线y 2=4x 的焦点到准线的距离是4.( )(2)抛物线既是中心对称图形,又是轴对称图形.( )(3)平面内到点F 1(0,3),F 2(0,-3)距离之差的绝对值等于6的点的轨迹是双曲线.( )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( )(5)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( )答案:(1)× (2)× (3)× (4)√ (5)×2.设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=3,则|PF 2|=( )A .1或5B .6C .7D .9 答案: C3.已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( )A .2B .62C .52D .1 答案: D 4.若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .离心率相等B .虚半轴长相等C .实半轴长相等D .焦距相等 答案: (1)D5.双曲线y 216-x 2m=1的离心率e =2,则双曲线的渐近线方程为( )A .y =±xB .y =±33x C .y =±2x D .y =±12x答案: B6.焦点为(0,6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A .x 212-y 224=1B .y 212-x 224=1C .y 224-x 212=1D .x 224-y 212=1 答案: B7.已知双曲线y 2a 2-x 2b2=1(a >0,b >0)的两个焦点分别为F 1,F 2,以线段F 1F 2为直径的圆与双曲线渐近线的一个交点是(4,3).则此双曲线的方程为( )A .y 29-x 216=1B .y 24-x 23=1C .y 216-x 29=1D .y 23-x 24=1答案: A8.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-12答案: C9.坐标平面内到定点F (-1,0)的距离和到定直线l :x =1的距离相等的点的轨迹方程是( )A .y 2=2xB .y 2=-2xC .y 2=4xD .y 2=-4x 答案: D10.抛物线y =14x 2的准线方程是( )A .y =-1B .y =-2B .x =-1 D .x =-2 答案: A11.若抛物线y 2=2px 上一点P (2,y 0)到其准线的距离为4,则抛物线的标准方程为( )A .y 2=4xB .y 2=6xC .y 2=8xD .y 2=10x 答案: C12.已知O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .22C .2 3D .4 答案: 2 313.已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .8 答案: A14.抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线方程为( )A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=152x答案: B 15.设双曲线C 经过点(2,2),且与y 24-x 2=1具有相同渐近线,则C 的方程为________;渐近线方程为________.答案:x 23-y 212=1 y =±2x 16.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.答案: 617.顶点在原点,对称轴是y 轴,并且经过点P (-4,-2)的抛物线方程是____________.答案: x 2=-8y18.两个正数a ,b 的等差中项是52,等比中项是6,且a >b ,则双曲线x 2a 2-y 2b 2=1的离心率e =________. 答案: 133 19.已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为______.答案: 2 320.若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为________.答案:x 264-y 236=1或y 264-x 236=1 21.设点P 在双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支上,双曲线的左、右焦点分别为F 1,F 2,若|PF 1|=4|PF 2|,则双曲线离心率的取值范围是________.答案: ⎝ ⎛⎦⎥⎤1,5322.已知双曲线的渐近线方程为y =±23x ,且过点M ⎝ ⎛⎭⎪⎫92,-1,则双曲线的标准方程为________.答案:x 218-y 28=1 23.F 是抛物线y 2=2x 的焦点,A ,B 是抛物线上的两点,|AF|+|BF|=6,则线段AB 的中点到y 轴的距离为________.答案: 5224.已知抛物线方程为y 2=4x ,直线l 的方程为x -y +5=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,则d 1+d 2的最小值为________.答案: 32-1。

