第二章 可见分光光度法

第二章 可见分光光度法
第二章 可见分光光度法

第二章紫外-可见分光光度法

物质是有颜色的,利用比较溶液本身或加入试剂后呈现出的颜色深浅的方法来确定溶液中有色物质的含量的方法为比色分析法。以人的眼睛来检测颜色的深浅的方法为目视比色法。以光电转化器件(如光电池)为检测器来区别颜色深浅的方法为光电比色法。

分光光度法是利用物质的分子或离子对某一波长范围的光的吸收作用,对物质进行定性分析、定量分析及结构分析, 所依据的光谱是分子或离子吸收入射光中特定波长的光而产生的吸收光谱。紫外光谱(UV)能够提供分子中的共轭体系的结构信息,可用于判断共轭体系中取代基的位置、种类和数目。红外光谱(IR)在未知结构化合物的鉴定中,主要用于功能基的确认,芳环取代类型的判断等。由于UV和IR只能给出分子中部分结构的信息,而不能给出整个分子的结构信息,能提供化合物的结构信息较少,所以单独以UV和IR不能确定分子结构,必须与NMR谱、MS谱以及其他理化方法结合才能得到可靠的结论。

紫外-可见分光光度法即是利用物质本身(或生成的有色化合物即“显色”后测定)对紫外及可见光的吸收进行测定,其特点:

①灵敏度高。可用于测定试样中1%-0.001%的微量成分,甚至可测低至10-6-10-7的痕量成分。

②准确度高。测定的相对误差为2%-5%,采用精密分光光度计时,可减少至1%-2%。特别适用于低含量和微量含量组分的测定,不适于中和高含量组分的测定。但如果采取适当的技术措施,比如示差法,也可测定高含量组分。

③适用范围广。

④操作简单,快速,仪器价格不昂贵。

⑤目前,分析仪器制造技术和计算机技术的结合使光度分析获得了新的活力。

2.1基本原理

2.1.1光的基本原理

2.1电磁表谱表

光谱名称波长范围跃迁类型分析方法

X射线0.1-10nm K和L层电子X射线光谱法

紫外10-380nm 10-20中层电子,200-380价电子紫外光度法

可见380-780nm 380-780价电子比色及可见光度法

红外0.78-1000μm 分子振动红外光谱法

微波0.1-100cm 微波光谱法

无线电波1-1000m 核磁共振光谱法

2.1.2溶液颜色与光吸收的关系

物质呈现的颜色与光有密切的关系,不同波长的可见光可使眼睛感觉到不同颜色。

具有同一种波长的光,称为单色光。含有多种波长的光为复合光。当将某两种颜色的光按适当强度比例混合时,可以形成白光,这两种色光就称为互补色。

2.2光的吸收定律

2.2.1透光度和吸光度

设入射光强度为I 0,吸收光强度为I a ,透射光强度为 I t ,反射光强度为I r ,则 I 0= I a + I t + I r

由于反射光强度基本相同,其影响可相互抵消,上式可简化为: I 0= I a + I t

透光度:透光度为透过光的强度It 与入射光强度I0之比,用T 表示: T= It/I0 吸光度: 为透光度倒数的对数,用A 表示, A=lg1/T=lgI0/It 2.2.2朗伯-比尔定律

朗伯-比尔定律:当一束平行单色光通过含有吸光物质的稀溶液时,溶液的吸光度与吸光物质浓度、液层厚度乘积成正比,即

A= κ cl

式中比例常数κ与吸光物质的本性,入射光波长及温度等因素有关。c 为吸光物质浓度,l 为透光液层厚度。

朗伯-比尔定律是紫外-可见分光光度法的理论基础。 2.2.3吸光系数

当l 以cm ,c 以g/L 为单位,κ称为吸光系数,用 a 表示。A= a cl a 的单位为L/(g.cm)

当l 以cm ,c 以mol/L 为单位,κ称为摩尔吸光系数,用 ε表示。 ε的单位为L/mol.cm ,它表示物质的浓度为1mol/L

,液层厚度为1cm 时,溶液的吸光度。

比吸光系数是指百分含量为1%, l 为1cm 时的吸光度值,用 表示。 2.2.4偏离朗伯-比耳定律的因素 (1)入射光为非单色光 (2)溶液的不均性。

实际样品的混浊,加入的保护胶体,蒸馏水中的微生物,存在散射以及共振发射等,均可吸光质点的吸光特性变化大。

(3)光程的不一致性。

光源不是点光源,比色皿光径长度不一致,光学元件的缺陷引起的多次反射等,均造成光径不一致,从而与定律偏离。

2.3紫外-可见分光光度计 2.

