幂级数展开的多种方法

合集下载

初等函数的幂级数展开

初等函数的幂级数展开
f (x) a1 2a2 (x x0 ) 3a3 (x x0 )2 nan (x x0 )n1 , f (x) 2!a2 3 2a3 (x x0 ) n (n 1)an (x x0 )n2 ,
f (x) 3!a3 n (n 1)(n 2)an (x x0 )n3 ,
lim
n
Rn
(
x)
0
,其中
Rn
(
x)
为拉格朗日余项,即
Rn (x) f (x) [a0 a1(x x0 ) a2 (x x0 )2
an (x
x0 )n ]
f n1( ) (x
(n 1)!
x0 )n1

1.2 函数展开成幂级数的方法
1.直接展开法
利用泰勒或麦克劳林展开式把初等函数展开成幂级数的方法称为直接展开法.用直接展 开法将函数 f (x) 展开成 x 的幂级数的步骤如下.
x)
1 2(3
x)
1
4 1
பைடு நூலகம்
x 1 2
1
81
x
1 4

1
(1)n xn 1 x x2 x3
(1)n xn
(1 x 1) ,
1 x n0
1
1 x
1
(1)n
n0
(x 1)n 2n
1
x
2
1
1

2
1
1 x
1
(1)n
n0
(x 1)n 4n
1
x
4
1
1

4
1.2 函数展开成幂级数的方法
解 f (x) 的各阶导数为
f (x) m(1 x)m1 , f (x) m(m 1)(1 x)m2 ,

高数:函数的幂级数展开

高数:函数的幂级数展开

解: f x ln1 x ln 2 ln 1
3 2
x
2 x3x2 1 x23x
ln
1 x
x x2 x3
2
3
(1)n xn1
n1 n1
xn n
1 x 1
ln 1
3 2
x
n 1
1n1
n
3 2
x
n
1
3 2
x
1
2 3
x
2 3
因此
f
(x)
ln 2
n
n
定理 (函数的幂级数展开定理)
设函数 f (x) 在点 x0 的某一邻域U(x0)内具有各阶导数, 则 f (x) 在该邻域内能展开成泰勒级数的充要条件是 f (x) 的
泰勒公式中的余项满足:
lim
n
Rn
(x)
0。
9.4.5 常用初等函数的幂级数展开式
直接展开法 — 利用泰勒公式 展开方法
间接展开法 — 利用已知其级数展开式的函数展开 1. 直接展开法
由泰勒级数理论可知, 函数f (x) 展成 x 的幂级数的步骤如下:
第一步 求函数及其各阶导数在 x = 0 处的值 ; 第二步 写出麦克劳林级数 , 并求出其收敛半径 R ;
第三步 判别在收敛区间(-R, R) 内 lim Rn (x) 是否为0。
n
例1. 将函数 f(x)=ex 展开成 x 的幂级数
泰勒公式中的余项满足:
lim
n
Rn
(x)
0。
证明:
f
(x)

f (n
n0
Sn1
) x0
n!
x
x
n

初等函数的幂级数展开式

初等函数的幂级数展开式

将函数ln(1+x)展开成 x的幂级数 的幂级数. 展开成 的幂级数 例1* 将函数 1 , 解 因为 [ln(1 + x )]′ = 1+ x 又
1 =1−x + x2 −x3+···+(−1)nxn +··· − − 1+ x
对上式逐项积分 对上式逐项积分 ∞ x dt x − ln(1+x) = ∫ = ∑ ∫ (−1)nt ndt 0 1+ t 0 n= 0 1 2 1 3 1 n+1 n = x − x + x − L+ (−1) x +L n+1 2 3 ∞ xn = ∑ ( − 1) n−1 n n=1
n n n−1
(1+x)n=1+nx+
n( n − 1) 2 n( n − 1)L ( n − k + 1) k x x +L+ 2! n! n! − +⋅⋅⋅ +nxn−1+x n ⋅⋅⋅
? (1+x)α =
α (α − 1 ) 2 α (α − 1 ) L (α − n + 1 ) n 1+αx+ x +L x +L+ 2! n!
(0) n f ′′ ( 0 ) 2 f (n) (0) n ∑0 n ! x = f ( 0 ) + f ′( 0 ) x + 2! x + L + n ! x + L n= 称为函数 f (x)的麦克劳林级数 的麦克劳林级数. f
(n) ∞
定理2 泰勒级数在 内收敛于f 定理 f(x)在x0点的泰勒级数在UR (x0)内收敛于 (x) 在 点的泰勒级数 内收敛于 ⇔ 在UR (x0) 内, Rn(x)→0. →

