数列求通项公式典型例题及答案

合集下载

求数列通项公式练习题(有答案)

求数列通项公式练习题(有答案)

求数列通项公式练习题(有答案)1. 已知数列 a ₙ中, S ₙ是它的前n 项和。

S ₙ=3ⁿ,a ₙ=;【答案】 a n ={3,n =12×3n−1,n ≥2【解析】【分析】本题考查利用数列的前n 项和的式子求数列的通项公式,利用 a n ={S 1,n =1S n −S n−1n ≥2解决。

属基础题。

【解答】解: S n =3x |M|n =1B i ∗,a 1=S 1=32n ≥2R 1+,a n =S n −S n−1=3n −3n−1=2×3n−1x ₙ₋₁时不满足上式。

所以 a n ={3,n =12×3n−1,n ≥2 故答案为 a n ={3,n =12×3n−1,n ≥22. 若数列(a ₙ)的首项(a ₁=2. 11 a n+1=3a n +2(n ∈N ∗).令人一kg/d ɑ,+1). 则 b n +b 2+b 3++b 300=¯. 【答案】5050【解析】 【分析】本题考查数列的选择公司,考查等比数列,等差数列的性质,属于中档题。

推导出 a ₙ+1是首项为3,公比为3的等比数列,从而得 b ₙ=log₂3ⁿ=n,由此能求出 b 1+b 2+b 3+⋯+b 100【解答】解: ∵数列{a ₙ}的首项a ₁=2. 且 a n+1=3a n +2(n ∈N ∗,Aa ₙ₊₁+1=3(a ₙ+1),a₁+1=3−3,a ₙ₊₁A.[a ₙ+1]是首项为3,公比为3的等比数列。

xa ₙ+1=3′,∴b₁₄=log₂₇(a ₙ+1)=log₂₂3¹¹=n!,ab 1+b 2+b 3++b 100=1+2+3++10 =100(100+1)2=505C.故答案为5050.3. 若数列{a ₙ}满足: a 1=12,a n+1=n+12n a n (n ∈N ∗)所[a ₙ]的通项公式 a ₙ=.【答案】:【解析】【分析】本道试题主要是考查了数列的遥推公式的应用,还考查了等比数列的通项公式的应用。

数列求通项的七种方法及例题

数列求通项的七种方法及例题

数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。

例如:已知数列{an}中,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。

例如:已知数列{an}中,S2=6,S4=20,求a3。

答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。

例如:已知数列{an}为等差数列,a1=2,d=4,求a5。

答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。

例如:已知数列{an}为等比数列,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。

例如:已知数列{an}中,S4=20,求a3。

答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。

例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。

答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。

求数列通项公式(含答案)

求数列通项公式(含答案)

1.已知数列{}n a 满足)2(3,1111≥+==--n a a a n n n ,证明213-=n n a2.已知数列{}n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.3.设{}n a 是首项为1的正项数列,且2211(1)0(1,2,3....)n n n n n a na a a n +++-+==,求通项公式。

4.已知11n n a na n +=+-,11a >-,求数列{}n a 的通项公式。

5.已知数列{}n a 中,,2121,211+==+n n a a a 求通项n a .6.在数列{}n a 中,11a =,a 1=1,132n n a a n +=+求通项n a .7.在数列{}n a 中,231=a ,1263n n a a n --=-求通项n a8.设0a 为常数,且1132()n n n a a n N +-=-∈。

求通项n a 。

9.已知数列{}n a 中,12a =,11(2)21n n n a a n a --=≥+,求通项公式n a 。

10.已知数列{}n a 的前n 项和为①22n S n n =-;②21n S n n =++,分别求数列{}n a 的通项公式。

11.已知数列{}n a 的首项11a =,前n 项和n S 满足关系式13(23)3n n tS t S t --+=(t 为常数且t>0,n=2,3,4…)(1)求证:数列{}n a 是等比数列;(2)设数列{}n a 的公比为()f t ,作数列{}n b ,使11b =,11()n n b f b -=(2,)n n N *≥∈,求n b 。

12.数列{}n a 的前n 项和记为n S ,已知).3,2,1(2,111 =+==+n S n n a a n n 证明n S n ⎧⎫⎨⎬⎩⎭是等比数列1.证明:由已知得:113n n n a a ---=,故123133312n n n ---++++=。