双曲线专题复习

双曲线专题复习

双曲线单元复习测试一、选择题1.(09年高考全国卷二)已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 交C 于A B 、两点,若4AF FB =,则C 的离心率为 A .65B .75C .58D .95【答案解析】A解:设双曲线22221x y C a b-=:的右准线为l ,过A B 、分 别作AM l ⊥于M ,BN l ⊥于N , BD AM D ⊥于,由直线AB 知直线AB 的倾斜角为16060,||||2BAD AD AB ︒∴∠=︒=, 由双曲线的第二定义有1||||||(||||)AM BN AD AF FB e -==-11||(||||)22AB AF FB ==+. 又15643||||25AF FB FB FB e e =∴⋅=∴= 故选A2.(09年高考江西卷)设F 1和F 2为双曲线)0,0(12222>>=-b a by a x 的两个焦点, 若F 1,F 2,P(0,2b )是正三角形的三个顶点,则双曲线的离心率为 A .23B .2C .25 D .3【答案解析】B【解析】由tan623c b π==有2222344()c b c a ==-,则2c e a==,故选B. 3.(2008年高考数学试题全国卷2(理)全解全析)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .2)B .C .(25),D .(2【答案解析】【答案】B【解析】222222)11(1)1()(a aa a a c e ++=++==,因为a 1是减函数,所以当1a >时 110<<a,所以522<<e ,即52<<e 【高考考点】解析几何与函数的交汇点4.(2008年高考数学试题全国卷2(文)全解全析)设ABC △是等腰三角形,120ABC ∠=,则以A B,为焦点且过点C 的双曲线的离心率为( ) A .221+ B .231+ C . 21+ D .31+【答案解析】【答案】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线的定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==a c e 【高考考点】双曲线的有关性质,双曲线第一定义的应用5.(08年高考陕西卷)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为A BC D .3【答案解析】B6.(2008年高考数学海南、宁夏文数全解全析)双曲线221102x y -=的焦距为( )A .B .C .D .【答案解析】【标准答案】D【试题解析】由双曲线方程得22210,212==∴=a b c ,于是2==c c【高考考点】双曲线的标准方程及几何性质【易错提醒】将双曲线中三个量,,a b c 的关系与椭圆混淆,而错选B【全品备考提示】在新课标中双曲线的要求已经降低,考查也是一些基础知识,不要盲目拔高7.(08年高考四川卷)已知双曲线22:1916x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于A .24B .36C .48D .96【答案解析】C∵双曲线22:1916x y C -=中3,4,5a b c === ∴()()125,0,5,0F F - ∵212PF F F = ∴12261016PF a PF =+=+=作1PF 边上的高2AF ,则18AF = ∴26AF == ∴12PF F ∆的面积为12111664822PF PF ⋅=⨯⨯= 故选C 【解2】:∵双曲线22:1916x y C -=中3,4,5a b c === ∴()()125,0,5,0F F - 设()()000,0P x y x >,, 则由212PF F F =得()22200510x y -+=又∵P 为C 的右支上一点 ∴22001916x y -= ∴22001619x y ⎛⎫=- ⎪⎝⎭∴()22051611009x x ⎛⎫-+-= ⎪⎝⎭即20025908190x x +-=解得0215x =或03905x =-<(舍去)∴0485y ===∴12PF F ∆的面积为12011481048225F F y ⋅=⨯⨯= 故选B【点评】:此题重点考察双曲线的第一定义,双曲线中与焦点,准线有关三角形问题;【突破】:由题意准确画出图象,解法1利用数形结合,注意到三角形的特殊性;解法2利用待定系数法求P 点坐标,有较大的运算量;8.(08年高考浙江卷)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是 A .3B .5C .3D .5【答案解析】D9.(09年高考山东卷)设双曲线12222=-by a x 的一条渐近线与抛物线y =x 2+1 只有一个公共点,则双曲线的离心率为 A .45B . 5C .25 D .5【答案解析】D【解析】:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x ay x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=,所以2b a =,2c e a a ====故选D.答案:D.10.(2008年高考数学福建文数全解全析)若双曲线()222213x y a o a -=>的离心率为2,则a 等于A . 2B .C.32D . 1【答案解析】解析解析由222123x y a -===c可知虚轴e=a,解得a=1或a=3,参照选项知而应选D.11.(09年高考湖北卷)已知双曲线12222=-y x 的准线过椭圆14222=+b y x 的焦点,则直线y=kx +2与椭圆至多有一个交点的充要条件是 A .K ]21,21[-∈B .K ),21[]21,(+∞⋃--∞∈C.K ]22,22[-∈D .),22[]22,(+∞⋃-∞∈K 【答案解析】A【解析】易得准线方程是2212a xb =±=±=±所以222241c a b b =-=-= 即23b =所以方程是22143x y +=联立 2 y kx =+可得22 3+(4k +16k)40x x +=由0∆≤可解得A12.(08年高考重庆卷)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为A .22x a-224y a =1B .222215x y a a -= C.222214x y b b -=D .222215x y b b-=【答案解析】C二、填空题13.(2010年高考试题(江西卷)解析版(文))点00(,)A x y 在双曲线221432x y -=的右支上,若点A 到右焦点的距离等于02x ,则0x = ;【答案解析】【答案】2【解析】考查双曲线的比值定义,利用点A 到右焦点比上到右准线的距离等 于离心率得出0x =214.(09年高考湖南卷)过双曲线C :22221(0,0)x y a b a b-=>>的一个焦点作圆x 2+y 2=2a 的两条切线,切点分别为A ,B ,若∠AOB=120°(O 是坐标原点),则双曲线线C 的离心率为 【答案解析】12060302AOB AOF AFO c a ∠=⇒∠=⇒∠=⇒=, 2.ce a∴== 15.(2010年高考试题(北京卷)解析版(理))已知双曲线22221x y a b-=的离心率为2,焦点与椭圆221259x y +=的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 。

双曲线练习题

双曲线练习题

双曲线练习题一、选择题1. 下列关于双曲线的方程中,正确的是()A. x^2 y^2 = 1B. x^2 + y^2 = 1C. y^2 x^2 = 1D. x^2 y^2 = 02. 双曲线的标准方程为 x^2/a^2 y^2/b^2 = 1(a>0,b>0),则其渐近线方程为()A. y = ±(a/b)xB. y = ±(b/a)xC. x = ±(a/b)yD. x = ±(b/a)y3. 双曲线的离心率e满足()A. 0 < e < 1B. e = 1C. e > 1D. e ≤ 14. 下列关于双曲线的焦点坐标,正确的是()A. (±c, 0)B. (0, ±c)C. (±a, 0)D. (0, ±a)二、填空题1. 双曲线的标准方程为 x^2/a^2 y^2/b^2 = 1,则其焦点到中心的距离是 _______。

