泰勒幂级数展开
常用十个泰勒展开公式

常用十个泰勒绽开公式常用bai泰勒绽开公式如下:1、due^x = 1+x+x^2/2!+x^3/3!+……zhi+x^n/n!+……2、daoln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。
(-∞<x<∞)4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+……(-∞<x<∞)5、arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)6、arccos x = π- ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……) (|x|<1)7、arctan x = x - x^3/3 + x^5/5 -……(x≤1)8、sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+……(-∞<x<∞)9、cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)10、arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - ……(|x|<1)11、arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)扩展资料:数学中,泰勒公式是一个用函数在某点的信息描述其四周取值的公式。
假如函数足够平滑的话,在已知函数在某一点的各阶导数值的状况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
泰勒公式还给出了这个多项式和实际的函数值之间的偏差。
泰勒公式得名于英国数学家布鲁克·泰勒。
泰勒级数展开讲解

f (? )d? C (? ? z0 )n?1 ?
f (n) ( z0 ) n!
(n ? 0,1,2,
),
且展式是唯一的。
? 特别地,当 z0 ? 0 时,级数
? f (n) (0) z n 称为麦克劳林
n?0 n!
级数。
数学物理方法
【证明】 设函数 f (z) 在区域 D: z ? z0 ? R 内解析,任取一点 ? ? D ,以 z0 为
中心, ? 为半径( ? ? R )作圆周 C: ? ? z0 ? ? ,如图
z?
z0
?
C
由柯西积分公式知
R
f (z)
?
1 2πi
f
?C ?
(? )d?
?z
(3.3.2 )
数学物理方法
其中z在C的内部,,而 ? 在C上取值, C取逆时针正方向. 故
z ? z0 ? ? ? ? z0 ? ?
从而 z ? z0 ? 1
解:多值函数 f (z) ? ln z 的支点在 z ? 0, z ? ?
现在展开中心 z0 ? 1 并非支点,在它的邻域上,各个单 值互相独立,可以比照单值函数的方法展开,先计算系数
f (z ) ? ln z
f (1) ? ln1 ? n2? i
f '(z) ? 1 z
f '(1)? 1
f
''(z) ?
数学物理方法
陈尚达 材料与光电物理学院
第三章 幂级数展开
数学物理方法
1、复数项级数 2、幂级数 3、泰勒级数展开 4、解析延拓 5、洛朗级数展开 6、孤立奇点的分类
3.3 泰勒级数展开
数学物理方法
通过对幂级数的学习,我们已经知道一个 幂级数的和函数在它的收敛圆的内部是一个解 析函数。现在我们来研究与此相反的问题,就 是:任何一个解析函数是否能用幂级数来表示? 这个问题不但有理论意义,而且很有实用价值 .
泰勒级数展开

解:先计算展开系数
f (z) (1 z)m
f (0) 1m
f '(z) m(1 z)m1
f '(0) m1m
f ''(z) m(m 1)(1 z)m2
f ''(0) m(m 1)1m
f (3) (z) m(m 1)(m 2)(1 z)m3
……
f (3) (0) m(m 1)(m 2)1m
(1 z)m 1m m 1m z m(m 1) 1m z2
1!
2!
m(m 1)(m 2) 1m z3 L 3!
易求其收敛半径为1,故
(1 z)m 1m{1 m z m(m 1) z2 m(m 1)(m 2) z3 L }, ( z 1)
1!
2!
3!
式中 1m (ei2n )m ei2nm
(| z | 1)
1 z n0
1
z
1 z0
1
z
z0 z0
z
z0 z0
2
n0
(z z0 )n
( z0 )n1
以此代入(3.3.2),并把它写成
i f
(z)
n0
1
2
i
C
f
(
( )d
z0 )n1
(
z
z0
)n
利用解析函数的高阶导数公式,Fra bibliotek式即为其中
f (z) an (z z0 )n n0
(3.3.3)
i an
1 2πi
f ( )d C ( z0 )n1
f (n) (z0 ) n!