3.1主要部件的性能与作用

入射光 I 透射光 I %

11cm E

基本结构:

① 光源

在整个紫外光区或可见光区可以发射连续光谱,具有足够的辐射强度、较好的稳定性、较长的使用寿命。

可见光区常用的光源是钨灯或碘钨灯,波长范围是350-1000 nm 。 在紫外区常为氢灯或氘灯,发射的连续波长范围是180-360 nm 。 ②单色器

单色器是将光源辐射的复合光分成单色光的光学装置。它是分光光度计的心脏部分。单色器一般由狭缝、色散元件及透镜系统组成。关键是色散元件,最常见的色散元件是棱镜和光栅。

狭缝:将单色器的散射光切割成单色光。直接关系到仪器的分辨 率。狭缝越小,光的单色性越好。分为入射狭缝和出射狭缝。

棱镜:玻璃350~3200 nm ,石英185~4000 nm 。

光栅:波长范围宽,色散均匀,分辨性能好,使用方便。

1.入射狭缝

2.准直透镜

3.棱镜

4.聚焦棱镜

5.出射狭缝

③吸收池

吸收池又称比色皿或比色杯,按材料可分为玻璃吸收池和石英吸收池,前者不能用于紫外区。 吸收池的种类很多,其光径可在0.1~10cm 之间,其中以1cm 光径吸收池最为常用。

5

光源 单色器 样品池 检测器 显示器

④检测器

检测器的作用是检测光信号,并将光信号转变为电信号。现今使用的分光光度计大多采用光电管或光电倍增管作为检测器。

⑤信号显示系统

常用的信号显示装置有直读检流计,电位调节指零装置,以及自动记录和数字显示装置等。

2.3.2紫外-可见分光光度计的类型

分光光度计按仪器使用波长分类:

①真空紫外分光光度计(0.1-200 nm);

②可见分光光度计(350-700 nm);

③紫外-可见分光光度计(190-1100 nm);

④紫外-可见-红外分光光度计(190-2500 nm);

如果按仪器使用的光学系统分类:

①单光束分光光度计;

②双光束分光光度计

③双波长分光光度计

④动力学分光光度计

单波长单光束分光光度计

经单色器分光后的一束平行光,轮流通过参比溶液和样品溶液,以进行吸光度的测定。其简单,价廉,适于在给定波长处测量吸光度或透光度,一般不能作全波段光谱扫描,要求光源和检测器具有很高的稳定性。

目前国内广泛采用721型分光光度计。具有结构简单、价格低廉、操作方便、维修也比较容易,适用于常规分析。

单波长单光束分光光度计还有国产751型、XG-125型、英国SP500型和伯克曼DU-8型等。

单波长双光束分光光度计

经单色器分光后经反射镜分解为强度相等的两束光,一束通过参比池,一束通过样品池。光度计能自动比较两束光的强度,此比值即为试样的透射比,经对数变换将它转换成吸光度并作为波长的函数记录下来。自动记录,快速全波段扫描。可消除光源不稳定、检测器灵敏度变化等因素的影响,特别适合于结构分析。仪器复杂,价格较高。

单波长双光束分光光度计有国产710型、730型、740型、日立UV-340型等就属于这种类型。

双波长分光光度计

由同一光源发出的光被分成两束,分别经过两个单色器,得到两束不同波长(λ1和λ2)的单色光;通过折波器以一定的频率交替通过同一样品池,然后由检测器交替接收信号,最后由显示器显示出两个波长处的吸光度差值ΔA。无需参比池。△A就是扣除了背景吸收的吸光度。

双波长分光光度计的优点:是可以在有背景干忧或共存组分吸收干忧的情况下对某组分进行定量测定。

国产WFZ800-5型、岛津UV-260型、UV-265型等都是双波长分光光度计。

动力学分光光度计

解决在光化学反应、辐射化学反应和酶催化反应中,能量转化、酶的降解、生物合成等的反应变化。其特点:时间辨别、快速扫描、测定生物化学瞬间产物的吸收光谱和随时间变化值。

2.3.3紫外-可见分光光度计主要技术指标

①波长范围:表示仪器能测定的波长范围。波长范围越大,仪器越好,这与仪器使用的灯有关。

②波长精度:表示仪器单色器波长误差程度。波长误差越小,仪器精度越高,这与仪器使用的单色器有关。

③杂散光:表示单色光的纯度,这与制作单色器的材料和加工工艺有关。

④光度的测量精度:表示仪器每次测定显示读数的精确度,即仪器能准确读小数点后几位。位数越多,仪器精度越高,这与仪器使用的检测系统有关。

⑤光度测量的重现性:每次A读数的重现性,这与仪器使用的检测器的质量有关。

⑥分辨率:表示仪器分辨吸收光谱微细结构的能力,即指仪器对于紧密相邻的峰可分辨的最小波长间距,这是衡量仪器性能的一个综合指标。

2.3.4分光光度计的校正和检验

①波长校正

②吸光度校正

③杂散光的检验

④稳定性的检验

2.4分析条件的选择

2.4.1仪器测量条件的选择

2.4.1.1适宜的吸光度范围

由朗伯-比尔定律可知:

A=lg1/T=εcl

微分后得:

dlgT=0.4343dT/T= -εl d c

或0.4343ΔT/T= -εlΔc

代入朗伯-比尔定律有:

Δc/c=0.4343ΔT/TlgT

要使测定的相对误差Δc/c最小,求导取极小得出:

lgT=-0.4343=A

即当A=0.4343时,吸光度测量误差最小。

最适宜的测量范围为0.2~0.8之间。

2.4.1.2入射光波长的选择

通常是根据被测组分的吸收光谱,选择最强吸收带的最大吸收波长为入射波长。当最强吸收峰的峰形

比较尖锐时,往往选用吸收稍低,峰形稍平坦的次强峰或肩峰进行测定。

2.4.1.3狭缝宽度的选择

为了选择合适的狭缝宽度,应以减少狭缝宽度时试样的吸光度不再增加为准。一般来说,狭缝宽度大约是试样吸收峰半宽度的十分之一。

2.4.2显色反应条件的选择

在光度分析中,将试样中被测组分转变为有色化合物的反应叫显色反应。能与被测组分生成有色物质的试剂称为显色剂。对多种物质进行测定,常利用显色反应将被测组分转变为在一定波长范围有吸收的物质。常见的显色反应有络合反应,配位反应、氧化还原反应等。

这些显色反应,必须满足以下条件:

①反应的生成物必须在紫外-可见光区有较强的吸光能力,即摩尔吸光系数较大;

②反应有较高的选择性,即被测组分生成的化合物吸收曲线应与共存物质的吸收光谱有明显的差别;

③反应生成的产物有足够的稳定性,以保证测量过程中溶液的吸光度不变;

④反应生成物的组成恒定。

2.4.2.1显色剂用量(M+R→MR)

在实际选用时,一般通过实验来确定:待测组分的浓度和其他条件不变,分别加入不同量的显色剂,分别测定它们的吸光度,以吸光度为纵坐标,显色剂用量为横坐标作图。在对应于吸光度恒定时对应的显色剂浓度区间内确定显色剂的用量。

2.4.2.2显色时间和反应温度

不同的显色反应的速度不同,而且反应温度对反应的速度以及反应产物等均有影响。因此,需要根据反应性质选择合适的显色时间和反应温度。

2.4.2.3反应体系的酸度

酸度对吸光光度分析的影响很复杂,它可以影响配合反应的进行程度,改变金属离子的存在形式和显色剂的颜色,为了选择合适的PH,必须综合考虑各方面的影响,适宜的酸度要由实验来确定。

2.4.2.4采用适当的手段消除干扰物质的干扰

分离物与干扰物的分离:通过前处理,使分析物与干扰物相互分离,然后进行分析,常用的分离方法有:萃取法、离子交换法、电解法、色谱法等。

加入掩蔽剂:在被测液中加入与干扰物质产生稳定的无色络合物的试剂,使干扰物不与显色剂作用。

选择适当的波长:一般选择λmax为入射光波长。如果λmax处有共存组分干扰时,应考虑选择灵敏度稍低但能避免干扰的入射光波长。

2.4.3参比溶液的选择

测定试样溶液的吸光度,需先用参比溶液调节透光度(吸光度为0)为100%,以消除其它成分及吸光池和溶剂等对光的反射和吸收带来的测定误差。

参比溶液的选择视分析体系而定,具体有:

①溶剂参比试样简单、共存其它成分对测定波长吸收弱,只考虑消除溶剂与吸收池等因素;

②试样参比如果试样基体溶液在测定波长有吸收,而显色剂不与试样基体显色时,可按与显色反

应相同的条件处理试样,只是不加入显色剂。

③试剂参比如果显色剂或其它试剂在测定波长有吸收,按显色反应相同的条件,不加入试样,同样加入试剂和溶剂作为参比溶液。

④平行操作参比用不含被测组分的试样,在相同的条件下与被测试样同时进行处理,由此得到平行操作参比溶液。

2.5 测定方法

2.5.1单组分定量方法

单组分是指样品溶液中含有一种组分,或者是在混合物溶液中待测组分的吸收峰与其他共有物质的吸收峰无重叠。其定量方法包括校准曲线法、标准对比法和吸收系数法。

1 标准曲线法

方法:配制一系列不同含量的标准溶液,选用适宜的参比,在相同的条件下,测定系列标准溶液的吸光度,作A-c曲线,即标准曲线,也可用最小二乘数处理,得线性回归方程。

在相同条件下测定未知试样的吸光度,从标准曲线上就可以找到与之对应的未知试样的浓度。

2 标准对比法

即将待测溶液与某一标样溶液,在相同的条件下,测定各自的吸光度,建立朗伯-比尔定律,解方程求出未知样浓度与含量。

具体实验步骤:

(1)标准溶液的配制

(2)供试样品溶液的配制

(3)最大波长的确定(波长扫描)

(4)标准曲线的绘制

(5)供试样品含量测定

2.6仪器的使用操作及维护

2.6.1仪器的操作规程

2.6.1.1准备工作

①打开光度计主机电源(预热20-30 min)。

②开启计算机电源。

③双击[UV-Probe]图标,即启动UV-2450的控制程序。

④单击[连接]键,进入光度计自检,自检过程中切勿开启样品室门。自检完毕后,单击[确定]键进入检测界面。

2.6.1.2 测定

①光谱扫描

参数和显示的设置、空白基线校正、供试品测量、光谱测定、数据处理。

②光度测定

参数和显示的设置、空白基线校正、标准品测量、

供试品测量。

③动力学测定

参数和显示的设置、空白基线校正、供试品测量。

④仪器使用完毕,取出样品室内吸收池,退出UV-Probe软件系统。

⑤关闭计算机。

⑥关闭光度计电源。

⑦按要求做好仪器使用登记。

2.6.2仪器的维护

2.6.2.1温度和湿度,室温保持在15~35℃,相对湿度宜控制在45%~80%。防尘、防震、防电磁干扰,仪器周围不应有强磁场。不要暴露在阳光直射的地方,不要放在有腐蚀性气体或在UV波长范围内有吸收的有机和无机气体的环境内。

2.6.2.2如果开机后钨灯和氘灯不亮,应首先检查保险丝。若断了应更换新的保险丝。注意更换保险丝时,关闭电源开关并切断电源。

2.6.2.3为了防止光电管疲劳,不测定时必须将比色皿暗箱盖打开,使光路切断,以延长光电管使用寿命。

2.6.2.4光度计灯源寿命有限,若长时间不测量,应通过UVProbe软件断开连接(点击“Disconnect”),然后关闭光度计电源。

2.6.2.5仪器自检和扫描的过程中,不要打开样品室盖。

2.6.2.6软件不会自动保存数据,所有的数据要保存都必须点击“Save”或者“Save As”进行另存。否则数据会丢失。

2.6.2.7样品室的出射和入射石英窗不应有污染,不要用手触摸样品室中透光窗面,若不小心接触过,要用无水乙醇擦拭。

2.6.2.8.比色皿的使用方法

①拿比色皿时,手指只能捏住比色皿的毛玻璃面,不要碰比色皿的透光面,以免沾污。

②清洗比色皿时,一般先用水冲洗,再用蒸馏水洗净。如比色皿被有机物沾污,可用盐酸-乙醇混合洗涤液(1∶2)浸泡片刻,再用水冲洗。不能用碱溶液或氧化性强的洗涤液洗比色皿,以免损坏。也不能用毛刷清洗比色皿,以免损伤它的透光面。每次做完实验时,应立即洗净比色皿,用干净绸布或擦镜纸擦干,晾干后,放入吸收池盒中,防尘保存。

③比色皿外壁的水用擦镜纸或细软的吸水纸吸干,避免硬的物品把透光面划伤,以保护透光面。

④测定有色溶液吸光度时,一定要用有色溶液洗比色皿内壁几次,以免改变有色溶液的浓度。另外,在测定一系列溶液的吸光度时,通常都按由稀到浓的顺序测定,以减小测量误差。

⑤吸收池装盛样品以池体的4/5为度,使用挥发性溶液时应加盖。

2.6.2.9注意软件的正常交流,防止计算机病毒感染。

2.6.2.10在停止工作期间,主机样品室内应放入袋装硅胶干燥剂。用防尘罩罩住整个仪器。

2.6.3操作规程问题处理:

2.6.

3.1仪器不能初始化

检查光路是否受堵;关机(电脑及UV)重启;如不成功,查看说明书;

2.6.

3.2数据或谱图波动大

调零是否正确(重新调零)、参比样值是否过大(如果吸收值大于2.0,可能会出现波动大)。

2.6.

3.3基线不能平整(允许波动范围在±0.001之间)

扫描速度是否过快(改“快速”扫描为“中速”扫描或更低)、波长范围是否过窄(扩大扫描波长范围)。2.6.3.4吸收值异常

波长设置是否正确(重新调整波长,并重新调零)、测量时是否调零(如被误操作,重新调零)、比色皿是否用错(测定紫外波段时,要用石英比色皿)、样品准备是否有误(如有误,重新准备样品)。

2.6.