2. 已知双曲线的一个焦点为(4, 0),实轴长为6,则双曲线的方程为 _______。

3. 双曲线的离心率为2,实轴长为4,则双曲线的虚轴长为_______。

三、解答题1. 已知双曲线方程为 x^2/9 y^2/16 = 1,求:(1)焦点坐标;(2)实轴长;(3)渐近线方程。

2. 设双曲线的方程为 y^2 x^2/4 = 1,求:(1)离心率;(2)焦点坐标;(3)渐近线方程。

3. 已知双曲线的两个焦点分别为(±5, 0),且离心率为2,求双曲线的标准方程。

4. 已知双曲线的实轴长为8,虚轴长为6,求双曲线的离心率。

5. 设双曲线的方程为 x^2/25 y^2/9 = 1,求:(1)焦点坐标;(2)离心率;(3)渐近线方程。

四、计算题1. 已知双曲线的一个焦点为(2, 0),且经过点P(4, 3),求双曲线的标准方程。

2. 设双曲线的方程为 4x^2 9y^2 = 36,求该双曲线与直线 y = (2/3)x + 1 的交点。

高二数学双曲线试题答案及解析

高二数学双曲线试题答案及解析

高二数学双曲线试题答案及解析1.双曲线的渐近线方程是A.B.C.D.【答案】A【解析】因为双曲线的方程为,令,所以渐近线方程是.【考点】双曲线的渐近线方程.2.双曲线的虚轴长等于( )A.B.-2t C.D.4【答案】C【解析】由于双曲线,所以其虚轴长,故选C.【考点】双曲线的标准方程.3.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.4.已知、是双曲线(,)的左右两个焦点,过点作垂直于轴的直线与双曲线的两条渐近线分别交于,两点,是锐角三角形,则该双曲线的离心率的取值范围是()A.B.C.D.【答案】B是锐【解析】根据题意,易得,由题设条件可知为等腰三角形,2角三角形,只要为锐角,即即可;所以有,即解出故选B【考点】双曲线的简单性质5.设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于()A.2B.18C.2或18D.16【答案】C【解析】整理准线方程得,∴,a=4,∴=2a=8或=2a=8,∴=2或18,故选C..【考点】双曲线的简单性质;双曲线的应用.6.双曲线的渐近线方程为( )A.B.C.D.【答案】C【解析】令,解得【考点】双曲线渐近线的求法.7.如图,动点到两定点、构成,且,设动点的轨迹为。

(1)求轨迹的方程;(2)设直线与轴交于点,与轨迹相交于点,且,求的取值范围。

【答案】(1)(2)【解析】(1)求动点轨迹方程,一般有四步.第一步,设所求动点的坐标,第二步,将条件转化为坐标表示,本题,两边取正切,转化为斜率关系,第三步,化简关系式为常见方程形式,第四步,根据方程表示图像,去掉不满足的部分.(2)研究取值范围,首先将表示为函数关系式.因为等于,所以先求出,从而有,利用直线与双曲线有两个交点这一限制条件,得到m>1,且m2,这作为所求函数定义域,求出值域即为的取值范围是试题解析:解(1)设M的坐标为(x,y),显然有x>0,.当∠MBA=90°时,点M的坐标为(2,, ±3)当∠MBA≠90°时;x≠2.由∠MBA=2∠MAB,有tan∠MBA=,即化简得:3x2-y2-3=0,而又经过(2,,±3)综上可知,轨迹C 的方程为3x2-y2-3=0(x>1) 5分 (2)由方程消去y ,可得。

高中数学专题双曲线及其标准方程检测(学生)

高中数学专题双曲线及其标准方程检测(学生)

2.1。

4双曲线及其标准方程(检测学生版)时间:50分钟 总分:80分班级: 姓名:一、 选择题(共6小题,每题5分,共30分)1.双曲线xy 222-=8的焦点坐标是( ) A 。

()± B.(0,± C 。

()2,0± D 。

()0,2±2.下列曲线中焦点坐标为()1,0-的是( ) A .223312x y -= B .2214x y +=C .22143x y -=D .22123x y += 3.若双曲线22149x y -=上一点P 到左焦点的距离是3,则点P 到右焦点的距离为 ( )A .4B .5C .6D .74.过双曲线228x y -=的左焦点1F 有一条弦PQ 交左支于P 、Q 点,若7PQ =,2F 是双曲线的右焦点,则△2PF Q 的周长是( )A .28B .14-.14+.5.椭圆2214x y +=与双曲线2212x y -=有相同的焦点1F 、2F ,P 是这两条曲线的一个交点,则△12F PF 的面积是( )A .4B .2C .1D .126.过双曲线()222210,0x y a b a b-=>>的左焦点1F ,作圆222x y a +=的切线交双曲线右支于点P ,切点为T ,若1PF 的中点M 在第一象限,则以下结论正确的是( )A .b a MO MT -=-B .b a MO MT ->-C .b a MO MT -<-D .b a MO MT -=+二、 填空题(共4小题,每题5分,共20分)7.已知点F 1,F 2分别是双曲线错误!-错误!=1的左、右焦点,P 为双曲线右支上一点,I 是△PF 1F 2的内心,且S △IPF 2=S △IPF 1-λS △IF 1F 2,则λ=________.8.若方程错误!+错误!=1(k ∈R )表示双曲线,则k 的范围是________.9.已知椭圆错误!+错误!=1与双曲线错误!-错误!=1有相同的焦点,则实数a =________。

高二数学双曲线试题(有答案)

高二数学双曲线试题(有答案)