(0,1, 2,L )
(3.3.4)
这样便得到了 f (z) 在圆| z z0 | R 内的幂级数展
函数的幂级数展开

Rn (x) (x − x0 )n+1
=
Rn (x) − Rn (x0 ) (x − x0 )n+1 − 0
=
(n
Rn (1) +1)(1 − x0 )n
(1 在x0与x之间),
= Rn (1) − Rn (x0 ) (n +1)(1 − x0 )n − 0
=
Rn(2 ) n(n +1)(2 − x0 )n−1
7
首页
上页
返回
下页
结束
铃
(3) 当 n = 0 时,泰勒公式变成拉格朗日中值公式
f ( x) = f ( x0 ) + f ( )( x − x0 ) .
(4) 因为
lim lim x→x0
Rn (x) (x − x0 )n
=
x→ x0
f (n+1) ( )( x − x0 ) = 0 ,
所以 R n ( x ) = o[( x − x0 ) n ] . 佩亚诺(Peano)型余项
f (0) + f (0) x + f (0) x 2 + + f (n) (0) x n +
2!
n!
为 f (x) 的麦克劳林级数.
3
首页
上页
返回
下页
结束
铃
2. 泰勒(Taylor)公式
泰勒中值定理 如果函数 f (x) 在含有 x0 的某个开 区间 (a , b) 内具有直到 n + 1 阶的导数,则对任一
(2
在x0与1之间),
=
=
R (n+1) n
(
)
(n +1)!
泰勒公式和幂级数展开

泰勒公式和幂级数展开摘要:1.泰勒公式和幂级数展开的定义与区别2.泰勒公式和幂级数展开的联系3.泰勒公式和幂级数展开的应用4.总结正文:一、泰勒公式和幂级数展开的定义与区别泰勒公式和幂级数展开都是数学中常见的用于描述函数近似的方法,它们之间有着密切的联系,但也存在一些区别。
泰勒公式是指用多项式来近似函数,使得多项式的表达比函数的形式更加友好。
泰勒公式可以用来求解函数在某一点附近的值,它的展开式包含有限个幂函数之和再加一个拉格朗日余项。
幂级数展开则是指将一个函数展开为一个函数项级数,这个级数的每一项均为与级数项序号n 相对应的以常数倍的(x-a)的n 次方。
幂级数展开可以看作是泰勒公式在某一点的特殊情况,它要求函数在展开点a 的各阶导数存在且有限。
二、泰勒公式和幂级数展开的联系尽管泰勒公式和幂级数展开在定义上有所区别,但它们之间存在着紧密的联系。
事实上,泰勒公式可以看作是幂级数展开的一种推广。
当泰勒公式中的拉格朗日余项趋于零时,泰勒公式就退化为幂级数展开。
也就是说,一个函数在某点附近的泰勒展开如果满足拉格朗日余项趋于零,那么这个函数在这个点附近就可以展开成一个幂级数。
三、泰勒公式和幂级数展开的应用泰勒公式和幂级数展开在数学以及实际应用中都有着广泛的应用。
在数学研究中,泰勒公式和幂级数展开常常用来研究函数的性质,比如函数的零点、极值、曲率等。
在实际应用中,泰勒公式和幂级数展开可以用来近似计算复杂函数的值,这在工程、物理等领域中有着广泛的应用。
例如,在计算机图形学中,泰勒公式和幂级数展开常用来计算二维或三维图形的像素颜色值。
四、总结总的来说,泰勒公式和幂级数展开都是数学中重要的概念和工具,它们在理论研究和实际应用中都有广泛的应用。
常见幂级数展开式求和公式

常见幂级数展开式求和公式幂级数展开式是一种重要的数学工具,可以将各种函数表示为无穷级数的形式。
常见的幂级数展开式求和公式有泰勒级数、麦克劳林级数和幂级数的逐项积分求和公式。
下面将逐一介绍这些公式。
1.泰勒级数求和公式:泰勒级数是将一个函数在其中一点展开成无穷级数的形式,用于近似表示函数在该点的值。
对于具有充分多次可导性的函数f(x),其在x=a 处的泰勒级数展开式为:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+f'''(a)(x-a)^3/3!+...其中,f^n(a)表示f(x)在x=a点的n阶导数,n!表示n的阶乘。