数列通项公式的完整求法,还有例题详解

数列通项公式的完整求法,还有例题详解

一.不雅察法例1:依据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,…(2) ,17164,1093,542,211(3) ,52,21,32,1(4) ,54,43,32,21-- 解:(1)变形为:101-1,102―1,103―1,104―1,……∴通项公式为:110-=n n a(2);122++=n n n a n(3);12+=n a n (4)1)1(1+⋅-=+n na n n .点评:症结是找出各项与项数n的关系.二.公式法:当已知前提中有a n 和s n 的递推关系时,往往运用公式:a n =1*1(1)(2,)n n s n s s n n N -=⎧⎪⎨-≥∈⎪⎩来求数列的通项公式. 例1: 已知数列{a n }是公役为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),(1)求数列{ a n }和{ b n }的通项公式;解:(1)∵a 1=f (d -1) = (d -2)2,a 3 = f (d +1)= d 2,∴a 3-a 1=d 2-(d -2)2=2d ,∴d =2,∴a n =a 1+(n -1)d = 2(n -1);又b 1= f (q +1)= q 2,b 3 =f (q -1)=(q -2)2,∴2213)2(q q b b -==q 2,由q ∈R ,且q ≠1,得q =-2,∴b n =b ·qn -1=4·(-2)n -1例2. 等差数列{}n a 是递减数列,且432a a a ⋅⋅=48,432a a a ++=12,则数列的通项公式是( )(A)122-=n a n (B)42+=n a n (C)122+-=n a n(D)102+-=n a n解析:设等差数列的公役位d,由已知⎩⎨⎧==+⋅⋅+12348)()(3333a d a a d a ,解得⎩⎨⎧±==243d a ,又{}n a 是递减数列,∴2-=d ,81=a ,∴=--+=)2)(1(8n a n 102+-n ,故选(D).例 3. 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n na ab ,求数列{}n b 的通项公式.解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b ,∴)1()1(1+=⋅+=-q q q q q b n n n点评:当已知数列为等差或等比数列时,可直接运用等差或等比数列的通项公式,只需求得首项及公役公比.例4: 已知无限数列{}n a 的前n 项和为n S ,并且*1()n n a S n N +=∈,求{}n a 的通项公式?【解析】:1n n S a =-,∴111n n n n n a S S a a +++=-=-,∴112n n a a +=,又112a =, ∴12nn a ⎛⎫= ⎪⎝⎭.反思:运用相干数列{}n a 与{}n S 的关系:11a S =,1n n n a S S -=-(2)n ≥与提设前提,树立递推关系,是本题求解的症结.{}n a 的前n 项和n S ,知足关系()1lg nS n +=(1,2)n =⋅⋅⋅.试证数列{}n a 是等比数列.例5:已知数列{}n a 前n 项的和为s n =23a n -3,求这个数列的通项公式.剖析:用a n 调换s n -s 1-n (n ≥2)得到数列项与项的递推关系来求.解: a 1=23a 1-3, ∴ a 1=6s n =23a n -3 (n ∈N *) ① ∴s 1-n =23a 1-n -3 (n ≥2且n ∈N *) ②①- ②得:a n =23a n -23a 1-n∴21 a n =23a 1-n ,即1-n n a a =3(n ≥2且n ∈N *) ∴数列{}na 是以a 1=6,公比q 为3的等比数列. ∴a n=a 1q 1-n =6⨯31-n =2⨯3n.例6:已知正项数列{}n a 中,s n =21(a n +na 1),求数列{}n a 的通项公式.剖析:用s n -s 1-n (n ≥2)调换a n 得到数列n s 与1n s -的递推关系来求较易.解 s n =21(a n +na 1),∴a 1=21( a 1+11a )∴ a 1=1又a n = s n -s 1-n (n ≥2且n ∈N *)∴ s n =21(s n -s 1-n +1n s 1--n s )∴2s n =s n -s 1-n +1n s 1--n s∴sn+s 1-n =1n s 1--n s∴ s n2-s 1-n 2=1 (n ≥2且n ∈N *)∴数列{}2n s 是以a 21=1为首项,公役为1的等差数列. ∴ s n 2=1+(n -1)⨯1=n,即s n=n ,当n ≥2时,s n -s 1-n =a n =n -1-n 将n =1代入上式得a n =n -1-n演习:数列{}n a 前n 项和为n S ,已知n a =5n S -3(*n N ∈),求n a 三.累加法:求形如1n a +=n a +f(n)的递推数列的通项公式的根本办法.(个中f(n)能求前n 项和即可)运用1211()()n n n a a a a a a -=+-+⋅⋅⋅-求通项公式的办法称为累加法.累加法是求型如1()n n a a f n +=+的递推数列通项公式的根本办法(()f n 可求前n 项和).例1.已知数列{}n a 中,1129,21,(2,*)n n a a a n n n N -==+-≥∈,求这个数列的通项公式.剖析:由已知121n n a a n -=+-,得121n n a a n --=-,留意到数列{}n a 的递推公式的情势与等差数列的递推公式相似,因而,可累加法求数列的通项.解:数列{}n a 中,1129,21,(2,*)n n a a a n n n N -==+-≥∈,可得:以上各式相加,将n =1代入上式得228n a n =+演习:已知数列{}n a 中,113,2,(*)n n n a a a n N ==+∈+,求n a例2:已知数列6,9,14,21,30,…求此数列的一个通项. 解易知,121-=--n a a n n ∵,312=-a a ,523=-a a ,734=-a a ……,121-=--n a a n n各式相加得)12(7531-++++=-n a a n ∴)(52N n n a n ∈+=点评:一般地,对于型如)(1n f a a n n +=+类的通项公式,只要)()2()1(n f f f +++ 能进行乞降,则宜采取此办法求解.例3. 若在数列{}n a 中,31=a ,n a a n n +=+1,求通项n a . 解析:由na a n n +=+1得na a n n =-+1,所以11-=--n a a n n ,221-=---n a a n n ,…,112=-a a ,将以上各式相加得:1)2()1(1+⋅⋅⋅+-+-=-n n a a n ,又31=a 所以n a =32)1(+-n n例4已知无限数列{}n a 的的通项公式是12nn a ⎛⎫= ⎪⎝⎭,若数列{}n b 知足11b =,(1)n ≥,求数列{}n b 的通项公式.【解析】:11b =,112nn n b b +⎛⎫-= ⎪⎝⎭(1)n ≥,∴1211()()n n n b b b b b b -=+-+⋅⋅⋅-=1+12+⋅⋅+112n -⎛⎫⎪⎝⎭=1122n -⎛⎫- ⎪⎝⎭.反思:用累加法求通项公式的症结是将递推公式变形为1()n n a a f n +=+.112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.3.累乘法:求形如1n a +=g(n)n a 的递推数列通项公式的根本办法.(个中g(n)可求前n 项 积即可).运用恒等式321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥求通项公式的办法称为累乘法,累乘法是求型如: 1()n n a g n a +=的递推数列通项公式的根本办法(数列()g n 可求前n 项积). 例1.若知足111,(*),1n n a na n N a n +==∈+求这个数列的通项公式. 剖析:由11n na n a n +=+知数列{}n a 不是等比数列,但其递推公式的情势与等比数列递推公式相似,因而,可累加法求数列的通项.解: 111,(*),1n n a na n N a n +==∈+ 以上各式相乘得:11231...234n a n a n -=⨯⨯⨯⨯1n a n∴=(2)n ≥∈*且n N将n =1代入上式得1n a n=变式演习:设{}n a 是首项为1的正数构成的数列,且2211(1)0(12)n n n n n a na a a n +++-+==,,…,则它的通项公式为n a =. 例2:在数列{n a }中,1a =1, (n+1)·1+n a =n ·n a ,求n a 的表达式.解:由(n+1)·1+n a =n ·n a 得11+=+n n a a n n ,1a an =12a a ·23a a ·34a a …1-n n a a =n n n 11433221=-⋅⋅ 所以n a n 1=例3 已知数列{}n a 中,311=a ,前n 项和n S 与n a 的关系是n n a n n S )12(-= ,试求通项公式n a .解析:起首由n n a n n S )12(-=易求的递推公式:1232,)32()12(11+-=∴-=+--n n a a a n a n n n n n 5112521221=--=∴--a a n n a a n n 将上面n —1个等式相乘得:点评:一般地,对于型如1+n a =f (n)·n a 类的通项公式,当)()2()1(n f f f ⋅⋅ 的值可以求得时,宜采取此办法.例四 已知11a =,1()n n n a n a a +=-*()n N ∈,求数列{}n a 通项公式. 【解析】:1()n n n a n a a +=-,∴11n n a n a n++=,又有321121(0,2)n n n n a a a a a a n a a a -=⋅⋅⋅≠≥= 1×23n×××12n-1⋅⋅⋅=n ,当1n =时11a =,知足n a n =,∴n a n =. 反思: 用累乘法求通项公式的症结是将递推公式变形为1()n n a g n a +=.{}n a 知足11a =,123123(1)(2)n n a a a a n a n -=+++⋅⋅⋅+-≥.则{}n a 的通项公式是.4.结构新数列:经由过程变换递推关系,可将非等差数列或等比数列转化为等差或等比数列而求得通项公式的办法.(待定系数法)例题5:已知数列{}n a 中知足11a =,*123()n n a a n N +=-∈,求数列{}n a 的通项公式.剖析:将一阶线性递推关系形如1(0,1)n n a Aa B A B A B +=+≠≠、为常数,可转化为111(),111n n n n Ba B B A a A a A B A A a A +++-+=+=--+-即的一个新的等比数列或消常数项转化为212111()n n n n n n n na aa a A a a A a a ++++++--=-=-,即的一个等比数列.解法1:数列{}n a 中11=a ,321-=+n n a a (n 1≥)∴数列{}331--+n n a a 是以首项231-=-a ,公比为2的等比数列解法2: 数列{}n a 中11=a ,321-=+n n a a ① ∴3212-=++n n a a ②②-①得)(=-n n n n a a a a -++122又 21231a a =-=-∴数列{}1n n a a --是以首项212,a a -=-公比为2的等比数列∴11122,2n n n n n n a a a a ----⨯-=-=-即,(再运用累加法可求数列的通项公式,以下解法略)可求得()*23n n a n N =-∈+ (倒数法)例题6:已知数列{}n a 中知足11a =,131nn n a a a +=+,求数列的通项n a .剖析:可将形如一阶分式递推公式1nn n Ca a Aa B+=+,(A.B.C 为知足前提的常数),等式双方取倒数得:111.n n B Aa C a C+=+,又可运用求形如1''n n a A a B +=+(A ’.B ’为常数)的办法来求数列的通项.