高二数学双曲线试题一:选择题1.双曲线()2210x y mn m n -=≠的离心率为2,有一个焦点与椭圆2211625x y +=的焦点重合,则m 的值为( ) A . B .C .D .【答案】A2.以112422-=-y x 的焦点为顶点,顶点为焦点的椭圆方程为( ) A .1121622=+y x B .1161222=+y x C .141622=+y x D .116422=+y x 【答案】A3.设12F F 、分别是双曲线2213y x -=的两个焦点,P 是该双曲线上的一点,且123||4||PF PF =,则12PF F ∆的面积等于( ) (A )45(B )315(C )53(D )210【答案】B4.已知双曲线的中心在坐标原点,两个焦点为F 1(﹣,0),F 2(,0),点P 是此双曲线上的一点,且•=0,||•||=4,该双曲线的标准方程是( ) A .B .C .D .解:设双曲线的方程为:﹣=1,∵两焦点F 1(﹣,0),F 2(,0),且•=0,∴⊥,∴△F 1PF 2为直角三角形,∠P 为直角; ∴+===28;①又点P 是此双曲线上的一点, ∴||PF 1|﹣|PF 2||=2a ,∴+﹣2|PF1|•|PF2|=4a2,由||•||=4得|PF1|•|PF2|=4,∴+﹣8=4a2,②由①②得:a2=5,又c2==7,∴b2=c2﹣a2=2.∴双曲线的方程为:﹣=1,故选C.5.已知双曲线E的中心为原点,P(3,0)是E的焦点,过P的直线l与E相交于A,B两点,且AB的中点为N(﹣12,﹣15),则E的方程式为()A.B.C.D.解:由已知条件易得直线l的斜率为k=k FN=1,设双曲线方程为,A(x1,y1),B(x2,y2),则有,两式相减并结合x1+x2=﹣24,y1+y2=﹣30得=,从而==1即4b2=5a2,又a2+b2=9,解得a2=4,b2=5,故选B.6.已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程是()A.x=±B.y=C.x=D.y=解:∵椭圆和双曲线有公共焦点∴3m2﹣5n2=2m2+3n2,整理得m2=8n2,∴=2双曲线的渐近线方程为y=±=±x故选D7.已知中心在原点,焦点在x轴上的双曲线的离心率,其焦点到渐近线的距离为1,则此双曲线的方程为()A.﹣y2=1 B.﹣=1C.﹣y2=1D.x2﹣y2=1解:设双曲线的方程为,渐近线方程为∵双曲线的离心率,其焦点到渐近线的距离为1,∴,=1∴b=1,a=∴双曲线的方程为﹣y2=1故选A.8.已知抛物线y2=8x的准线与双曲线相交于A,B两点,点F是抛物线的焦点,若双曲线的一条渐近线方程是,且△FAB是直角三角形,则双曲线的标准方程是()A.B.C.D.解:依题意知抛物线的准线x=﹣2.代入双曲线方程得y=±.双曲线的一条渐近线方程是,∴则不妨设A(﹣2,),F(2,0)∵△FAB 是等腰直角三角形, ∴=4,解得:a=,b=4∴c 2=a 2+b 2=2+16=20, ∴双曲线的标准方程是故选C9..已知椭圆2222:1(0)x y C a b a b +=>>的离心学率为3.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为(A )22182x y += (B )221126x y += (C )221164x y += (D )221205x y += 【答案】D【解析】因为椭圆的离心率为23,所以23==a c e ,2243a c =,222243b a a c -==,所以2241a b =,即224b a =,双曲线的渐近线为x y ±=,代入椭圆得12222=+bx a x ,即1454222222==+b x b x b x ,所以b x b x 52,5422±==,2254b y =,b y 52±=,则第一象限的交点坐标为)52,52(b b ,所以四边形的面积为16516525242==⨯⨯b b b ,所以52=b ,所以椭圆方程为152022=+y x ,选D. 10.设F 1,F 2分别是双曲线的左、右焦点.若双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|,则双曲线离心率为( ) A . B . C .D .解:设F 1,F 2分别是双曲线的左、右焦点.若双曲线上存在点A ,使∠F 1AF 2=90°,且|AF 1|=3|AF 2|, 设|AF 2|=1,|AF 1|=3,双曲线中2a=|AF 1|﹣|AF 2|=2,,∴离心率,故选B .11.设双曲线的﹣个焦点为F ;虚轴的﹣个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( ) A . B . C . D .解:设双曲线方程为,则F (c ,0),B (0,b )直线FB :bx+cy ﹣bc=0与渐近线y=垂直,所以,即b 2=ac所以c 2﹣a 2=ac ,即e 2﹣e ﹣1=0, 所以或(舍去)12.已知双曲线221124x y -=的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( C )A.33(,)-B.(3,3)-C.33[,]-D.[3,3]-【答案】C13.如图,F 1,F 2分别是双曲线C :22221x y a b-=(a,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P,Q 两点,线段PQ 的垂直平分线与x 轴交与点M ,若|MF 2|=|F 1F 2|,则C 的离心率是A.23 B 62 D. 3【答案】B【解析】由题意知直线B F 1的方程为:b x c b y +=,联立方程组⎪⎪⎩⎪⎪⎨⎧=-+=0,b y a x b x cb y 得点Q ),(a c bc a c ac --,联立方程组⎪⎪⎩⎪⎪⎨⎧=++=0,b y a x b x cb y 得点P ),(ac bc a c ac ++-,所以PQ 的中点坐标为),(222b c b c a ,所以PQ 的垂直平分线方程为:)(222b ca xbc b c y --=-,令0=y ,得)1(22b ac x +=,所以c ba c 3)1(22=+,所以2222222a cb a -==,即2223c a =,所以26=e 。