初等函数的幂级数展开

初等函数的幂级数展开

(1)n xn
n0
(1 x 1)
从 0 到 x 积分, 得
x
ln(1 x) (1)n xn dx
n0
0
(1)n
n0 n 1
xn1 ,
11 xx11
上式右端的幂级数在 x =1 收敛 , 而 ln(1 x) 在 x 1有
定义且连续, 所以展开式对 x =1 也是成立的, 于是收敛 区间为
2!
称为二项展开式 .
m(m 1)(m n 1) xn n!
说明:
(1) 在 x=±1 处的收敛性与 m 有关 .
(2) 当 m 为正整数时, 级数为 x 的 m 次多项式, 上式 就是代数学中的二项式定理.
第8页/共17页
对应
m
1 2
,
1 2
,1
的二项展开式分别为
1 x 1 1 x 1 x2 13 x3 135 x4 2 24 246 2468
骤如下 :
①求函数及其各阶导数在 x0 = 0 处的值 ;
②写出麦克劳林级数 , 并求出其收敛半径 R ;
③判别在收敛区间(-R,
R)
内 lim
n
Rn
(
x)
是否为
0.
4
第5页/共17页
例1. 将函数
展开成 x 的幂级数.
解: f (n) (x) ex , f (n) (0) 1 (n 0,1,), 故得级数
12
第13页/共17页
内容小结
1. 函数的幂级数展开法 (1) 直接展开法 — 利用泰勒公式 ; (2) 间接展开法 — 利用幂级数的性质及已知展开 式的函数 .
13
第14页/共17页
2. 常用函数的幂级数展开式

第四节函数的幂级数展开简

第四节函数的幂级数展开简

1.求出f (x)的各阶导数 f (x), f (x),, f (n) (x),,
2.计算 f (x0), f (x0), f (x0),, f (n) (x0),,
3.写出 f (x)在x0 处的泰勒级数


1
n0n!
f
(n)
( x0
)( x

x0
)n
4.求出上述泰勒级数的收敛区间(-R, R),
解 由 ex 1 x 1 x2 1 xn , x (,)
2!
n!
将x 换成 x2 可得函数的幂级数展开式.
ex2 1 x2 1 x4 (1)n x2n , x (,)
2!
n!
例 求 f (x) ln x 在 x0 3 处的展开式.
泰勒级数展开的唯一性 设f (x)在 x0的某对称区间 (R x0, R x0)内可以 展开成 (x x0)的幂级数 f (x) a0 a1(x x0) a2(x x0)2 an(x x0)n , 将上式逐阶求导,有
f (x) a1 2a2(x x0) 3a3(x x0)2 nan(x x0)n1 , f (x) 2!a2 3 2a3(x x0) n(n 1)an(x x0)n2 , f (x) 3!a3 n(n 1)(n 2)an (x x0)n3 ,
lim
n
Sn
(
x)

f (x)
的充分必要条件是
lim
n
rn
(
x)

0
也即当
lim
n
rn
(
x)

0
时,有

幂级数函数的幂级数展开法

幂级数函数的幂级数展开法
( 1 x 1)
1 1
x
1
1 2
x
13 24
x2
135 246
x3
1 3 5 7 2468
x4
( 1 x 1)
1 1 x x2 x3 (1)n xn
1 x
( 1 x 1)
1 1 x x2 xn 1 x
(1 x 1)
§6.3 幂级数
2. 间接展开法 利用一些已知的函数展开式及幂级数的运算性质, 将所给函数展开成 幂级数.
证:
lim
n
an 1 x n 1 an xn
lim an1 n an
x
1) 若 ≠0, 则根据比值审敛法可知:

x
1,

x
1
时,
原级数收敛;

x
1,

x
1
时,
原级数发散.
§6.3 幂级数
因此级数的收敛半径 R 1 .
2) 若 0, 则根据比值审敛法可知, 对任意 x 原级数
绝对收敛 , 因此 R ;
n0
(1 x 1)
从 0 到 x 积分, 得
x
ln(1 x) (1)n xn dx
n0
0
(1)n
n0 n 1
xn1 ,
11 xx11
上式右端的幂级数在 x =1 收敛 , 而 ln(1 x) 在 x 1有
定义且连续, 所以展开式对 x =1 也是成立的, 于是收敛
区间为
§6.3 幂级数
(k 0, 1, 2, )
得级数:
x
1 3!
x3
1 5!
x5
(1)n1
1 (2n1)!
x2n1

幂级数展开式常用公式 csdn

幂级数展开式常用公式 csdn

幂级数展开式常用公式一、概述幂级数展开是微积分中非常重要的一个概念,它在数学、物理、工程等领域都有着广泛的应用。

在实际问题中,往往需要根据实际情况来拟定幂级数展开式,以便进行进一步的分析和计算。

本文将介绍一些幂级数展开式的常用公式,以帮助读者更好地理解和应用这一重要的数学工具。

二、常见的幂级数展开式1. $e^x$的幂级数展开式可以利用泰勒公式得到$e^x$的幂级数展开式:$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$这个幂级数在实际计算中有着广泛的应用,特别是在微积分和概率论中。

2. $\sin x$的幂级数展开式$\sin x$函数的幂级数展开式为:$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$3. $\cos x$的幂级数展开式$\cos x$函数的幂级数展开式为:$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$4. $\ln(1 + x)$的幂级数展开式$\ln(1 + x)$函数的幂级数展开式为:$$\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$5. $(1 + x)^\alpha$的幂级数展开式当$\alpha$为实数时,$(1 + x)^\alpha$的幂级数展开式为:$$(1 + x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha - 1)}{2!} x^2 + \frac{\alpha(\alpha - 1)(\alpha - 2)}{3!} x^3 + \cdots$$这个幂级数展开式在概率论和统计学中有着广泛的应用。

第四节 函数展开成幂级数

第四节   函数展开成幂级数

201第四节 函数展开成幂级数一、泰勒级数前面讨论了这样一个问题,对于给定的幂级数,求出其收敛域并确定其和函数的性质,并在可能时求出和函数的表达式。

这节我们讨论该问题的反问题:给定函数()x f ,要考虑它是否能在某个区间内“展开成幂级数”,即是否能找到这样一个幂级数,它在某区间内收敛,且其和恰好就是给定的函数()x f 。

(如果能够找到这样的幂级数,就说()x f 在该区间内可展开成幂级数。

)解决这个问题有很重要的应用价值,因为它给出了函数()x f 的一种新的表达方式,并使我们可以用简单函数——多项式来逼近一般函数()x f 。

在第三章中我们已经学过泰勒公式:若函数()x f 在点0x 的某一邻域内具有直到()1+n 阶的导数,则在该邻域内()x f 的n 阶泰勒公式:()()()()()() +-''+-'+=200000!2x x x f x x x f x f x f()()()()x R x x n x f n n n +-+00!(1)成立,其中()x R n 为拉格朗日型余项。

()()()()()101!1++-+=n n n x x n f x R ξ(之间与在x x 0ξ)如果令00=x ,就得到马克劳林公式:()()()()()()()x R x n f x f x f f x f n nn +++''+'+=!0!20002(2)202此时,()()()()11!1+++=n n n x n x f x R θ(10<<θ)公式说明,任一函数只要有直到()1+n 阶的导数,就可等于某个n 次多项式与一个余项的和。

