函数展开成幂级数

合集下载

简明微积分函数展开为幂级数

简明微积分函数展开为幂级数
解: f (n)(x) ex,
f (n)(0) 1
n 0f(nn)! (0)xn n 0xnn!1
l lim| an1| lim(n1)!0 n an n 1
收敛半径 R 1 , n! l
收敛区间(为 ,)
对于任x、 何 (0有 1 限 ) 数
第五节 函数展开成幂级数
一、泰勒级数 二、函数展开成幂级数
一、泰勒级数
定义 如果f(x)在点x0的某邻域内具有任意阶导
数,则称幂级数
f(x0)f'(x0)(xx0)f''2(!x0)(xx0)2
f(nn)(!x0)(xx0)n
为f(x)在x0的泰勒级数.
(1)
当x0=0时,泰勒级数为:
得到展开式: e x 1 x x 2 x n ( x ) (6)
2 ! n !
间接展开法 利用一些已知的函数展开式、 幂级数运算(如四则运算、逐项求导、逐项积 分)以及变量代换等,将所给函数展开成幂级 数.
1 1qq2qn1 1q
(-1q1)
(c)利用公式(3)写出麦克劳林级数,
f(0 )f'(0 )xf"(0 )x 2 f(n )x n
2 !
n !
并求出收敛半径R;
(d如 ) 能证明在收敛 (-R区 , R间 )内,余项
Rn(x)0(n),则 (c步 ) 骤写出的幂 就是函f (数 x)的幂级数展. 开式
例 1将函 f(x) 数 ex展开 x的成 幂级
23
n
(1 x 1)
(11)
arctanx x 1x3 1 x5 (1)n1 x2n1
35
2n 1
收敛区间为 [-1,1]

函数展成幂级数的公式(一)

函数展成幂级数的公式(一)

函数展成幂级数的公式(一)函数展成幂级数的公式1. 泰勒级数公式:泰勒级数是函数展开成幂级数的一种方式,可以表示为:f(x)=∑f(n)(a) n!∞n=0(x−a)n其中 $ f^{(n)}(a) $ 表示函数 $ f(x) $ 在点 $ a $ 处的 $ n $ 阶导数。

举例:考虑函数 $ f(x) = e^x $,假设我们要在点 $ a = 0 $ 处展开泰勒级数。

根据泰勒级数公式,我们可以将 $ e^x $ 展开为:e x=∑e0 n!∞n=0x n=∑x nn!∞n=0这样我们就得到了 $ e^x $ 的幂级数展开形式。

2. 麦克劳林级数公式:麦克劳林级数是泰勒级数在 $ a = 0 $ 处展开的特殊情况,可以表示为:f(x)=∑f(n)(0) n!∞n=0x n举例:考虑函数 $ f(x) = (x) $,我们可以使用麦克劳林级数将其展开。

首先,计算 $ f(0) = (0) = 0 $,以及$ f’(0) = (0) = 1 $。

然后,利用麦克劳林级数公式,展开 $ f(x) = (x) $:sin(x)=∑f(n)(0) n!∞n=0x n=∑x2n+1(−1)n(2n+1)!∞n=0这样我们就得到了 $ (x) $ 的幂级数展开形式。

3. 泊松级数公式:泊松级数是一种特殊的幂级数,用于展开函数 $ f(x) $ 的某些特殊形式,可以表示为:f(x)=∑c n∞n=0(x−a)n其中 $ c_n $ 是级数中的系数。

举例:考虑函数 $ f(x) = (1+x) $,我们可以使用泊松级数将其展开。

首先,计算 $ f(0) = (1+0) = 0 $,以及$ f’(x) = $,进而计算$ f’(0) = 1 $。

然后,利用泊松级数公式,展开 $ f(x) = (1+x) $:ln(1+x)=∑c n∞n=0x n为确定系数 $ c_n $,我们对$ f’(x) = = _{n=0}^{}c_n(n+1)x^n $ 进行展开。