人教版高中数学必修三单元测试双曲线及答案

人教版高中数学必修三单元测试双曲线及答案

人教版高中数学必修三单元测试双曲线及答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#(10)双曲线一、选择题(本大题共10小题,每小题5分,共50分) 1.θ是第三象限角,方程x 2+y 2sin θ=cos θ表示的曲线是 ( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆C .焦点在x 轴上的双曲线D .焦点在y 轴上的双曲线2.“a b<0”是“方程ax 2+b y 2 =c 表示双曲线”的 ( )A .必要不充分条件B .充分不必要条件C .充要条件D .非充分非必要条件3.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆心的轨迹为 ( ) A .抛物线B .圆C .双曲线的一支D .椭圆4.双曲线虚半轴长为5,焦距为6,则双曲线离心率是 ( )A .35 B .53 C .23 D .32 5.过点P (2,-2)且与22x -y 2=1有相同渐近线的双曲线方程是()A .14222=-x y B .12422=-y xC .12422=-x y D .14222=-y x 6.双曲线191622=-y x 右支上一点P 到右准线距离为18,则点P 到右焦点距离为( )A .245 B .558 C .229 D .532 7.过双曲线x 2-22y =1的右焦点F 作直线l 交双曲线于A 、B 两点,若|AB|=4,这样的直线 有 ( )A .1条B .2条C .3条D .4条 8.双曲线3x 2-y 2=3的渐近线方程是( )A .y =±3xB .y =±31xC .y =±3xD .y =±33x 9.双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为 ( )A .3B .26C .36 D .33 10.设双曲线12222=-by a x (0<a <b )的半焦距为c ,直线l 过(a ,0),(0,b )两点,已知原点到直线l 的距离为43c ,则双曲线的离心率为 ( )A .2B .3C .2D .332 二、填空题(本大题共4小题,每小题6分,共24分)11.11422=-+-t y t x 表示双曲线,则实数t 的取值范围是 .12.双曲线191622-=-y x 的准线方程是 . 13.焦点为F 1(-4,0)和F 2(4,0),离心率为2的双曲线的方程是 .14.设圆过双曲线116922=-y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是 . 三、解答题(本大题共6小题,共76分)15.已知双曲线与椭圆1244922=+y x 共焦点,且以x y 34±=为渐近线,求双曲线方程.(12分)16.双曲线的中心在原点,焦点在x 轴上,两准线间距离为29,并且与直线)4(31-=x y 相交所得弦的中点的横坐标是32-,求这个双曲线方程.(12分)17.某电厂冷却塔的外形是如图所示双曲线的一部分绕其中轴(即双曲线的虚轴)旋转所成的曲面,其中A 、A ′是双曲线的顶点,C 、C ′是冷却塔上口直径的两个端点,B 、B ′是下底直径的两个端点,已知AA ′=14m ,CC ′=18m ,BB ′=22m ,塔高20m .建立坐标系并写出该双曲线方程.(12分)18.F 1、F 2是116922=-x y 双曲线的两个焦点,M 是双曲线上一点,且3221=⋅MF MF ,求三角形△F 1MF 2的面积.(12分)A A'BB'C'C 20m14m18m 22m19.一炮弹在A处的东偏北60°的某处爆炸,在A处测到爆炸信号的时间比在B处早4秒,已知A在B的正东方、相距6千米, P为爆炸地点,(该信号的传播速度为每秒1千米)求A、P两地的距离.(14分)20.如图,已知梯形ABCD中|AB|=2|CD|,点E分有向线段−→−AC所成的比为118,双曲线过C、D、E三点,且以A、B为焦点.求双曲线的离心率.(14分)参考答案A BED CA A'BB'C'COxy一.选择题(本大题共10小题,每小题5分,共50分)二.填空题(本大题共4小题,每小题6分,共24分)11.t>4或t<1 12.y = 59± 13.112422=-y x 14.316三、解答题(本大题共6题,共76分)15.(12分) [解析]:由椭圆1244922=+y x 5=⇒c .设双曲线方程为12222=-b y a x ,则⎪⎩⎪⎨⎧=+±=253422b a a b ⎪⎩⎪⎨⎧==⇒16922b a 故所求双曲线方程为116922=-y x16.(12分) [解析]:设双曲线方程为12222=-by a x (a >0,b>0), ∵两准线间距离为29,∴c a 22⋅=29,得=2a 49c ,c c b 4922-= ①∵双曲线与直线相交,由方程组⎪⎪⎩⎪⎪⎨⎧-==-)4(3112222x y b y a x 得0)916(98)9(222222=+-+-a b x a x a b , 由题意可知0922≠-a b ,且32)9(298222221-=--=+a b ax x 2297b a =⇒ ② 联立①②解得:92=a ,72=b 所以双曲线方程为17922=-y x .17.(12分) [解析]:(I )如图建立直角坐标系xOy ,AA ′在x 轴上,AA ′的中点为坐标原点O ,CC ′与BB ′平行于x 轴. 设双曲线方程为),0,0(12222>>=-b a bya x 则.721='=A A a 又设B (11,y 1),C (9,y 2),因为点B 、C 在双曲线上,所以有,171122122=-by ① ,17922222=-by ② 由题意知.2012=-y y ③ 由①、②、③得.27,8,1221==-=b y y 故双曲线方程为.1984922=-y x 18.(12分) [解析]:由题意可得双曲线的两个焦点是F 1(0,-5)、F 2(0,5), 由双曲线定义得:621=-MF MF ,联立3221=⋅MF MF 得21MF +22MF =100=221F F , 所以△F 1MF 2是直角三角形,从而其面积为S =162121=⋅MF MF 19.(14分) [解析]:以直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,则A (3,0)、B (-3,0)3,5,2614||||===∴<⨯=-c b a PA PB15422=-∴y x P 是双曲线右支上的一点 ∵P 在A 的东偏北60°方向,∴360tan == AP k .∴线段AP 所在的直线方程为)3(3-=x y解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-==-0)3(315422y x x y yx ⎩⎨⎧==358y x 得 , 即P 点的坐标为(8,35) ∴A 、P 两地的距离为22)350()83(-+-=AP =10(千米).20.(14分) [解析]:如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系,则CD ⊥Oy .由题意可设A (-c ,0),C (2c ,h ),B (c ,0),其中c 为双曲线的半焦距,AB c 21=,h 是梯形的高. 由定比分点公式,得点E 的坐标为 c c c x E 19711812118-=+⨯+-=,h hy E 19811811180=+⨯+=.设双曲线的方程为12222=-b y a x ,由离心率a c e =. 由点C 、E 在双曲线上,得 ⎪⎪⎩⎪⎪⎨⎧=⋅-⋅=-⋅.136********,14122222222b h a c b h a c 由①得1412222-⋅=a c b h ,代入②得922=ac 所以离心率322==ac eO x yA B E D C ① ②。