解:数列 {}n a 中, 11a =,131n n n aa a +=+∴1113n n a a +=+,即1113n na a +-= ∴数列1n a ⎧⎫⎨⎬⎩⎭是以111,a =公役为3的等差数列.变式演习:知数列{}n a 中知足11a =,1231nn n a a a +=+,求数列的通项.例题7:已知数列{}n a 中知足11a =,122(n n n a a n N ++=+∈),求数列{}n a 的通项公式.剖析:形如递推公式1.(1,1)n n n a q a d q d d +=+≠≠、为非零常数,q 可转化为111.n n n n a a q d d d d ++=+,若令nnn a b d =,则转化为形如1.(n n a A a B A B +=+、为常数)的办法来求数列的通项.(提醒:将122(n n n a a n N ++=+∈)转化为111222n n n n a a ++-=,解法略.)别的,数列通项求法还稀有学归纳猜测法,可以先求出数列的前n 项,然后不雅察前n 项的纪律,再进行归纳.猜测出通项,最后予以证实,例如:数列{}n a 知足a 1=4,n a =4-14n a -(n ≥2),求n a (理科请求,解略);还有对数变换法,例如:形如1(0,0,01)p n n na Ca a Cpp +=≠且可转化为1lg lg lg n n a p a C +=+问题解决;当然还有特点方程法等等. 六.待定系数法:例10:设数列}{n c 的各项是一个等差数列与一个等比数列对应项的和,若c 1=2,c 2=4,c 3=7,c 4=12,求通项公式c n解:设1)1(-+-+=n n bq d n a c 132211121237242-+=⇒⎪⎪⎩⎪⎪⎨⎧=====⎪⎪⎩⎪⎪⎨⎧=++=++=++=+∴n n n c a b d q bq d a bq d a bq d a b a 例11.已知数列{}n c 中,b b c +=11,bbc b c n n ++⋅=-11,个中b 是与n 无关的常数,且1±≠b .求出用n 和b 暗示的a n 的关系式.解析:递推公式必定可暗示为)(1λλ-=--n n c b c 的情势.由待定系数法知:bbb ++=1λλ 故数列⎭⎬⎫⎩⎨⎧--21b b c n 是首项为112221-=--b b b b c ,公比为b 的等比数列,故111121211222--=∴-=-=--++-b b b c b b b b b b b c n n n n n点评:用待定系数法解题时,常先假定通项公式或前n 项和公式为某一多项式,一般地,若数列}{n a 为等差数列:则c bn a n +=,cn bn s n +=2(b.c为常数),若数列}{n a 为等比数列,则1-=n n Aq a ,)1,0(≠≠-=q Aq A Aq s n n .七.帮助数列法例12:已知数}{n a 的递推关系为121+=+n n a a ,且11=a 求通项n a .解:∵121+=+n n a a ∴)1(211+=++n n a a 令1+=n n a b 则帮助数列}{n b 是公比为2的等比数列∴11-=n n q b b 即n n n q a a 2)1(111=+=+-∴12-=n n a例13:在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a . 解析:在n n n a a a 313212+=++双方减去1+n a ,得)(31112n n n n a a a a --=-+++ ∴{}n n a a -+1是认为112=-a a 首项,认为31-公比的等比数列,∴11)31(-+-=-n n n a a ,由累加法得na =112211)()()(a a a a a a a n n n n +-+⋅⋅⋅+-+---- =+--2)31(n +--3)31(n …11)31(++-=311)31(11+---n =1])31(1[431+---n = 1)31(4347---n 例14: 已知数列{n a }中11=a 且11+=+n nn a a a (N n ∈),,求数列的通项公式.解:∵11+=+n n n a a a ∴11111+=+=+n n n n a a a a , 设nn a b 1=,则11+=+n n b b故{n b }是认为1111==a b 首项,1为公役的等差数列 ∴n n b n =-+=)1(1∴nb a n n 11==点评:这种办法相似于换元法, 重要用于已知递推关系式求通项公式.五 结构新数列: 类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,运用累加法(逐差相加法)求解.例1:已知数列{}n a 知足211=a ,nn a a n n ++=+211,求n a .解:由前提知:111)1(1121+-=+=+=-+n n n n n n a a n n分离令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(nn --+⋅⋅⋅⋅⋅⋅+-+-+-= 所以n a a n 111-=-211=a ,nn a n 1231121-=-+=∴类型2 n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,运用累乘法(逐商相乘法)求解.例2:已知数列{}n a 知足321=a ,n n a n na 11+=+,求n a . 解:由前提知11+=+n na a n n ,分离令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n个等式累乘之,即1342312-•⋅⋅⋅⋅⋅⋅•••n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,na n 32=∴ 例3:已知31=a ,n n a n n a 23131+-=+)1(≥n ,求n a .解:123132231232)2(31)2(32)1(31)1(3a n n n n a n +-•+⨯-⨯•⋅⋅⋅•+---•+---=3437526331348531n n n n n --=⋅⋅⋅⋅=---.变式:(2004,全国I,)已知数列{a n },知足a 1=1,1321)1(32--+⋅⋅⋅+++=n n a n a a a a (n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 解:由已知,得n n n na a n a a a a +-+⋅⋅⋅+++=-+13211)1(32,用此式减去已知式,得当2≥n 时,n n n na a a =-+1,即n n a n a )1(1+=+,又112==a a ,n a a a aa a a a a n n =⋅⋅⋅====∴-13423121,,4,3,1,1,将以上n 个式子相乘,得2!n a n =)2(≥n 类型3 q pa a n n +=+1(个中p,q 均为常数,)0)1((≠-p pq ).解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,个中pqt -=1,再运用换元法转化为等比数列求解. 例4:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .解:设递推公式321+=+n n a a 可以转化为)(21t a t a n n -=-+即321-=⇒-=+t t a a n n .故递推公式为)3(231+=++n n a a ,令3+=n n a b ,则4311=+=a b ,且23311=++=++n n n n a a b b .所所以{}n b 认为41=b 首项,2为公比的等比数列,则11224+-=⨯=n n n b ,所以321-=+n n a . 变式:(2006,重庆,文,14)在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________(key:321-=+n n a )类型 4 n n n q pa a +=+1(个中p,q 均为常数,)0)1)(1((≠--q p pq ). (或1n n n a pa rq +=+,个中p,q, r 均为常数) .解法:一般地,要先在原递推公式双方同除以1+n q ,得:q q a q p q a n n n n 111+•=++引入帮助数列{}n b (个中nnnq a b =),得:qb q pb n n 11+=+再待定系数法解决.例5:已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a .解:在11)21(31+++=n n n a a 双方乘以12+n 得:1)2(32211+•=•++n n n n a a令n n n a b •=2,则1321+=+n n b b ,解之得:n n b )32(23-= 所以nn nn n b a )31(2)21(32-== 类型5 递推公式为n n n qa pa a +=++12(个中p,q 均为常数).解 (特点根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特点方程. 若21,x x 是特点方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,个中A,B 由βα==21,a a 决议(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A.B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,个中A,B 由βα==21,a a 决议(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A.B 的方程组).例6: 数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求n a 解(特点根法):的特点方程是:02532=+-x x .32,121==x x ,∴1211--+=n n n Bx Ax a 1)32(-⋅+=n B A .又由b a a a ==21,,于是⎩⎨⎧-=-=⇒⎪⎩⎪⎨⎧+=+=)(32332b a B a b A B A b BA a 故1)32)((323--+-=n nb a a b a 演习:已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a .1731:()443n n key a -=--. 变式:(2006,福建,文,22)已知数列{}n a 知足*12211,3,32().n n n a a a a a n N ++===-∈求数列{}n a 的通项公式;(I )解: 112211()()...()n n n n n a a a a a a a a ---∴=-+-++-+ 类型6 递推公式为n S 与n a 的关系式.(或()n n S f a =)解法:运用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n nn 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解.例7:数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2214---=n n n a S 得:111214-++--=n n n a S于是)2121()(1211--++-+-=-n n n n n n a a S S所以11121-+++-=n n n n a a a nnn a a 21211+=⇒+.(2)运用类型4(n n n q pa a +=+1(个中p,q 均为常数,)0)1)(1((≠--q p pq ))的办法,上式双方同乘以12+n 得:22211+=++n n n n a a由1214121111=⇒--==-a a S a .于是数列{}n na 2是以2为首项,2为公役的等差数列,所以n n a n n 2)1(222=-+=12-=⇒n n na归纳法:。