11函数展开成幂级数解读

11函数展开成幂级数解读

0
x
x s ( x ) dx dx , 0 1 x s( x )
得 ln s( x ) ln s(0) ln(1 x ),

ln s( x ) ln(1 x ) ,


s( x ) (1 x ) , x ( 1,1)
(1 x ) ( 1) 2 ( 1)( n 1) n 1 x x x 2! n! 牛顿二项式展开式 注意: 在x 1处收敛性与的取值有关. 1 收敛区间为 (1,1); 1 1 收敛区间为 (1,1]; 1 收敛区间为 [1,1].
xs( x ) x ( 1) x
2
( 1)( n 1)
( n 1)!
xn
利用
( m 1)( m n 1) ( m 1)( m n) m ( m 1)( m n 1) ( n 1)! n! n!
x x0 lim 0, 故 lim Rn ( x ) 0, n ( n 1)! n x ( x 0 R, x 0 R )
可展成点x0的泰勒级数.
二、函数展开成幂级数
1.直接法(泰勒级数法)
步骤: (1) 求a n
f
(n)
( x0 ) ; n!
( 2) 讨论 lim Rn 0 或 f ( n ) ( x ) M ,
1 1 1 3 2 1 3 5 3 n ( 2n 1)!! n 1 x x x ( 1) x 1 x 2 2 4 2 4 6 ( 2n)!! [1,1]
双阶乘
2.间接法 根据唯一性, 利用常见展开式, 通过变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积分,复合 等方法,求展开式. 例如 cos x (sin x )

函数展成幂级数的公式

函数展成幂级数的公式

函数展成幂级数的公式在数学中,幂级数是一种特殊的函数表示方法,它可以用无限多个幂次项的和来表示一个函数。

幂级数的形式可以写为:f(x)=a₀+a₁x+a₂x²+a₃x³+...其中,a₀,a₁,a₂,a₃等是系数,可以是实数或复数,x是自变量。

幂级数的展开系数a₀,a₁,a₂,a₃等根据函数的性质不同而有所不同。

下面介绍几个常见函数的幂级数展开公式。

1. 指数函数(exp(x)的幂级数展开):指数函数exp(x)可以展开为无限和的形式:exp(x) = 1 + x + (x²/2!) + (x³/3!) + ...其中,n!表示n的阶乘。

2. 正弦函数(sin(x)的幂级数展开):正弦函数sin(x)可以展开为无限和的形式:sin(x) = x - (x³/3!) + (x⁵/5!) - (x⁷/7!) + ...3. 余弦函数(cos(x)的幂级数展开):余弦函数cos(x)可以展开为无限和的形式:cos(x) = 1 - (x²/2!) + (x⁴/4!) - (x⁶/6!) + ...4. 自然对数函数(ln(x)的幂级数展开):自然对数函数ln(x)可以展开为无限和的形式:ln(x) = (x-1) - (x-1)²/2 + (x-1)³/3 - (x-1)⁴/4 + ...以上仅列举了几个常见函数的幂级数展开公式,实际上,许多其他函数也可以通过幂级数展开来表示,例如三角函数的反函数、双曲函数、指数函数的反函数等。

幂级数展开的优点是可以用有限项的和来近似计算一个函数的值,特别是在自变量比较接近展开点的情况下,保留有限项可以获得较高的精度。

此外,幂级数展开也有助于理解函数的性质和行为。

在实际应用中,幂级数展开在物理、工程、计算机科学等领域有重要的应用,例如在信号处理、图像处理、优化求解等方面都得到了广泛应用。

总之,幂级数是一种重要的函数展示方法,在数学和应用领域都有着重要的地位。

第四节 函数展开成幂级数

第四节   函数展开成幂级数

201第四节 函数展开成幂级数一、泰勒级数前面讨论了这样一个问题,对于给定的幂级数,求出其收敛域并确定其和函数的性质,并在可能时求出和函数的表达式。

这节我们讨论该问题的反问题:给定函数()x f ,要考虑它是否能在某个区间内“展开成幂级数”,即是否能找到这样一个幂级数,它在某区间内收敛,且其和恰好就是给定的函数()x f 。

(如果能够找到这样的幂级数,就说()x f 在该区间内可展开成幂级数。

)解决这个问题有很重要的应用价值,因为它给出了函数()x f 的一种新的表达方式,并使我们可以用简单函数——多项式来逼近一般函数()x f 。

在第三章中我们已经学过泰勒公式:若函数()x f 在点0x 的某一邻域内具有直到()1+n 阶的导数,则在该邻域内()x f 的n 阶泰勒公式:()()()()()() +-''+-'+=200000!2x x x f x x x f x f x f()()()()x R x x n x f n n n +-+00!(1)成立,其中()x R n 为拉格朗日型余项。

()()()()()101!1++-+=n n n x x n f x R ξ(之间与在x x 0ξ)如果令00=x ,就得到马克劳林公式:()()()()()()()x R x n f x f x f f x f n nn +++''+'+=!0!20002(2)202此时,()()()()11!1+++=n n n x n x f x R θ(10<<θ)公式说明,任一函数只要有直到()1+n 阶的导数,就可等于某个n 次多项式与一个余项的和。