3.5数据不稳

预热时间不够(预热20分钟以上);环境振动过大、光源附近空气流速大、外界强光照射等;光电管、电路等其它原因(送修)。

邻二氮菲分光光度法测定微量铁实验报告

实验一邻二氮菲分光光度法测定微量铁 实验目的和要求 1.掌握紫外可见分光光度计的基本操作; 2.掌握邻二氮菲分光光度法测定微量铁的原理和方法; 3.掌握吸收曲线绘制及最大吸收波长选择; 4.掌握标准曲线绘制及应用。 实验原理 邻二氮菲(1,10—邻二氮杂菲)是一种有机配位剂,可与Fe2+形成红色配位离子: Fe2++3 N N N N 3 Fe 2+ 在pH=3~9范围内,该反应能够迅速完成,生成的红色配位离子在510nm波长附近有一吸收峰,摩尔吸收系数为1.1×10-4,反应十分灵敏,Fe2+ 浓度与吸光度符合光吸收定律,适合于微量铁的测定。 实验中,老师我们又见面了采用pH=4.5~5的缓冲溶液保持标准系列溶液及样品溶液的酸度;采用盐酸羟胺还原标准储备液及样品溶液中的Fe3+并防止测定过程中Fe2+被空气氧化。 实验仪器与试剂 1.752S型分光光度计 2.标准铁储备溶液(1.00×10-3mol/L) 3.邻二氮菲溶液(0.15%,新鲜配制) 4.盐酸羟胺溶液(10%,新鲜配制) 5.NaAC缓冲溶液 6.50ml容量瓶7个 7.1cm玻璃比色皿2个 8.铁样品溶液 实验步骤 1.标准系列溶液及样品溶液配制,按照下表配制铁标准系列溶液及样品溶液。

2.吸收曲线绘制用1cm比色皿,以1号溶液作为参比溶液,测定4号溶液在各个波长处的吸光度,绘制吸收曲线,并找出最大吸收波长。 3.标准曲线制作

在选定最大吸收波长处,用1cm 比色皿,以1号溶液作为参比溶液,分别测定2至7号溶液的吸光度,平行测定3次,计算吸光度平均值,绘制标准曲线。 实验数据处理 1、 样品中铁的计算 2.50 50.00 C C X ? =读取值 Cx=4.65×10-5 ×50.00/2.50=9.30×10-4 mol/L 2、 摩尔吸光系数计算 在标准曲线的直线部分选择量两点,读取对应的坐标值,计算邻二氮菲配位物在最大吸收波长出的摩尔吸光系数: 1 21 2c -c A A ε-= ε=(0.460-0.233)/(0.00006-0.00004)=2.00×10-5 7 样品溶液 4.65×10-5 mol/ml

实验五--分光光度法测定甲醛

实验五:空气中甲醛的测定(酚试剂分光光度法) 实验目的: 掌握甲醛测定方法; 熟练掌握大气采样器和分光光度计的使用; 实验原理: 甲醛的测定方法:分光光度法、气相色谱法、酚试剂分光光度法、乙酰丙酮分光光度法; 空气中的甲醛与3-甲基2-苯并噻唑酮腙酚试剂反应生成嗪,嗪在酸性溶液中被高铁离子氧化形成蓝绿色化合物,颜色深浅与甲醛含量成正比,物质的最大吸收波长为630nm,通过比色定量。当采样体积为10L时最低检出质量浓度为0.01mg/m3。 实验仪器: 分光光度计(在630nm测定);大气采样器;具塞比色管(10ml);分析天平;滴定管;容量瓶;量筒;移液管等 1、吸收液原液:称量0.10g酚试剂[C6H4SN(CH3)C:NNH2·HCl,简称NBTH],加水溶解,倾于100ml具塞量筒中,加水到刻度。放冰箱中保存,可稳定三天。吸收液:量取吸收原液5ml,加95ml水,即为吸收液。采样时,临用现配。 2、1%硫酸铁铵溶液 3、碘溶液[C(1/2I2)=0.1000mol/L] 4、1mol/L氢氧化钠溶液 5、0.5mol/L硫酸溶液:取28ml浓硫酸缓慢加入水中,冷却后,稀释至1000ml。 6、硫代硫酸钠标准溶液[C(Na2S2O3)=0.1000mol/L] 0.5%淀粉溶液:将0.5g可溶性淀粉,用少量水调成糊状后,再加入100ml沸水,并煎沸2~3min至溶液透明确。 7、甲醛标准贮备溶液:取2.8ml含量为36~38%甲醛溶液,放入1L容量瓶中,加水稀释至刻度。此溶液1ml约相当于1mg甲醛。其准确浓度用下述碘量法标定。 实验步骤: 1、样品采集:用一个内装5ml吸收液的大型气泡吸收管,以0.5L/min流量,采气10L。并记录采样点的温度和大气压力。采样后样品在室温下应在24h内分析。 2、甲醛标准贮备溶液的标定:精确量取20.00ml待标定的甲醛标准贮备溶液,置于250ml 碘量瓶中。加入20.00ml[C(1/2I2)=0.1000mol/L]碘溶液和15ml 1mol/L氢氧化钠溶液,放置15min,加入0.5mol/L硫酸溶液,再放置15min,用[C(Na2S2O3)=0.1000mol/L]硫代硫酸钠溶液滴定,至溶液呈现淡黄色时,加入1ml 5%淀粉溶液继续滴定至恰使兰色褪去为止,记录所用硫代硫酸钠溶液体积(V2),ml。同时用水作试剂空白滴定,记录空白滴定所用硫化硫酸钠标准溶液的体积(V1),ml。甲醛溶液的浓度用公式(1)计算:甲醛溶液浓度(mg/ml)=(V1-V2)×N×15/20 (1) 式中:V1――试剂空白消耗[C(Na2S2O3)=0.1000mol/L]硫代硫酸钠溶液的体积,ml; V2――甲醛标准贮备溶液消耗[C(Na2S2O3)=0.1000mol/L]硫代硫酸钠溶液的体积,ml;N――硫代硫酸钠溶液的准确当量浓度; 15――甲醛的当量; 20――所取甲醛标准贮备溶液的体积,ml。 二次平行滴定,误差应小于0.05ml,否则重新标定。 绘制标准曲线: 用1.00μg/ml甲醛标准溶液,按下表制各标准色列管