数列的十种典型递推式

数列的十种典型递推式

1 十大递推数列求通项: (1)等差数列:a n =a n-1+d例1:已知:数列{a n }中a 1=1,a n =a n-1+3,(n ≥2).求a n 的通项公式。

答a n =3n-2. (2)等比数列: a n =a n-1q例2:已知:数列{a n }中a 1=1,a n =2a n-1,(n ≥2).求a n 的通项公式。

答a n =12-n .(3)似等差数列: a n =a n-1+f(n) 用叠加法。

例3:已知:数列{a n }中a 1=1,a n =a n-1+3n+1,(n ≥2).求a n 的通项公式。

答a n =265n 3n 2-+.(4)线性数列: a n =pa n-1+q 构造等比数列。

例4:已知:数列{a n }中a 1=3,a n =2a n-1-1,(n ≥2).求a n 的通项公式。

答a n =12+n.(5) 似等比数列: a n =a n-1f(n) 叠乘法。

例5:已知:数列{a n }中a 1=3,a n =na n-1,(n ≥2).求a n 的通项公式。

答a n =3n !.(6)三项递推: a n =pa n-1+qa n-2 设a n+1-xa n =y(a n -xa n-1),构造一个或二个等比数列再通过等差数列或解方程组求出。

例6:已知:数列{a n }中a 1=1,a 2=3,a n =3a n-1-2a n-2,(n ≥3).求a n 的通项公式。

答a n =2n -1. 例7:已知:数列{a n }中a 1=1,a 2=3,a n =4a n-1-4a n-2,(n ≥3).求a n 的通项公式。

答a n =(n+1)2n-2. 例8:已知:数列{a n }中a 1=1,a 2=4,a n =4a n-1-4a n-2,(n ≥3).求a n 的通项公式。