下列幂级数()()()()() +++''+'+nn x n f x f x f f !0!20002(3)我们称为马克劳林级数。

那么它是否以函数()x f 为和函数呢? 若令马克劳林级数(3)的前1+n 项和为()x s n 1+,即()()()()()()nn n x n f x f x f f x s !0!200021++''+'+=+那么,级数(3)收敛于函数()x f 的条件为()()x f x s n n =+∞→1lim由马克劳林公式与马克劳林级数的关系,可知()()()x R x s x f n n +=+1于是,当()0lim =∞→x R n n 时,有()()x f x s n n =+∞→1lim 。

函数怎么展开成幂级数

函数怎么展开成幂级数

函数怎么展开成幂级数
展开函数成幂级数是将一个函数表示为幂级数的形式,其中幂级数是以自变量的幂次递增的一系列项的和。

下面是展开函数成幂级数的一般步骤:
1. 确定展开点:选择一个适当的展开点,通常是函数定义域内的某个特定点,例如0点或其他常用点。

2. 确定幂级数的形式:幂级数的一般形式是
f(x) = c? + c?(x-a) + c?(x-a)2 + c?(x-a)3 + ...
3. 求取各项系数:通过求导、积分或其他方法,计算幂级数的每一项系数c?, c?, c?, ...
4. 写出幂级数展开:将求得的各项系数代入幂级数的一般形式中,得到展开后的幂级数表达式。

需要注意的是,在某些情况下,函数可能只能在给定的展开点的某个特定范围内展开为幂级数。

具体来说,有几种常见的方法可以用来展开函数成幂级数:
1. 泰勒级数:使用泰勒级数展开函数,其中泰勒级数是在展开点附近的无穷项幂级数。

泰勒展开通常基于函数在展开点处的各阶导数。

2. 麦克劳林级数:麦克劳林级数是一种特殊的泰勒级数,其中只考虑展开点的0阶到n阶导数项。

此方法适用于将函数在0点处展开的情况。

3. 广义幂级数:广义幂级数是一种在非零展开点附近展开的级数形式,通过将函数表示为其他函数的级数和来展开。

请注意,展开函数成幂级数是一个复杂的过程,对于某些函数可能很难获得完整的幂级数表达式。

此外,幂级数可能只在某个收敛域内是收敛的。

因此,在实践中,特定函数的幂级数展开需要根据具体情况使用适当的方法和技巧。

函数展开成幂级数的方法

函数展开成幂级数的方法

函数展开成幂级数的方法幂级数是指一种形如 $\sum_{n=0}^{\infty} a_n
x^n$ 的函数展开方法。

这种展开方法可以将函数展开成一个关于 $x$ 的无限多项式。

对于给定的函数 $f(x)$,我们可以使用以下步骤将其展开成幂级数:
1.选择幂级数的中心 $x_0$。

2.将函数 $f(x)$ 以 $x_0$ 为中心进行平移,得到函数
$f(x-x_0)$。

3.使用泰勒展开式将函数 $f(x-x_0)$ 展开成如下形
式:
$$f(x-x_0) = \sum_{n=0}^{\infty}
\frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$$
其中 $f^{(n)}(x)$ 表示函数 $f(x)$ 的 $n$ 阶导数。

通过以上步骤,我们就可以将函数 $f(x)$ 展开成幂级数:
$$f(x) = \sum_{n=0}^{\infty}
\frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$$
注意,幂级数的收敛性取决于函数 $f(x)$ 在
$x_0$ 处的可微性以及 $x_0$ 周围的情况。

如果函数
$f(x)$ 在 $x_0$ 处不可微或者 $x_0$ 周围的函数值发生快速变化,那么幂级数可能会不收敛。

例如,对于函数 $f(x) = |x|$,无论选择任何值作为幂级数的中心,幂级数都不会收敛。

课件:函数展开成幂级数

课件:函数展开成幂级数

n1
n n1 n
(1)n1 3n xn( 1 x 1 )
n1
n
3
3
22
思考:
如何将下列函数 展开成 x 的幂级数.
(1)f
(
x)
ln
1 1
x x
(2)f (x) ln(1 x x2 )
23
例10. 将f (x) arcsinx 展开x的幂级数。
解: 因为 f ( x) (arcsin x) 1
12
对应
m
1 2
,
1 2
,1
的二项展开式分别为
1 x 1 1 x 1 x2 13 x3 135 x4 2 24 246 2468
( 1 x 1)
1 1
x
1
1 2
x
13 24
x2
135 246
x3
1 3 5 7 2468
x4
( 1 x 1)
1 1 x x2 x3 (1)n xn
1
x
1 x2 2!
1 x3 3!
1 xn n!
其收敛半径为
R lim
n
1 n!
1 (n 1)!
对任何有限数 x , 其余项满足
e xn1 e x (n 1)!
n
( 在0与x 之间)
故 ex 1 x 1 x2 1 x3 1 xn ,
2! 3!
n!
7
例2. 将
展开成 x 的幂级数.
解: f (n) (x)