下列幂级数()()()()() +++''+'+nn x n f x f x f f !0!20002(3)我们称为马克劳林级数。

那么它是否以函数()x f 为和函数呢? 若令马克劳林级数(3)的前1+n 项和为()x s n 1+,即()()()()()()nn n x n f x f x f f x s !0!200021++''+'+=+那么,级数(3)收敛于函数()x f 的条件为()()x f x s n n =+∞→1lim由马克劳林公式与马克劳林级数的关系,可知()()()x R x s x f n n +=+1于是,当()0lim =∞→x R n n 时,有()()x f x s n n =+∞→1lim 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂级数展开的多种方法摘要:本文通过举例论证的说明方法,系统地对幂级数展开的多种解法进行了详细地概括、分类及总结关键词:幂级数;泰勒展式;洛朗展式;展开在复变函数的学习过程中,我们涉及了对解析函数幂级数展开的学习.由课本的知识知道,任意一个具有非零收敛半径的幂级数在其收敛圆内收敛于一个解析函数.这个性质是很重要的,但在解析函数的研究上,幂级数之所以重要,还在于这个性质的逆命题也是成立的.即有下面的泰勒定理和洛朗定理:定理 1(泰勒定理)设()z f 在区域D 内解析,D a ∈,只要圆R a z K <-:含于D ,则()z f 在K 内能展成幂级数()()∑∞=-=n nna z c z f ,其中系数()()()()!211n a fd a f i c n n n =-=⎰Γ+ζζζπ.(ρ=-Γa z : R <<ρ0 n=0,1,2 )且展式唯一.定理2(洛朗定理)在圆环R a z r H <-<: (0≥r +∞≤R )内解析的函数()z f 必可展成双边幂级数()()∑∞-∞=-=n nn a z c z f ,其中系数()()ζζζπd a f i c n n ⎰Γ+-=121( 2,1,0±±=n ρ=-Γa z : R r <<ρ) 且展式唯一.这两个定理的存在,使得在函数解析的范围内,我们可以通过幂级数展开的方法来更好的研究解析函数的性质.而这两个定理,也是我们后面研究幂级数展开的基础和前提.接下来,我们将着重开始讨论幂级数展开问题的多种解法: 1、直接法.即按照泰勒定理和洛朗定理中所给的幂级数展开的公式,直接将函数展开. 例1 求()z z f tan =在40π=z 点处的泰勒展开式.解:用公式 ()()!0n z fc n n =求n c :;14tan0==πc()2,24sec|tan 124==='=c z z ππ;();2!24,44tan4sec2|tan 224===="=c z z πππ();38!316,164sec4tan4sec22|'''tan 3424===⎪⎭⎫⎝⎛+==c z z ππππ得+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=3243842421tan πππz z z z .例2 将()z z f sin =按z-1的幂展开. 解:由题意可解得()()⎪⎭⎫⎝⎛+=12sin1πk fn ⎪⎭⎫⎝⎛+=∴12sin !1πk n c n ()nn z n k z 1!12sin sin 0-⎪⎭⎫⎝⎛+=∴∑∞=π.2、间接法.即利用已知公式,通过各种运算、变换来简化求导的方法.下面给出一些主要函数的泰勒展开式: (1)∑∞==+++++=-02111n nnz z z z z()1<z.(2)()nnzz z z11112-+++-=+ =()∑∞=-01n n nz ()1<z .(3)∑∞==+++++=02!!!21n nnzn zn zzz e ()+∞<z .(4)()()∑∞=-=02!21cos n nn n z z()+∞<z .(5)()()∑∞=++-=012!121sin n n n n z z()+∞<z .(6)()()+-+-+-+=+-nzzzz i k z nn k 13213221ln π (1<z ;2,1,0±±=k ;k=0时为主值支).(7)()()()()++--++-++=+nz n n z z z !11!21112ααααααα()1<z .2.1利用已知的展式. 例3 求⎪⎭⎫⎝⎛+=+21i i i z 的展开式. 解:因为i z +以i -和∞为支点,故其指定分支在1<z 内单值解析.i z +=211⎪⎭⎫ ⎝⎛+i z i=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛-+⋅+ 2!2121212211i z z i=⎪⎭⎫⎝⎛++-+ 2812121z z i i ()1<z . 