当n 足够大时,泰勒级数可以提供较准确的函数近似。
2.麦克劳林级数求和公式:麦克劳林级数是泰勒级数在x=0处展开的特殊形式。
对于具有充分多次可导性的函数f(x),其在x=0处的麦克劳林级数展开式为:f(x)=f(0)+f'(0)x+f''(0)x^2/2!+f'''(0)x^3/3!+...麦克劳林级数将函数近似表示为多项式的形式,方便计算。
3.幂级数逐项积分求和公式:对于幂级数∑a_n(x-a)^n,可以对其逐项积分得到:∫[∑a_n(x-a)^n]dx = ∑[a_n/(n+1)(x-a)^(n+1)] + C其中,C为积分常数。
这个公式可以用于计算幂级数的积分。
除了上述三种常见幂级数展开式求和公式,还有一些其他的展开式求和公式,如:4.欧拉恒等式:欧拉恒等式表示以自然对数e为底的指数函数和三角函数的关系:e^ix = cos(x) + i·sin(x)其中,i表示虚数单位。
这个等式广泛应用于复数分析、信号处理等领域。
5.贝塞尔函数展开式:贝塞尔函数是一类特殊的函数,可以用无穷级数表示。
对于整数阶的贝塞尔函数J_n(x),其展开式为:J_n(x)=(∑[(-1)^k/(k!(n+k)!)(x/2)^(2k+n)])/(x/2)^n贝塞尔函数在物理学、工程学等领域中有广泛的应用。
泰勒Taylor级数展开

k 0
讨论:
1. 收敛范围:
对给定z0点,找f(z)最靠近z0的奇点z1 ,一般
即|z1-z0|为收敛半径。 2. 解析函数的又一充要条件: f(z)在区域B内解析,当且仅当f(z)在B内任一点 的某邻域内可展开成幂级数。 3. 展开系数的唯一性。
二、将函数展开成泰勒级数的方法
泰勒展开定理本身提供了一种展开方法,即求出 f(n)(z0)代入即可,这种方法称为直接展开法。
其中n=0时为主值 例4:arctgz,在z0=0点展开
1 k 2k f ( z ) ( 1 ) z | z | 1 2 1 z k 0 1 k 2k arctgz dz ( 1 ) z dz 2 1 z k 0
(1) k
k 0
∵离z0=1最近的支点为z=0 ∴收敛半径取R=1,收敛圆为|z-1|< 1
而
(ln z )
1 z
1 1 (1 z ) k z 1 (1 z ) k 0
(1) k ( z 1) k
k 0
(| z 1 | 1)
1 ln z dz (1) k ( z 1) k dz z k 0
CR1为圆CR内包含z且与CR同心的圆
证明:由柯西公式
1 f ( ) f ( z) d C 2i R1 z 1 将 z 展开为幂级数
1 1 1 1 z ( z0 ) ( z z0 ) z0 1 ( z z0 ) /( z0 )
k 0
1 f ( ) d k 1 2i CR1 ( z0 ) (| z z0 | R)
k 0
f ( k ) ( z0 ) ( z z0 ) k k!
泰勒幂级数展开

以此代入(3.3.2),并把它写成 1 f ( )d f ( z) ( z z0 ) n C ( z0 )n1 2 i n 0
利用解析函数的高阶导数公式,上式即为
f ( z ) an ( z z0 ) n
n 0
(3.3.3)
……
m m
f (3) (0) m(m 1)(m 2)1m
m m m(m 1) m 2 (1 z ) 1 1 z 1 z 1! 2! m(m 1)(m 2) m 3 1 z 3!
数学物理方法
易求其收敛半径为1,故
m m(m 1) 2 m(m 1)(m 2) 3 (1 z ) 1 {1 z z z }, ( z 1) 1! 2! 3!
2、幂级数
3、泰勒级数展开 4、解析延拓 5、洛朗级数展开 6、孤立奇点的分类
3.3 泰勒级数展开
数学物理方法
通过对幂级数的学习,我们已经知道一个
幂级数的和函数在它的收敛圆的内部是一个解
析函数。现在我们来研究与此相反的问题,就
是:任何一个解析函数是否能用幂级数来表示? 这个问题不但有理论意义,而且很有实用价值.