ln(1
x)
xln221xn211n13[x13(14 x234)n] xn
(1)n (n321
xxn132)
x (1, 1]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∴f
(0) = 0, f ( 2 n+1) (0) = ( −1) n , ( n = 0,1,2,⋯)
f ′′( x0 ) f ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + ( x − x0 )2 2! f (n) ( x0 ) + ⋯+ ( x − x0 )n + Rn( x) n!
f (n+1) (ξ ) x ξ ( x − x0 )n+1( 在x0与 之 ). 其 Rn( x) = 中 间 (n + 1)!
[ f ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + o( x − x0 )]
如, 例 , 当x 很 时 e ≈ 1 + x , ln(1 + x) ≈ x 如 小 ,
x
(如下图) 如下图)
y = ex
y = ex
y= x
y = ln(1 + x)
y = 1+ x
n= 0

的泰勒级数, 定理 2 f ( x ) 在点 x0 的泰勒级数, 在U δ ( x0 ) 内收 敛于 f ( x ) ⇔ 在U δ ( x0 ) 内 lim Rn ( x ) = 0 .
n→∞
证明( 证明(略)
定理 3
设 f (x) 在U ( x0 ) 上有定义,∃M > 0, 对 上有定义, ( n) ∀ x ∈ ( x0 − R, x0 + R),恒有 f ( x) ≤ M
n=0
存在幂级数在其收敛 域内以f(x)为和函数 域内以 为和函数
问题: 如果能展开 如果能展开, 是什么? 问题 1.如果能展开 a n 是什么 2.展开式是否唯一 展开式是否唯一? 展开式是否唯一 3.在什么条件下才能展开成幂级数 在什么条件下才能展开成幂级数? 在什么条件下才能展开成幂级数
定理1 U 定理 1 如果 函数 f (x)在 δ ( x0 )内具有 任意 阶导 级数, 数 且 Uδ ( x0 )内能展 , 在 开成( x − x0 )的幂 级数 , 即 f ( x) =
代 P (x)中 入 n 得
三、泰勒(Taylor)中值定理 泰勒(Taylor)中值定理 (Taylor)
泰勒(Taylor)中值定理 泰勒(Taylor)中值定理 如果函数 f (x) 在含有x0 (Taylor) ( ( 阶的导数, 的某个开区间 a, b) 内具有直到 n + 1) 阶的导数,则 ( 内时, 当x在(a, b) 内时, f (x)可以表示为 x − x0 ) 的一个 n次多项式与一个余项Rn (x)之和: 之和:
拉格朗日形式的余项
f (n+1) (ξ ) M n+1 Rn ( x) = ( x − x0 ) ( x − x0 )n+1 ≤ (n + 1)! (n + 1)! Rn ( x ) 0 及 lim n = x → x0 ( x − x ) 0
即Rn( x) = o[( x − x0 )n ].
∴ f ( x) = ∑
f ( n ) ( 0) n x 称为 f ( x ) 在点 x0 = 0 的麦克劳林级数. 麦克劳林级数. n!

n= 0
问题
f (n) ( x0 ) n f ( x) ? ∑ ( x − x0 ) == n! n=0

泰勒级数在收敛区间是否收敛于f(x)? 不一定 泰勒级数在收敛区间是否收敛于 不一定.

f
(n)
x
(n)
由于M的任意性 由于 的任意性, 即得 的任意性
1 2 1 n e = 1 + x + x +⋯+ x +⋯ x ∈(−∞,+∞) 2! n!
x
f x . 例2 将 ( x) = sin x展开成 的幂级数