答a n =n2n-1.例9:已知:数列{a n }中a 1=2,a 2=3,a n =5a n-1-6a n-2,(n ≥3).求a n 的通项公式。

数列求通项公式练习题及答案

数列求通项公式练习题及答案

数列求通项公式练习题及答案练题
1. 求等差数列的通项公式,已知公差为3,首项为5。

2. 求等差数列的通项公式,已知首项为2,末项为20,公差为2。

3. 求等差数列的通项公式,已知首项为10,公差为-2,求第6项。

4. 求等差数列的通项公式,已知首项为1,公差为0.5,求第10项。

5. 求等差数列的通项公式,已知首项为3,公差为-1/2,求第8项。

答案
1. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
公差为3,首项为5,代入公式得:$a_n = 5 + (n-1) \cdot 3$
2. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
首项为2,末项为20,公差为2,代入公式得:$20 = 2 + (n-1) \cdot 2$
化简为:$18 = (n-1) \cdot 2$
3. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
首项为10,公差为-2,求第6项,代入公式得:$a_6 = 10 + (6-1) \cdot -2$
4. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
首项为1,公差为0.5,求第10项,代入公式得:$a_{10} = 1 + (10-1) \cdot 0.5$
5. 等差数列的通项公式为:$a_n = a_1 + (n-1) \cdot d$
首项为3,公差为$-\frac{1}{2}$,求第8项,代入公式得:$a_8 = 3 + (8-1) \cdot -\frac{1}{2}$
以上是数列求通项公式练习题及答案。

数列求通项公式常用方法与典型题目(附答案)

数列求通项公式常用方法与典型题目(附答案)