高考数学《双曲线》专题检测试卷(含答案)

高考数学《双曲线》专题检测试卷(含答案)

高考数学《双曲线》专题检测试卷一、单项选择题(共8小题,每小题5分,共40分)1.过点()1,2P -的直线与双曲线2214x y -=的公共点只有1个,则满足条件的直线有()A .2条B .3条C .4条D .5条2.双曲线E :2213y x -=的左,右顶点分别为,A B ,曲线E 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则mn =()A .3B .3-C .13D .13-3.双曲线222:1(0)y C x a a-=>的上焦点2F 到双曲线一条渐近线的距离为2a ,则双曲线两条渐近线的斜率之积为()A .4-B .4C .2-D .24.若双曲线2222:1(0,0)x y C a b a b-=>>,右焦点为F ,点E 的坐标为(,b c a b ,则直线OE (O 为坐标原点)与双曲线的交点个数为()A .0个B .1个C .2个D .不确定5.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,过焦点2F 且垂直于x 轴的弦为AB ,若190AF B ∠= ,则双曲线的离心率为()A .522B 1-C 1D .2226.已知双曲线C :221169x y -=的左,右焦点分别为1F ,2F ,过2F 的直线与双曲线C 的右支交于A ,B 两点,且6AB =,则1F AB 的周长为()A .20B .22C .28D .367.已知点P 是双曲线2211620x y -=右支上的一点,点A B 、分别是圆22(6)4x y ++=和圆22(6)1x y -+=上的点.则PA PB -的最小值为()A .3B .5C .7D .98.双曲线2222:1(0,0)y x a b a bΓ-=>>的两焦点分别为12,F F ,过2F 的直线与其一支交于A ,B两点,点B 在第四象限.以1F 为圆心,Γ的实轴长为半径的圆与线段11,AF BF 分别交于M ,N 两点,且12||3||,AM BN F B F B =⊥,则Γ的渐近线方程是()A.y =B.y x =C.y x =D.y x=二、多项选择题(共3小题,每小题6分,共18分)9.已知双曲线C :()2220mx y m -=>,左右焦点分别为12,F F ,若圆()2248x y -+=与双曲线C 的渐近线相切,则下列说法正确的是()A .双曲线C的离心率e =B .若1PF x ⊥轴,则1PF =C .若双曲线C 上一点P 满足122PF PF =,则12PF F的周长为4+D .存在双曲线C 上一点P ,使得点P 到C10.已知双曲线2222 :1(0)x y M a b a b-=>>的焦距为4,两条渐近线的夹角为60︒,则下列说法正确的是()A .MB .M 的标准方程为2212x y -=C .M的渐近线方程为y =D .直线20x y +-=经过M 的一个焦点11.已知椭圆22122:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为1e ,椭圆1C 的上顶点为M ,且12π6MF F =∠,双曲线2C 和椭圆1C 有相同的焦点,且双曲线2C 的离心率为2e ,P 为曲线1C 与2C 的一个公共点.若12π2F PF ∠=,则()A.21e e =B.12e e =C .221294e e +=D .22211e e -=三、填空题(共3小题,每小题5分,共15分)12.双曲线C :()222210,0x y a b a b-=>>的两个焦点为1F 、2F,点)A在双曲线C 上,且满足120AF AF ⋅=,则双曲线C 的标准方程为__________.13.已知双曲线1C :()22210y x b b-=>与椭圆2C:(2221x y a a +=>有公共的焦点1F ,2F ,且1C 与2C 在第一象限的交点为M ,若12MF F △的面积为1,则a 的值为__________.14.设1F 、2F 为双曲线Γ:()222109x ya a -=>左、右焦点,且Γ,若点M 在Γ的右支上,直线1F M 与Γ的左支相交于点N ,且2MF MN =,则1F N =__________.四、解答题(共5小题,共77分)15.设双曲线2222:1(0,0)x y a b a bΓ-=>>,斜率为1的直线l 与Γ交于,A B 两点,当l 过Γ的右焦点F 时,l 与Γ的一条渐近线交于点(P -.(1)求Γ的方程;(2)若l 过点(1,0)-,求||AB .16.已知双曲线()2222:10,0x y C a b a b-=>>的焦点到渐近线的距离为2(1)求双曲线C 的方程;(2)直线():1,0l y k x k =+>与双曲线C 有唯一的公共点,求k 的值.17.已知双曲线C :22221x y a b-=(0a >,0b >)的右顶点()1,0E ,斜率为1的直线交C 于M 、N 两点,且MN 中点()1,3Q .(1)求双曲线C 的方程;(2)证明:MEN 为直角三角形;(3)若过曲线C 上一点P 作直线与两条渐近线相交,交点为A ,B ,且分别在第一象限和第四象限,若AP PB λ= ,1,23λ⎡⎤∈⎢⎥⎣⎦,求AOB V 面积的取值范围.18.某高校的志愿者服务小组受“进博会”上人工智能展示项目的启发,会后决定开发一款“猫捉老鼠”的游戏.