分光光度法测定水中铁离子含量.

专业项目课程课例 项目十二分光光度法测定水中铁离子含量 一、项目名称:分光光度法测定水中铁离子含量 二、项目背景分析 课程目标:本课程是培养分析化学操作技能和操作方法的一门专业实践课,以定量分析的基本理论为基础,以实验强化理论,以期提高化工工作者的分析操作能力。 功能定位:在定量分析中我们常常用到分光光度分析法,它具有操作简便、快速、准确等优点,在工农业生产和科学研究中具有很大的实用价值。是仪器分析的基础实验,也是一种重要的定量分析方法。分光光度法测定水中铁离子含量的测定项目综合训练了学生分光光度计使用、系列标准溶液配制、标准曲线绘制等多个技能。 学生能力:学生通过相关基础学科的学习已经具备了相应的化学知识和定量分析知识,也具备一定的独立操作和思维能力。 项目实施条件:该项目是仪器分析的基础实验,一般中职学校具备相关的实训实习条件,学生有条件完成相应的实习任务。 三、教学目标 1、了解721可见分光光度计的构造 2、了解分光光度法测定原理 3、掌握721可见分光光度计的操作方法 4、掌握分光光度法测定分析原始记录的设计 5、掌握分光光度法测定分析报告的设计 6、掌握分光光度法测定水中铁离子含量的测定方法 7、掌握分光光度法测定水中铁离子含量的分析原始记录和分析报告的填写 四、工作任务 1

2 五、参考方案 参考方案一 1、邻二氮杂菲-Fe 2+ 吸收曲线的绘制 用吸量管吸取铁标准溶液(20μg/mL )0.00、2.00、4.00mL ,分别放入三个50mL 容量瓶中,加入1mL 10%盐酸羟胺溶液,2mL 0.1%邻二氮杂菲溶液和5mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用3cm 比色皿,以试剂空白(即在0.0mL 铁标准溶液中加入相同试剂)为参比溶液,在440~560nm 波长范围内,每隔20~40nm 测一次吸光度,在最大吸收波长附近,每隔5~10nm 测一次吸光度。在坐标纸上,以波长λ为横坐标,吸光度A 为纵坐标,绘制A 和λ关系的吸收曲线。从吸收曲线上选择测定Fe 的适宜波长,一般选用最大吸收波长λmax 。 2、标准曲线的制作 用吸量管分别移取铁标准溶液(20μg/mL )0.00、2.00、4.00、6.00、8.00、10.00mL ,分别放入6个50mL 容量瓶中,分别依次加入1.00mL 10%盐酸羟胺溶液,稍摇动;加入2.00mL 0.1%邻二氮杂菲溶液及5.00mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用1cm 比色皿,以试剂空白(即在0.00mL 铁标准溶液中加入相同试剂)为参比溶液,选择λmax 为测定波长,测量各溶液的吸光度。在坐标纸上,以含铁量为横坐标,吸光度A 为纵坐标,绘制标准曲线。 3、水样中铁含量的测定 取三个50mL 容量瓶,分别加入5.00mL (或10.00mL 铁含量以在标准曲线范围内为合适)未知试样溶液,按实验步骤2的方法显色后,在λmax 波长处,用1cm 比色皿,以试剂空白为参比溶液,平行

实验分光光度法测定铁

实验分光光度法测定铁 The following text is amended on 12 November 2020.