数列求通项公式常用方法与典型题目(附答案)(一)题型一累加法1.数列{}n a 中,11a =,()12,nn n a a n n n N --=≥∈,则na=___________.2.已知数列{}n a 满足112a =,121n n a a n n+=++,则n a =__________.3.如果数列{}n a 满足:()1111,22n n n a a a n --=-=≥,则n a =()A .121n +-B .1(1)21n n --⋅+C .21n -D .12n -4.在数列{}n a 中,10a =,11ln 1n n a a n +⎛⎫=++ ⎪⎝⎭,则{}n a 的通项公式为().A .ln n a n =B .()()1ln 1n a n n =-+C .ln n a n n=D .ln 2n a n n =+-5.设数列{}n a 中,112,1+==++n n a a a n ,则通项n a =___________.6.已知数列{}n a 满足10a =,12n n a a n +=+,则2018a =()A .20182019⨯B .20172018⨯C .20162017⨯D .20182018⨯(二)题型二累乘法1.已知数列{}n a 满足11a =,()12311111231n n a a a a a n n -=+++⋅⋅⋅+>-.数列{}n a 的通项公式是______.2.已知11a =,()()1n n n a n a a n N ++=-∈,则数列{}n a 的通项公式是()A .21n -B .11n n n -+⎛⎫ ⎪⎝⎭C .2n D .n3.已知12a =,12nn n a a +=,则数列{}n a 的通项公式n a 等于()A .2122n n -+B .2122n n ++C .2222n n -+D .2222n n --4.在数列{}n a 中,11a =,()32122223n n a a a a a n n*++++=∈N ,则n a =______.(三)题型三公式法1.数列{a n }的前n 项和为S n ,若()11,1,31n n a a S n +=≥=则n a =____________.2.数列{}n a 满足,123231111212222n n a a a a n ++++=+ ,写出数列{}n a 的通项公式__________.3.已知数列{a n }的前n 项和S n =n 2+n ,则a n =_____.4.若数列的前n 项和2133n n S a =+,则的通项公式是n a =________5.数列{}n a 的前n 项和23nn S =+,则其通项公式n a =________.6.数列{}n a 的前n 项和210n S n n =-,则该数列的通项公式为__________.7.若数列{a n }的前n 项和为S n =23a n +13,则数列{a n }的通项公式是a n =______.8.已知n S 为数列{}n a 的前n 项和,若111,23n n a a S +==+,则数列{}n a 的通项公式为___________.9.已知数列{}n a 满足23123222241nnn a a a a ++++=- ,则{}n a 的通项公式___________________.10.数列{a n }满足()21*1232222n n na a a a n N -+++⋯+=∈,则a 1a 2a 3…a 10=()A .551(2B .1011()2-C .911()2-D .601()211.如果数列{}n a 的前n 项和为332n n S a =-,则这个数列的通项公式是()A .()221n a n n =++B .23nn a =⋅C .32nn a =⋅D .31n a n =+(四)题型四构造法1.数列{}n a 中,若11a =,()1231n n a a n +=+≥,则该数列的通项n a =()A .123n +-B .23n -C .23n +D .123n --2.已知数列{}n a 中,112,21n n a a a +==+则n a =___________.3.已知数列{}n a 满足11a =132n n a a +=+,则{}n a 的通项公式为__________________.(五)题型五倒数法1.在数列{n a }中,已知12a =,1122n n n a a a --=+,(2)n ≥,则n a 等于()A .21n +B .2n C .3nD .31n +2.若数列{}n a 满足11n n n a a a +=+,且123a =,则10a =___________.3.设数列{}n a 的前n 项和n S 满足11n n n n S S S S ++=⋅-()n N *∈,且11a=,则n a =_____.4.已知数列{}n a 满足12,a =11n n n n a a a a ++-=,那么31a 等于()A .130-B .261-C .358-D .259-5.已知数列{}n a 满足递推关系111,12n n n a a a a +==+,则2017a =()A .12016B .12018C .12017D .120196.若数列{}n a 满足1121n n n a a a --=+(2n ≥,*n N ∈),且112a =,则n a =()A .12nB .2n C .1122n +-D .222n +7.已知数列{}n a 满足11a =,()*11nn n a a n N a +=∈+,则2020a =()A .12018B .12019C .12020D .12021(六)题型六周期数列1.在数列{}n a 中,112a =,111n n a a -=-(2n ≥,n ∈+N ),则2020a =()A .12B .1C .1-D .22.已知数列{}n a 中,13=4a ,111n n a a -=-(,2n N n +∈≥),那么2020a 等于()A .13-B .34C .2D .43.已知数列{}n a 中,12213,6,n n n a a a a a ++===-,则2016a =()A .6B .6-C .3D .3-参考解析(一)题型一累加法1.()12n n +【解析】()112,1,nn n a a n n n Na -=≥=-∈ ,()()()112211n n n n n a a a a a a a a ---∴=-+-++-+ ()()()()112122n n n n n n +=+-+-++=≥ ,验证1n =时成立.()12n n n a +∴=.故答案为:()12n n +2.31,1,2n n N n*-≥∈【解析】因为121n n a a n n +=++,所以121111n n a a n n n n +-==-++,则当2,n n N *≥∈时,213211121123...111n n a a a a a a n n -⎧-=-⎪⎪⎪-=-⎪⎨⎪⎪⎪-=-⎪-⎩,将1n -个式子相加可得11111111...12231n a a n n n -=-+-++-=--,因为112a =,则1131122n a n n=-+=-,当1n =时,1311212a =-=符合题意,所以31,1,2n a n n N n *=-≥∈.故答案为:31,1,2n n N n*-≥∈.3.C 【解析】由题意可得,112n n n a a ---=,212a a ∴-=,2322a a -=,…112n n n a a ---=,以上1n -个式子相加可得,21122 (2)n n a a --=+++()12122212n n --==--,21n n a ∴=-,故选B .4.A 【解析】由已知得()11ln ln 1ln n n n a a n n n ++⎛⎫-==+- ⎪⎝⎭,所以()1ln ln 1n n a a n n --=--()()12ln 1ln 2n n a a n n ---=---32ln 3ln 2a a -=-21ln 2ln1a a -=-将上述1n -个式子相加,整理的1ln ln1ln n a a n n -=-=又因为10a =,所以ln n a n =.故选A .5.()112++n n 【解析】∵112,1+==++n n a a a n ∴()111n n a a n -=+-+,()1221n n a a n --=+-+,()2331n n a a n --=+-+,⋯,3221a a =++,2111a a =++,1211a ==+将以上各式相加得:()()()123211n a n n n n ⎡⎤=-+-+-+++++⎣⎦ ()()()()11111111222n n n nn n n n ⎡⎤--+-+⎣⎦=++=++=+故应填()112++n n ;6.B 【解析】 数列{}n a 满足10a =,12n n a a n +=+,∴12n n a a n +-=,∴()121n n a a n --=-,()1222n n a a n ---=-,()2323n n a a n ---=-,……212a a -=,累加得:()()()112123 (1212)n n n a a n n n --=++++-=⋅=-⎡⎤⎣⎦,又 10a =,∴()1n a n n =-,∴201820182017a =⋅.故选B .(二)题型二累乘法1.1,1,22n n a n n =⎧⎪=⎨≥⎪⎩【解析】1231111(1)231n n a a a a a n n -=++++>- ,11a =当2n =时,211a a ==当2n >时,112311111231n n n a a a a a a n n+-∴=+++++- ,两式相减得:11n n n a a a n +-=,即11n n n a a n++=,∴11n n a n a n++=,11n n a n a n -=-,1212n n a n a n ---=-,⋯3232a a =,累乘得:22n a n a =,所以2n na =,()2n >1,1,22n n a n n =⎧⎪∴=⎨≥⎪⎩,故答案为:1,1,22n n a nn =⎧⎪=⎨≥⎪⎩2.D 【解析】由()()1n n n a n a a n N ++=-∈得:()()11n n n a na n N +++=∈,即()11n n a n n N a n+++=∈,则11n n a n a n -=-,1212n n a n a n ---=-,2323n n a n a n ---=-,……..,2121a a =,由累乘法可得1na n a =,又因为11a =,所以n a n =.