数学物理方法
3.3.1泰勒级数 泰勒(Taylor)展开定理 设 f ( z ) 在区域 D:z z0 | R 内 | 解析,则在 D 内 f ( z ) 可展为泰勒级数
f ( z ) an ( z z0 ) n ,
n 0
(| z z0 | R)
(3.3.1)
其中
f ( n ) ( z0 ) 1 f ( )d an C ( z0 )n1 n! 2 i
m m
式中 1m (ei 2 n ) m ei 2 nm 在许多的单值分支中,n=0那一支即 1m 1的那一个叫 作 (1 z ) m的主值。上式也就是指数为非整数的二项式 定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ''( z ) 1! z2
f '(1) 1
f ''( z) 1!
f (3) ( z )
2! z3
f (3) ( z) 2!
……
于是可写成 z0 1 在邻域上的泰勒级数
数学物理方法
1 1! 2! 2 ln z ln1 ( z 1) ( z 1) ( z 1)3 1! 2! 3! 2 3 4 ( z 1) ( z 1) ( z 1) n2 i ( z 1) 2 3 4
作业
P52
(2), (3), (5),(6),(8)
数学物理方法
补充:
(1)将 shz 在 z0 0领域展开。
补充 泰勒展开的方法(参见陆全康教材)
数学物理方法
1、替换法 z 1 例 将函数 f ( z ) 3 ,以为 z 1 中心展开为幂
z
级数 .
解:令 z 1 即
z 1 2 3 3 z (1 )
1 z n , z 1; 1 z n 0 1 n n (1) z , z 1; 1 z n 0
(3.3.7) (3.3.8) (3.3.9)
n z z e , z ; n 0 n ! (1)n z 2 n1 sin z , n 0 (2n 1)!
第三章 幂级数展开
1、复数项级数
数学物理方法
2、幂级数
3、泰勒级数展开 4、解析延拓 5、洛朗级数展开 6、孤立奇点的分类
3.3 泰勒级数展开
数学物理方法
通过对幂级数的学习,我们已经知道一个
幂级数的和函数在它的收敛圆的内部是一个解
析函数。现在我们来研究与此相反的问题,就
是:任何一个解析函数是否能用幂级数来表示? 这个问题不但有理论意义,而且很有实用价值.
n 1
数学物理方法
1 例 3.3.6 将函数 在 z0 0 处展开成幂级数. 2 (1 z )
解 : 由于函数
1 在单位圆周 z 1上有一个奇 2 (1 z )
点 z 1 ,而在 z 1内处处解析,所以它在 z 1内可展开成 z 的幂级数.
1 1 n n ( 1) z 2 (1 z ) 1 z n 0
2
4
6
数学物理方法 例3.3.3 在 z0 1 的邻域把 f ( z ) ln z 展开。
解:多值函数 f ( z ) ln z 的支点在 z 0, z 现在展开中心 z0 1 并非支点,在它的邻域上,各个单 值互相独立,可以比照单值函数的方法展开,先计算系数 f ( z ) ln z f (1) ln1 n2 i
n
数学物理方法
z 例 3.3.8 将函数 f ( z ) ,在 | z | 1 ( z 1)( z 2)
内展开成幂级数 .
解:
z 1 2 f ( z) ( z 1)( z 2) z 1 z 2
1 1 z n ( z / 2) n 1 z 1 z / 2 n 0 n 0 1 n (1 n ) z 2 n 0
利用解析函数的高阶导数公式,上式即为
f ( z ) an ( z z0 ) n
n 0
(3.3.3)
其中
1 an 2πi f ( n ) ( z0 ) f ( )d C ( z0 )n1 n! (0,1, 2, )
(3.3.4)
数学物理方法
这样便得到了 f ( z ) 在圆 | z z0 | R 内的幂级数展 开式,但上述展开式是否唯一呢?我们可以证明其唯一 性。
数学物理方法
3.3.2 将函数展开成泰勒级数的方法
泰勒展开定理本身提供了一种展开方 ( n) 法,即求出 f ( z0 ) 代入即可,这种方法称 为直接展开法 .
例3.3.1 在 z0 0 的邻域上把
f ( z) ez 展开。
(k ) z z f ( z ) e f ( z ) e 解:函数 的各阶导数 而
假设 f ( z ) 在 | z z0 | R 内可展开为另一展开式
f ( z ) bn ( z z0 )
n 0
n
(3.3.5)
两边逐项求导,并令 z z0 可得到系数
f n ( z0 ) bn an , (n 0,1, 2, ) n!
故展开式系数是唯一的。
(3.3.6)
2 m 1 z (1) m (2m 1)!