例4 求()z e z f z cos =在z=0点处的泰勒展式. 解:因为z e z cos =()()()[]zi zi iz iz z ee e e e -+-+=+112121()()⎥⎦⎤⎢⎣⎡-++=∴∑∑∞=∞=00!1!121cos n nnn nnzz n i z n i z e=()()[]nnnnn zi z i n --+∑∞=11!121()+∞<z由于i +1=ie 42πie i 421π-=-代入上式有()n i n in n nzz e e n z e ⎪⎪⎭⎫ ⎝⎛+=-∞=∑440!221cos ππ=()n n nz n n ∑∞=0!4cos 2π()+∞<z .2.2逐项求导、逐项求积法.例5 用逐项求导法求函数()311z -在1<z 内的泰勒展式.解:因为()311z -=()[]"--1121z ()1<z 所以用逐项求导法算得()311z -=()2012121-∞=∞=∑∑-="⎥⎦⎤⎢⎣⎡n n n n zn n z=()()nn z n n 1221++∑∞= ()1<z .例6 求()11ln +-=z z z f 在z=0点的泰勒展开式,其中()z f 是含条件()i f π=0的那个单值解析分支.解:()1111111111ln ++-='⎪⎭⎫ ⎝⎛+--+='⎪⎭⎫⎝⎛+-='z z z z z z z z z f =()()[]nn n nn nn nzz z ∑∑∑∞=+∞=∞=--=---01111上式两端在1<z 内沿0到z 积分,得: ()[]nn n zzdz z z i z z ∑⎰∞=+--='⎪⎭⎫ ⎝⎛+-=-+-011111ln 11lnπ()[]nn n zn i z z 11111ln1--+=+-∴+∞=∑π ()1<z .2.3利用级数的乘除运算.例7 写出()z e z +1ln 的幂级数展式至含5z 项为止,其中()z +1ln 在0=z 点处的值为0.解:由题设条件可知 ()z +1ln 是主值支. 又由+++++=!!212n zzz e nz()+∞<z()()+-+-+-=+nzzzz z nn1321ln 32()1<z在公共收敛区域1<z 内作柯西乘积,得 ()z e z+1ln =++++53240332z zzz ()1<z .例8 求z tan 在点0=z 的泰勒展式.分析:函数z tan 的奇点为z cos 的零点π⎪⎭⎫ ⎝⎛+=21k z k ( 2,1,0±±=k )而距原点最近的奇点为20π=z 21π-=-z .故函数z tan 在2π<z 内解析,且能展为z 的幂级数. 解:+-+-=753!71!51!31sin z z z z z+-+-=642!61!41!211cos z z z z可以像多项式按幂级数排列用直式做除法那样分离常数.将分子、分母的幂级数做直式相除,缺项用0 代替,得到+++==531523cos sin tan z zz zz z (2π<z ).2.4待定系数法.例9 设∑∞==--0211n nnzczz()1证明:()221≥+=--n c c c n n n .()2求出展式的前5项. ()1 证明:利用待定系数法,有()() +++++--=n n z c z c z c c z z 2210211=()()() +--++--+-+--n n n n z c c c z c c c z c c c 212012010 比较两端同次幂的系数得0;;0;0;121012010=--=--=-=--n n n c c c c c c c c c21012010,,2,1,1--+==+====∴n n n c c c c c c c c c ()2≥n .()2解:1|11020=--==z z z c ()1121|11022021=--+='⎪⎭⎫⎝⎛--===z z zz z z z c从而由()1依次得 211012=+=+=c c c , 312213=+=+=c c c ,523234=+=+=c c c , 即+++++=--4322532111z z z z zz .当然,对于幂级数的展开还有其它多种方法,在这里就不一一赘述了. 最后值得一提的是用间接法解题时应注意的问题.我们通常是用已知函数的泰勒展式进行代入简化,这时应注意这些展式成立的范围与题目条件是否相吻合;其次,也应注意是在题目要求的点进行展开,展开的点的不同,最后的结果也会不同.参考文献:[1]钟玉泉.《复变函数论》.北京:高等教育出版社,2004.1. [2]钟玉泉.《复变函数学习指导书》.北京:高等教育出版社,2005.[3]李建林.《复变函数 积分变换 导教 导学 导考》.西安:西北工业大学出版社,2001.9.。

相关文档
最新文档