故选:D .3.C 【解析】1122nn n n n n a a a a ++=∴= 当n ≥2时,2212122112122222nn n n n n n n n a a a a a a a a -+-----=⋅⋅⋅⋅=⋅⋅⋅⋅= ,经检验,1a 也符合上述通项公式.本题选择C 选项.4.21n n +【解析】由题意得:当2n ≥时,()31211222231n n a a a a a n --++++=- ,所以12n n n a a a n-=-,即()2211n n na n a --=,也即是11+1n n n n n a a n --=,所以121+1221211n n n n n a n n n a a a n ---===-=-= ,所以21n n a n =+,故答案为:21nn +.(三)题型三公式法1.21,134,2n n n a n -=⎧=⎨⋅≥⎩.【解析】()13,1n n a S n N n ++=∈∴= 时,23,2a n =≥时,13n n a S -=,可得13n n n a a a +-=,即14,n n a a +=∴数列{}n a 从第二项起为等比数列,2n ≥时,=n a 234n -⋅,故答案为21,134,2n n n a n -=⎧=⎨⋅≥⎩.2.16,12,2n n n a n +=⎧=⎨≥⎩【解析】因为123231111212222n n a a a a n ++++=+ ,所以()12312311111121122222n n n n a a a a a n +++++++=++ ,两式相减得11122n n a ++=,即12,2n n a n +=≥,又1132a =,所以16a =,因此16,12,2n n n a n +=⎧=⎨≥⎩3.2n 【解析】由题,当1n =时,21112a =+=,当2n ≥时,()()1112nn n a S S n n n n n -=-=+--=.当1n =时也满足.故2n a n =.故答案为:2n4.()12n --【解析】当n =1时,1112133a S a ==+,解得11a =,当n ≥2时,1n n n a S S -=-121213333n n a a -⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭12233n n a a -=+,整理可得12313n n a a -=-,即12n n a a -=-,故数列{}n a 以1为首项,2-为公比的等比数列,所以()12n n a -=-,故答案为:()12n --.5.15,12,2n n n -=⎧⎨≥⎩【解析】当1n =时,11235a =S =+=;当2n ≥时,11123232n n n n n n a S S ---=-=+--=;故15,12,2n n n a n -=⎧=⎨≥⎩故答案为:15,12,2n n n -=⎧⎨≥⎩6.211n a n =-【解析】221110,11019,n S n n a S =-∴==-⨯=- 当2n ≥时()()221101101211,n n n a S S n n n n n -⎡⎤=-=-----=-⎣⎦当1n =时也适合,故211n a n =-.即答案为211n a n =-.7.1(2)n n a -=-;【解析】当n=1时,a 1=S 1=23a 1+13,解得a 1=1,当n≥2时,a n =S n -S n-1=(2133n a +)-(12133n a -+)=23n a -123n a -整理可得13a n =−23a n−1,即1n n a a -=-2,故数列{a n }是以1为首项,-2为公比的等比数列,故a n =1×(-2)n-1=(-2)n-1故答案为(-2)n-1.8.21,153,2n n n a n -=⎧=⎨⋅≥⎩【解析】n S Q 为数列{}n a 的前n 项和,111,23n n a a S +==+——①2n ≥时,123n n a S -=+——②①-②,得:12n n n a a a +=-,13n na a +∴=13n na a +∴=,21235a a =+= ,∴数列{}n a 的通项公式为21,153,2n n n a n -=⎧=⎨⋅≥⎩.故答案为:21,153,2n n n a n -=⎧=⎨⋅≥⎩.9.a n =3•2n ﹣2【解析】∵数列{a n }满足2a 1+22a 2+23a 3+…+2n a n =4n ﹣1,∴当n ≥2时,2n a n =(4n ﹣1)﹣(4n ﹣1﹣1),化为a n =3•2n ﹣2.当n =1时,2a 1=4﹣1,解得132a =,上式也成立.∴a n =3•2n ﹣2.故答案为a n =3•2n ﹣2.10.A 【解析】n =1时,a 1=12,∵211232222n n n a a a a -+++⋯+=,∴2n ≥时,22123112222n n n a a a a ---+++⋯+=,两式相减可得2n -1a n =12,∴12n n a =,n =1时,也满足∴12310a a a a = 55231012310111111222222++++⎛⎫⨯⨯⨯⨯== ⎪⎝⎭,故选A11.B 【解析】由332n n S a =-,当2n ≥时,1113333332222n n n n n n n a S S a a a a ---⎛⎫⎛⎫=-=---=- ⎪ ⎪⎝⎭⎝⎭,所以13nn a a -=,当1n =时,111332S a a ==-,此时16a =,所以,数列{}n a 是以6为首项,3为公比的等比数列,即16323n n n a -=⋅=⋅.故选:B .(四)题型四构造法1.A 【解析】因为()1231n n a a n +=+≥,所以132(3)n n a a ++=+,即数列{3}n a +是以4为首项,2为公比的等比数列,所以1342n n a -+=⋅,故1142323n n n a -+=⋅-=-,故选:A2.1321n -⋅-【解析】因为121n n a a +=+,所以()112221n n n a a a ++=+=+且1130a +=≠,所以1121n n a a ++=+,所以{}1n a +是以3为首项,2为公比的等比数列,所以1132n n a -+=⋅,所以1321n n a -=⋅-,故答案为:1321n -⋅-.3.1231n -⨯-【解析】因为132n n a a +=+,11a =,所以()113331n n n a a a ++=+=+,即1131n n a a ++=+所以{}1n a +以2为首项,3为公比的等比数列,所以1123n n a -+=⨯所以1231n n a -=⨯-故答案为:1231n -⨯-(五)题型五倒数法1.B 【解析】将等式1122n n n a a a --=+两边取倒数得到11112n n a a -=+,11111=,2n n n a a a -⎧⎫-⎨⎬⎩⎭是公差为12的等差数列,11a =12,根据等差数列的通项公式的求法得到()1111222n nn a =+-⨯=,故n a =2n.故答案为:B .2.219【解析】11n n n a a a +=+ 11111n n n n a a a a ++∴==+,即1111n na a +-=∴数列1n a ⎧⎫⎨⎬⎩⎭是以1132a =为首项,1为公差的等差数列()131211222n n n n a -∴=+-=-=221n a n ∴=-10219a ∴=故答案为:2193.1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【解析】由11n n n n S S S S ++=⋅-,得1111n nS S +-=()n N *∈1n S ⎧⎫∴⎨⎬⎩⎭是以11111S a ==为首相,1为公差的等差数列,11(1)1nn n S ∴=+-⨯=,1n S n ∴=,当2n ≥时,11111(1)n n n a S S n n n n -=-=-=---,1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩故答案为:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩4.D 【解析】11n n n n a a a a ++-= ,1111n n a a +∴-=,即1111n n a a +-=-,又12,a =所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为12,公差为1-的等差数列,132n n a ∴=-+,3113593122a ∴=-+=-,故31259a =-,故选:D .5.B 【解析】由11n n n a a a +=+,所以11111n n n n a a a a ++==+则1111n n a a +-=,又112a =,所以112a =所以数列1n a ⎧⎫⎨⎬⎩⎭是以2为首项,1为公比的等差数列所以11n n a =+,则11n a n =+所以201712018a =故选:B6.A 【解析】当2n ≥且n *∈N ,在等式1121n n n a a a --=+两边取倒数得11121112n n n n a a a a ---+==+,1112n n a a -∴-=,且112a =,所以,数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,且首项为2,公差为2,因此,()12212n n n a =+-=.12n a n∴=故选:A .7.C 【解析】11n n n a a a +=+ ,∴两边同时取倒数得11111n n n n a a a a ++==+,即1111n n a a +-=,即数列1n a ⎧⎫⎨⎬⎩⎭是公差1d =的等差数列,首项为111a =.则11(1)1n n n a =+-⨯=,得1n a n =,则202012020a =,故选:C (六)题型六周期数列1.A 【解析】2111121a a =-=-=-,3211112a a =-=+=,431111122a a =-=-=,可得数列{}n a 是以3为周期的周期数列,202036731112a a a ⨯+∴===.故选:A .2.B 【解析】因为13=4a ,111n n a a -=-,所以211113a a =-=-,32114a a =-=,431314a a =-=,…所以数列{}n a 是以3为周期的数列,所以202067331134a a a ⨯+===,故选:B 3.B 【解析】因为21n n n a a a ++=-,①则321n n n a a a +++=-,②①+②有:3n n a a +=-,即63n n a a ++=-,则6n n a a +=,即数列{}n a 的周期为6,又123,6a a ==,得3453,3,6a a a ==-=-,63a =-,则2016a =633663a a ⨯==-,故选:D .。