2 m 1 z (1) m (2m 1)! m0
数学物理方法
例 3.3.5 将函数 f ( z ) ln(1 z ) 在
z0 0 处展开成幂级数.
数学物理方法
解 : 我们知道, ln(1 z) 在从 1 向左沿负实轴剪开的平面内 是解析的,而 1 是它的一个奇点,所以它在 z 1 内可以展 开成 z 的幂级数.
f ( k ) ( z0 ) f ( k ) (0) 1
z f ( z ) e 故 在 z0 0 领域上的泰勒级数写为
2 3 z z z ez 1 1! 2! 3!
易求收敛半径无限大
数学物理方法 例3.3.2 在 z0 0 的邻域把 f1 ( z) sin z 和 f2 ( z) cos z 展开。
2 ( z z )n z z0 z z0 1 1 0 1 n 1 z z0 z0 z0 ( z ) 0 n 0
以此代入(3.3.2),并把它写成 1 f ( )d n f ( z) ( z z ) 0 C ( z ) n 1 2 i n 0 0
m m
式中 1m (ei 2n )m ei 2nm 在许多的单值分支中,n=0那一支即 1 1的那一个叫 作 (1 z )m的主值。上式也就是指数为非整数的二项式 定理。
m
数学物理方法
(n) f ( z0 ) 比较麻烦。根据泰勒展式 f ( z ) 二、当 较复杂时,求
的唯一性,因此通常用间接展开法,即利用基本展开公式及 幂级数的代数运算、代换、逐项求导或逐项积分等将函数展 开成幂级数,基本展开公式如下:
(1)n1nz n1 , z 1
n 0
数学物理方法
z 例 3.3.7 将函数 f ( z ) ,在 | z 1| 2 z 1
内展开成幂级数 . z 1 解: f ( z ) 1 z 1 1 z
1 1 ( z 1) 2
1 1 1 n z 1 1 1 (1) 2 1 z 1 2 n 0 2 2 n ( z 1) 1 (1) n n 1 , ( z 1 2) 2 n 0
z z0
从而
z0
z z0 1 z0
1 1 1 1 z ( z0 ) ( z z0 ) z0 1 z z0 z0
1 z n , (| z | 1) 1 z n 0
因为
根据
数学物理方法
f ( n ) ( z0 ) f ( )d C ( z0 )n1 n!
(n 0,1, 2, ) ,
且展式是唯一的。
特别地,当 z0 0 时,级数 级数。
n 0
f ( n ) (0) n z 称为麦克劳林 n!
数学物理方法
【证明】 设函数 f ( z ) 在区域 D:
z z0 R 内解析,任取一点 D ,以 z0 为 中心, 为半径( R )作圆周 C:
z0 ,如图
z z0
C
R
由柯西积分公式知 1 f ( ) f ( z) d 2πi C z
(3.3.2)
数学物理方法 其中z在C的内部,,而 在C上取值, C取逆时针正方向. 故
' 解: 函数 f1 ( z) sin z 的前四阶导数分别为 f1 ( z) cos z
f1'' ( z) sin z f1(3) ( z) cos z
f1(4) ( z) sin z
由上可见其四阶导数等于函数本身,因此其高阶导 数是前四阶导数的重复。
'' f f (0) 1 且在 z0 0 有 1 (0) 0
' 1
f1(3) (0) 1
f1(4) (0) 0
故有
z z z z sin z 1! 3! 5! 7!
3
5
7
数学物理方法 同样的方法,可求得 cos z 在 z0 0 邻域上的泰勒级数
z z z cos z 1 2! 4! 6!
容易求得上面两个泰勒级数的收敛半径为无限大。 即 Z在全复平面上取值只要有限,上面两个级数 就收敛。
1 因为 ln(1 z ) (1)n z n , ( z 1), 1 z n 0
所以
z 1 n n ln(1 z ) dz (1) z dz 0 1 z 0 n 0 z
z (1) , z 1 n 1 n 0
n
m m k (1 z ) a 利用 k z 得到 k 0
(1 ) 3 ak3 ( ) k
k 0
数学物理方法
z 例 3.3.8 将函数 f ( z ) ,在 | z | 1 ( z 1)( z 2)
正整数)。 解:先计算展开系数
f ( z) (1 z)