如下图:A 、B 两个信号源相距10米,O 是AB 的中点,过O 点的直线l 与直线AB 的夹角为45︒.机器猫在直线l 上运动,机器鼠的运动轨迹始终满足;接收到A 点的信号比接收到B 点的信号晚08v 秒(注:信号每秒传播0v 米).在时刻0t 时,测得机器鼠距离O 点为4米.(1)以O 为原点,直线AB 为x 轴建立平面直角坐标系(如图),求时刻0t 时机器鼠所在位置的坐标;(2)游戏设定:机器鼠在距离直线l 不超过1.5米的区域运动时,有“被抓”的风险.如果机器鼠保持目前的运动轨迹不变,是否有“被抓”风险?19.已知离心率为72的双曲线1C :()222210,0x y a b a b -=>>过椭圆2C :22143x y +=的左,右顶点A ,B .(1)求双曲线1C 的方程;(2)()()0000,0,0P x y x y >>是双曲线1C 上一点,直线AP ,BP 与椭圆2C 分别交于D ,E ,设直线DE 与x 轴交于(),0Q Q x ,且20102Q x x λλ⎛⎫=<< ⎪⎝⎭,记BDP △与ABD △的外接圆的面积分别为1S ,2S参考答案15.(1)2214y x -=(2)82316.(1)22124x y -=(2)k =2.17.(1)2213y x -=(2)证明略(3)⎦18.(1)(4,0)(2)没有“被抓”风险19.(1)22143x y -=(2)⎫+∞⎪⎪⎝⎭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双曲线期末复习单元测试题1.双曲线221102x y -=的焦距为( )A .B .C .D .2.“双曲线的方程为221916x y -=”是“双曲线的准线方程为95x =±”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则 m =( )A .1B .2C .3D .44.双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30o的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )ABCD .35.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为( )A .191622=-x yB .191622=-y xC .116922=-x yD .116922=-y x6.已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e ,则双曲线方程为( )A .22x a -224y a =1B .222215x y a a -=C .222214x y b b -=D .222215x y b b-=7.如果双曲线22142x y -=上一点P 到双曲线右焦点的距离是2,那么点P 到y 轴的距离是( )A .364 B .362 C .62 D .329.已知双曲线22:1916x y C -=的左右焦点分别为12,F F ,P 为C 的右支上一点,且212PF F F =,则12PF F ∆的面积等于( )A.24 B.36 C.48 D.96 11.设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A .1342222=-y xB .15132222=-y xC .1432222=-y x D .112132222=-y x12.P 为双曲线221916x y -=的右支上一点,M ,N 分别是圆22(5)4x y ++=和22(5)1x y -+=上的点,则PM PN -的最大值为( )A.6B.7C.8D.913.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是14.已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线方程为3y x =±,若顶点到渐近线的距离为1,则双曲线方程为 .15.过双曲线221916x y -=的右顶点为A ,右焦点为F 。

过点F 平行双曲线的一 条渐近线的直线与双曲线交于点B ,则△AFB 的面积为_______。

16.方程22142x y t t +=--所表示的曲线为C ,有下列命题: ①若曲线C 为椭圆,则24t <<;②若曲线C 为双曲线,则4t >或2t <; ③曲线C 不可能为圆;④若曲线C 表示焦点在y 上的双曲线,则4t >。

以上命题正确的是 。

(填上所有正确命题的序号)18.(本题满分12分)设双曲线1C 的方程为22221(0,0)x y a b a b-=>>,A 、B 为其左、右两个顶点,P 是双曲线1C 上的任一点,引,QB PB QA PA ⊥⊥,AQ 与BQ 相交于点Q 。

(1)求Q 点的轨迹方程;(2)设(1)中所求轨迹为2C ,1C 、2C 的离心率分别为1e 、2e ,当12e ≥时,求2e 的取值范围。

19.(本小题满分12分)如图,在以点O 为圆心,||4AB =为直径的半圆ADB 中,OD AB ⊥,P 是半圆弧上一点,30POB ∠=︒,曲线C 是满足||||||MA MB -为定值的动点M 的轨迹,且曲线C 过点P .(Ⅰ)建立适当的平面直角坐标系,求曲线C 的方程; (Ⅱ)设过点D 的直线l 与曲线C 相交于不同的两点E 、F . 若△OEF 的面积等于22,求直线l 的方程。