实验十四邻二氮菲分光光度法测定铁的含量 一、实验目的 1.学习吸光光度法测量波长的选择方法; 2.掌握邻二氮菲分光光度法测定铁的原理及方法; 3. 掌握分光光度计的使用方法。 二、实验原理 分光光度法是根据物质对光选择性吸收而进行分析的方法,分光光度法用于定量分析的理论基础是朗伯比尔定律,其数学表达式为:A=εb C 邻二氮菲(又称邻菲罗啉)是测定微量铁的较好试剂,在pH=2~9的条件下,二价铁离子与试剂生成极稳定的橙红色配合物。摩尔吸光系数ε=11000 L·mol-1·cm-1。在显色前,用盐酸羟胺把Fe3+还原为Fe2+。 2Fe3++2NH 2OHHCl→2Fe2++N 2 +4H++2H 2 O+2Cl- Fe2+ + Phen = Fe2+ - Phen (橘红色) 用邻二氮菲测定时,有很多元素干扰测定,须预先进行掩蔽或分离,如钴、镍、铜、铅与试剂形成有色配合物;钨、铂、镉、汞与试剂生成沉淀,还有些金属离子如锡、铅、铋则在邻二氮菲铁配合物形成的pH范围内发生水解;因此当这些离子共存时,应注意消除它们的干扰作用。 三、仪器与试剂 1.醋酸钠:l mol·L-1; 2.盐酸:6 mol·L-1; 3.盐酸羟胺:10%(用时配制); 4.邻二氮菲(%):邻二氮菲溶解在100mL1:1乙醇溶液中; 5.铁标准溶液。 (1)100μg·mL-1铁标准溶液:准确称取(NH 4) 2 Fe(SO 4 ) 2 ·12H 2 0于烧杯中, 加入20 mL 6 mol·L-1盐酸及少量水,移至1L容量瓶中,以水稀释至刻度,摇匀. 6.仪器:7200型分光光度计及l cm比色皿。 四、实验步骤 1.系列标准溶液配制 (1)用移液管吸取10mL100μg·mL-1铁标准溶液于100mL容量瓶中,加入2mL 6 mol·L-1盐酸溶液, 以水稀释至刻度,摇匀. 此溶液Fe3+浓度为10μg·mL-1. (2) 标准曲线的绘制: 取50 mL比色管6个,用吸量管分别加入0 mL,2 mL,4 mL, 6 mL, 8 mL和10 mL10μg·mL-l铁标准溶液,各加l mL盐酸羟胺,摇匀; 经再加2mL邻二氮菲溶液, 5 mL醋酸钠溶液,摇匀, 以水稀释至刻度,摇匀后放置 10min。 2.吸收曲线的绘制 取上述标准溶液中的一个, 在分光光度计上,用l cm比色皿,以水为参比溶液,用不同的波长,从440~560 nm,每隔10 nm测定一次吸光度,在最大吸收波长

紫外可见分光光度法练习题(供参考)

紫外-可见分光光度法 一、单项选择题 1.可见光的波长范围是 A、760~1000nm B、400~760nm C、200~400nm D、小于400nm E、大于760nm 2.下列关于光波的叙述,正确的是 A、只具有波动性 B、只具有粒子性 C、具有波粒二象性 D、其能量大小于波长成正比 E、传播速度与介质无关 3.两种是互补色关系的单色光,按一定的强度比例混合可成为 A、白光 B、红色光 C、黄色光 D、蓝色光 E、紫色光 4.测定Fe3+含量时,加入KSCN显色剂,生成的配合物是红色的,则此配合物吸收了白光中的 A、红光 B、绿光 C、紫光 D、蓝光 E、青光 5.紫外-可见分光光度计的波长范围是 A、200~1000nm B、400~760nm C、1000nm以上 D、200~760nm E、200nm以下 6.紫外-可见分光光度法测定的灵敏度高,准确度好,一般其相对误差在 A、不超过±0.1% B、1%~5% C、5%~20% D、5%~10% E、0.1%~1% 7.在分光光度分析中,透过光强度(I t)与入射光强度(I0)之比,即I t / I0称为 A、吸光度 B、透光率 C、吸光系数 D、光密度 E、消光度8.当入射光的强度(I0)一定时,溶液吸收光的强度(I a)越小,则溶液透过光的强度(I t) A、越大 B、越小 C、保持不变 D、等于0 E、以上都不正确9.朗伯-比尔定律,即光的吸收定律,表述了光的吸光度与 A、溶液浓度的关系 B、溶液液层厚度的关系 C、波长的关系 D、溶液的浓度与液层厚度的关系 E、溶液温度的关系 10.符合光的吸收定律的物质,与吸光系数无关的因素是 A、入射光的波长 B、吸光物质的性质 C、溶液的温度 D、溶剂的性质 E、在稀溶液条件下,溶液的浓度 11.在吸收光谱曲线上,如果其他条件都不变,只改变溶液的浓度,则最大吸收波长的位置和峰的