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。

2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求通项公式
1、累加法 :
适用于:1()n n a a f n +=+ ----------这是广义的等差数列,累加法是最基本的二个方法之一。

例1.1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

【答案:2
n a n =】
例1.2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。

【答案:3 1.n
n a n =+-】
练1.1 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.
【答案:12
+-=n n a n 】
练1.2 已知数列}
{n a 满足)2()
1(1
,311≥-+
==-n n n a a a n n ,求此数列的通项公式. 【答案:
n a n 12-
=】
2、累乘法
适用于: 1()n n a f n a += ----------这是广义的等比数列,累乘法是最基本的二个方法之二。

例2.1 已知数列{n a }中,n n a a a n n 2,
111+==+,求数列的通项公式。

【答案:)(2
)
1(*∈+=N n n n a n 】 例2.2 已知数列{n a }中,n n a n na a )1(2,111+==+,求数列的通项公式。

【答案:1
2
-=
n n n
a 】 练2.1【理科】 已知数列{}n a 满足112(1)53n
n n a n a a +=+⨯=,,求数列{}n a 的通项公式。

【答案:(1)1
2
32
5
!.n n n n a n --=⨯⨯⨯】
练2.2.设{}n a 是首项为1的正项数列,且
()0
112
21=+-+++n n n n a a na a n (n =1,2, 3,…),则它的通
项公式是n a =________.【答案:n
a n 1=】
3、待定系数法
适用于1()n n a qa f n +=+ 基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

3.1、形如)0(,1≠+=+c q pa a n n ,其中a a =1)型
(1)若p=1时,数列{
n a }为等差数列;
(2)若q=0时,数列{
n
a }为等比数列;
(3)若01≠≠且d c 时,数列{
n
a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.
待定系数法:设)(1λλ+=++n n a p a , ,1
-=
p q λ 例3.1 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式。

【答案:21n
n a =-】
练3.1练习.已知数列
}
{n a 中,
,2121,211+=
=+n n a a a 求通项n a 。

【答案:1)21(1
+=-n n a 】
3.2、形如:
n
n n q a p a +⋅=+1 (其中q 是常数,且n ≠0,1)
①若p=1时,即:
n
n n q a a +=+1,累加即可.
②若1≠p 时,即:n n n q a p a +⋅=+1,求通项方法有以下三种方向:
i. 两边同除以1
+n p .目的是把所求数列构造成等差数列
即:
n n n
n n q p p q a p a )(111
⋅+=++,令
n n n p a b =,则
n
n n q p
p b b )(11⋅=-+,然后类型1,累加求通项. ii.两边同除以1+n q . 目的是把所求数列构造成等差数列。

即:
q
q a q p q a n n n n 1
11
+⋅=
++,令
n n
n q a b =
,则可化为
q b q p b n n 11+⋅=
+.然后转化为类型5来解,
iii.待定系数法:目的是把所求数列构造成等差数列

)
(11n n n n p a p q a ⋅+=⋅+++λλ.通过比较系数,求出λ,转化为等比数列求通项.
注意:应用待定系数法时,要求p ≠q ,否则待定系数法会失效。

例3.2 已知数列
{}
n a 满足
1112431
n n n a a a -+=+⋅=,,求数列
{}n a 的通项公式。

【答案:11
4352n n n a --=⋅-⋅】
3.3、形如
b
kn pa a n n ++=+1 (其中k,b 是常数,且0≠k )
通过凑配可转化为 )
)1(()(1y n x a p y xn a n n +-+=++-;
解题基本步骤:
①确定()f n =kn+b
②设等比数列
)
(y xn a b n n ++=,公比为p
③列出关系式
)
)1(()(1y n x a p y xn a n n +-+=++-,即
1
-=n n pb b
④比较系数求x,y ⑤解得数列
)
(y xn a n ++的通项公式6、解得数列
{}n a 的通项公式
例3.3 在数列
}
{n a 中,
,
23,111n a a a n n +==+求通项
n
a .【答案:
213251--⋅=
-n a n n 】
练3.3. 在数列{}n a 中,
362,2311-=-=
-n a a a n n ,求通项n a .【答案:96)21(9-+⋅=n a n
n 】
3.4、形如
c
n b n a pa a n n +⋅+⋅+=+21 (其中a,b,c 是常数,且0≠a )
基本思路是转化为等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

例3.4 已知数列{}n a 满足2
1123451n n a a n n a +=+++=,,求数列{}n a 的通项公式。

【答案:42
231018n n a n n +=---】
3.5、形如21 n n n a pa qa ++=+时将n a 作为()f n 求解
分析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的形式,比较系数可求得λ,数列{}1n n a a λ++为等比数列。

例3.5 已知数列
{}
n a 满足
211256,1,2
n n n a a a a a ++=-=-=,求数列
{}
n a 的通项公式。

【答案:
11
4352n n n a --=⋅-⋅】
练3.5 数列{}n a 中,若2,821==a a ,且满足03412=+-++n n n a a a ,求n a .【答案: n
n a 311-=】
4、对数变换法 适用于
r
n
n pa a =+1(其中p,r 为常数)型 p>0,
>n a
例4 设正项数列{}n a 满足11=a ,2
12-=n n a a (n ≥2).求数列{}n a 的通项公式.
【答案:
1
2
1
2--=n n a 】
练4 数列
{}n a 中,11=a ,1
2
-=n n a a (n ≥2),求数列
{}n a 的通项公式.
【答案:n
n a --=2222】
5、倒数变换法 适用于分式关系的递推公式,分子只有一项
例5 已知数列{}n a 满足112,12n n n a a a a +=
=+,求数列{}n a 的通项公式。

【答案:1
2
+=n a n 】
6、阶差法(逐项相减法)
6.1、递推公式中既有n S ,又有n a
分析:把已知关系通过11,1
,2n n
n S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采用相应的方法求
解。

例6.1 已知数列{}n a 的各项均为正数,且前n 项和n S 满足1
(1)(2)6
n n n S a a =
++,且249,,a a a 成等比数
列,求数列{}n a 的通项公式。

【答案:32n a n =-】 练6.1 已知数列}{n a 中, 0>n a 且2)1(2
1
+=n n a S ,求数列}{n a 的通项公式.【答案:12-=n a n 】
6.2、对无穷递推数列
例6.2 已知数列{}n a 满足112311
23(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式。

【答案:!
.2
n n a =】。

相关文档
最新文档