.20 (本小题满分12分)双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于,A B 两点.已知OA AB OB u u u r u u u r u u u r、、成等差数列,且BF u u u r 与FA u u u r同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.21.(本题满分12分)如图,F 为双曲线C :()222210,0x y a b a b-=>>的右焦点。

P 为双曲线C 右支上一点,且位于x 轴上方,M 为左准线上一点,O 为坐标原点。

已知四边形OFPM 为平行四边形,PF OF λ=。

(Ⅰ)写出双曲线C 的离心率e 与λ的关系式; (Ⅱ)当1λ=时,经过焦点F 且平行于OP 的直线交双曲线于A 、B 点,若12AB =,求此时的双曲线方程。

22.(本小题满分14分)已知双曲线222x y -=的右焦点为F ,过点F 的动直线与双曲线相交于A B ,两点,点C 的坐标是(10),.(I )证明CA CB ⋅u u u r u u u r为常数;(II )若动点M 满足CM CA CB CO =++u u u u r u u u r u u u r u u u r(其中O 为坐标原点),求点M 的轨迹方程.参考答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. D 解:由双曲线方程得22210,212==∴=a b c ,于是23,243==c c ,故选D。

2.A 解:“双曲线的方程为221916x y -=”⇒“双曲线的准线方程为95x =±” 但是“准线方程为95x =±” ⇒ “双曲线的方程221916x y -=”, 反例:2211882x y -=。

故选A 。

3.D 解:2221191(0),,3y m x m a b m-=>⇒==取顶点1(0,)3, 一条渐近线为30,mx y -=221|3|13925 4.59m m m -⨯=⇒+=∴=+Q 故选D。

4.B 解:如图在12Rt MF F V 中,121230,2MF F F F c ∠==o1243cos303c MF c ==o∴,222tan 3033MF c c =⋅=o124222333333a MF MF c c c =-=-=∴3c e a⇒==,故选B 。

5.A 解:由双曲线与曲线1492422=+y x 共焦点知焦点在y 轴上,可排除B 、D ,与曲线1643622=-y x 共渐近线可排除C ,故选A 。

6.C 解:5c e k a ==2225b k a ck a a b c ⎧=⎪⎪⎪⇒=⎨⎪+=⎪⎪⎩, 所以224a b =,故选C 。

7.A 解:由点P 到双曲线右焦点6,0)的距离是2知P 在双曲线右支上.又由双曲线的第二定义知点P 26,双曲线的右准线方程是26x = 故点P 到y 轴的距离是463.选A . 8.(理)B 解:2033,22a ex a e a a a c -=⨯->+Q 23520,e e ⇒--> 2e ∴>或13e <-(舍去),(2,],e ∴∈+∞故选B.(文)C 解:200a ex a x c -=+Q 20(1)a e x a c ⇒-=+2(1),a a e a c⇒+≥- 1111,a e c e∴-≤+=+2210,e e ⇒--≤1212,e ⇒≤≤+ 而双曲线的离心率1,e >21],e ∴∈故选C.9.C 解法一:∵双曲线22:1916x y C -=中3,4,5a b c === ∴()()125,0,5,0F F - ∵212PF F F = ∴12261016PF a PF =+=+= 作1PF 边上的高2AF ,则18AF = ∴2221086AF =-= ∴12PF F ∆的面积为12111664822PF PF ⋅=⨯⨯= 故选C 。

解法二:∵双曲线22:1916x y C -=中3,4,5a b c === ∴()()125,0,5,0F F -设()()000,0P x y x >,, 则由212PF F F =得()22200510x y -+=又∵P 为C 的右支上一点 ∴22001916x y -= ∴22001619x y ⎛⎫=- ⎪⎝⎭ ∴()220051611009x x ⎛⎫-+-= ⎪⎝⎭即20025908190x x +-=解得0215x =或03905x =-<(舍去) ∴2200211481611619595x y ⎡⎤⎛⎫⎛⎫=-=⨯-=⎢⎥ ⎪ ⎪⎝⎭⎢⎥⎝⎭⎣⎦ ∴12PF F ∆的面积为12011481048225F F y ⋅=⨯⨯= 故选C 。

10.C 221211222,(2)222S a b ab S c c ====g g g ,∴122222122S ab ab S c a b ==≤+,故选C 。

11.A 解:对于椭圆1C ,13,5a c ==,曲线2C 为双曲线,5,c =4a =,标准方程为:2222143x y -=。

故选A 。

12.B 解:设双曲线的两个焦点分别是F 1(-5,0)与F 2(5,0),则这两点正好是两圆的圆心,当且仅当点P 与M 、F 1三点共线以及P 与N 、F 2三点共线时所求的值最大,此时 |PM|-|PN|=(|PF 1|-2)-(|PF 2|-1)=10-1=9,故选B 。

二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上) 13 (,4)(1,)-∞-+∞U 解:(4)(1)0(4)(1)01,4k k k k k k +-<⇒+->⇒><-或。

14.223144x y -= 解:如图由题设1AP =,30AOP ∠=o2a OA ⇒==3232b ⇒=⨯=,所以双曲线方程为223144x y -=15.3215解:双曲线的右顶点坐标(3,0)A ,右焦点坐标 (5,0)F ,设一条渐近线方程为43y x =,建立方程组224(5)31916y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩,得交点纵坐标3215y =-,从而132********AFB S =⨯⨯=V 。

相关文档
最新文档