f
(2n)
(n)
nπ nπ (n) ( x ) = sin( x + ), f (0) = sin , 2 2
n
1⋅ a = f ′( x ),
1 0 ( n) 0
2!⋅a = f ′′( x )
2 0
⋯ ⋯, n!⋅a = f ( x ) 1 (k ) (k = 0,1,2,⋯, n) 得 ak = f ( x0 ) k!
f ′′( x0 ) ( x − x0 )2 + ⋯ P ( x) = f ( x0 ) + f ′( x0 )( x − x0 ) + n 2! f (n) ( x0 ) ( x − x0 )n + n!
f (n+1) (θx) n+1 x 则 项 Rn ( x) = 余 (n + 1)!
麦克劳林(Maclaurin)公式 麦克劳林(Maclaurin)公式 (Maclaurin)
f ′′(0) 2 f (n) (0) n f ( x) = f (0) + f ′(0)x + x + ⋯+ x 2! n! f (n+1) (θx) n+1 x (0 < θ < 1) + (n + 1)!
f ′′(0) 2 f (n) (0) n f ( x) = f (0) + f ′(0)x + x +⋯+ x 2! n! + O( xn )
四、泰勒级数
上节例题

( −1) n−1 ∑
n =1

xn = ln(1 + x ) ( −1 < x ≤ 1) n
n
f ( x) = ∑an ( x − x0 )
n
f (k ) ( x0 ) f ( x) = ∑ ( x − x0 )k + Rn ( x) k =0 k! ( 的n 泰 公 称 f (x)按 x − x0 )的 展 的n 阶 勒 式 为 幂 开
n
f (n+1) (ξ ) Rn( x) = ( x − x0 )n+1 (ξ在x0与x之间 ) (n + 1)!
(n = 0,1,2,⋯ 泰勒系数 )
泰勒系数是唯一的, 泰勒系数是唯一的 ∴ f ( x )的展开式是唯一的 .
定义

n=0


处任意阶可导, 如果 f ( x ) 在点 x0 处任意阶可导,则幂级数
f ( n ) ( x0 ) n ( x − x0 ) 称为 f ( x ) 在点 x0 的泰勒级数. 泰勒级数. n!
此 去 过 如 下 ,经 (n + 1)次 ,得 后
( Rn( x) Rnn+1) (ξ ) n+1 = (n + 1)! ( x − x0 ) x 间 (ξ在x0与ξn之间,也 x0与 之 ) 在
∵ P
( n+1) n
( x) = 0,
( ∴ Rnn+1) ( x) = f (n+1) ( x)
(n + 1)阶 数 P(x) 为 项 函 导 , 多 式 数
P ( x) = a0 + a1( x − x0 ) + a2( x − x0 )2 + ⋯+ an( x − x0 )n n
差 Rn( x) = f ( x) − P ( x) 误 n
、 二 Pn 和Rn 的 定 确
分析: 分析
近 似 程 度 越 来 越 好
1.
x0
Pn ( x0 ) = f ( x0 )
y
y = f (x)
2.
′ Pn ( x0 ) = f ′( x0 )
3.
′ Pn′( x0 ) = f ′′( x0 )
o
x0
x
⋯⋯ ⋯⋯
设 假
0
P(k ) ( x0 ) = f (k ) ( x0 ) k = 1,2,⋯, n n
0பைடு நூலகம்
a = f ( x ),
an ( x − x0 )n ∑
n=0

1 (n) 则其系数 an = f ( x0 ) n!
是唯 一的. 且展开式 一的.
∞ n= 0
(n = 0,1,2,⋯ )
∵ ∑ a n ( x − x0 ) n 在u( x0 )内收敛于 f ( x ),即 证明
f ( x ) = a 0 + a1 ( x − x 0 ) + ⋯ + a n ( x − x 0 ) + ⋯
第四节
函数展开成幂级数
一、问题的提出
1.设 1.设 f (x)在x0处 续 则 连 , 有
f ( x) ≈ f ( x0 )
[ f ( x) = f ( x0 ) +α ]
x 2.设f (x)在 0 处可 ,则 导, 2.设 导 有
f ( x) ≈ f ( x0 ) + f ′( x0 )( x − x0 )
Rn ( x ) Rn ( x ) − Rn ( x0 ) n +1 = ( x − x0 ) ( x − x0 ) n + 1 − 0
′ Rn (ξ1 ) = ( n + 1)(ξ1 − x0 )n (ξ在x0与x之间)
′ (x)及(n + 1)( x − x0 )n 在以x0 及ξ1为端点 两 函数Rn
( 证明: 设, 证明: 由 设,Rn (x) 在 a, b) 内具 直 (n + 1)阶 假 有 到
数 导 ,且
( ′ ′′ Rn ( x0 ) = Rn ( x0 ) = Rn ( x0 ) = ⋯= Rnn) ( x0 ) = 0
两函数Rn (x) 及( x − x0 )n+1 在以x0 及x 为端点的 件, 区 上 足 西 值 理 条 ,得 间 满 柯 中 定 的 件
相关文档
最新文档