分光光度法考试题例

艾科锐公司化学基础知识考试题 分光光度法 科室姓名成绩时间 一、单项选择题(20分) 1、一束___通过有色溶液时,溶液的吸光度与浓度和液层厚度的乘积成正比。(B ) A、平行可见光 B、平行单色光 C、白光 D、紫外光 2、________互为补色。(A ) A、黄与蓝 B、红与绿 C、橙与青 D、紫与青蓝 3、摩尔吸光系数很大,则说明_____(C ) A、该物质的浓度很大 B、光通过该物质溶液的光程长 C、该物质对某波长光的吸收能力强 D、测定该物质的方法的灵敏度低。 4、下述操作中正确的是_____。(C ) A、比色皿外壁有水珠 B、手捏比色皿的磨光面 C、手捏比色皿的毛面 D、用报纸去擦比色皿外壁的水 5、用邻菲罗啉法测定锅炉水中的铁,pH需控制在4~6之间,通常选择____缓冲溶液较合适。(D ) A、邻苯二甲酸氢钾 B、NH3—NH4Cl C、NaHCO3—Na2CO3 D、HAc—NaAc 6、紫外-可见分光光度法的适合检测波长范围是_______。(C ) A、400~760nm; B、200~400nm C、200~760nm D、200~1000nm 7、邻二氮菲分光光度法测水中微量铁的试样中,参比溶液是采用_____。(B ) A、溶液参比; B、空白溶液; C、样品参比; D、褪色参比 8、722型分光光度计适用于________。(A ) A、可见光区 B、紫外光区 C、红外光区 D、都适用 9、722型分光光度计不能测定________。(C ) A、单组分溶液 B、多组分溶液 C、吸收光波长>800nm的溶液 D、较浓的溶液 10、下列说法正确的是________。(B ) A、透射比与浓度成直线关系; B、摩尔吸光系数随波长而改变; C、摩尔吸光系数随被测溶液的浓度而改变; D、光学玻璃吸收池适用于紫外光区 11、控制适当的吸光度范围的途径不可以是(C ) A、调整称样量 B、控制溶液的浓度 C、改变光源 D、改变定容体积12.双波长分光光度计与单波长分光光度计的主要区别在于(B ) A. 光源的种类及个数 B. 单色器的个数 C. 吸收池的个数 D. 检测器的个数 比尔定律的范围内,溶液的浓度、最大吸收波长、吸光度三者-在符合朗伯特13.的关系是(B ) A. 增加、增加、增加 B. 减小、不变、减小 C. 减小、增加、减小 D. 增加、不变、减小

分光光度法-生化实验

常用生化实验技术:分光光度法有色溶液对光线有选择性的吸收作用,不同物质由于其分子结构不同,对不同波长光线的吸收能力也不同,因此,每种物质都具有其特异的吸收光谱。有些无色溶液,虽对可见光无吸收作用,但所含物质可以吸收特定波长的紫外线或红外线。分光光度法主要是指利用物质特有的吸收光谱来鉴定物质性质及含量的技术,其理论依据是Lambert和Beer定律。 分光光度法是比色法的发展。比色法只限于在可见光区,分光光度法则可以扩展到紫外光区和红外光区。比色法用的单色光通过滤光片产生,谱带宽度为40~120nm,精度不高,而分光光度法则要求近于真正单色光,其光谱带宽最大不超过3~5nm,在紫外光区可到l nm以下。单色光通过棱镜或光栅产生,具有较高的精度。 一、光的基本知识 光是由光量子组成的,具有二重性,即不连续的微粒性和连续的波动性。波长和频率是光的波动性的特征,可用下式表示: λ=C/υ 式中λ为波长,具有相同的振动相位的相邻两点间的距离叫波长。υ为频率,即每秒钟振动次数。c为光速,等于299 770±4km/s。光属于电磁波。 自然界中存在各种不同波长的电磁波,列成表l-l所示的波谱图。分光光度法所使用的光谱范围在200nm~10μm (1μm=1 000nm)之间。其中200~400nm为紫外光区,400~760nm为可见光区,760~10 000 nm为红外光区。 二、朗伯一比尔(1ambert—Beer)定律 朗伯—比尔定律是比色分析的基本原理,这个定律是讨论有色溶液对单色光的吸收程度与溶液的浓度及液层厚度间的定量关系。此定律是由朗伯定律和比尔定律归纳而得。 1.朗伯定律一束单色光通过溶液后,由于溶液吸收了一部分光能,光的强度就要减弱:若溶液浓度不变,则溶液的厚度愈大(即光在溶液中所经过的途径愈长),光的强度减低也愈显著。 设光线通过溶液前的强度为Io(入射光的强度),通过液层厚为L溶液后.光的强度为I t(透过光的强度),则 表示透过光的强度是入射光强度的几分之几,称为透光度(transmittance),用T表示。透光度随溶液厚度的增

邻二氮菲分光光度法测铁实验报告

分析化学实验报告 实验名称: 邻二氮菲分光光度法测铁 一、实验目的(略) 二、实验原理(略) 三、仪器和药品(略) 四、实验步骤 1.光谱扫描并选择测量波长 相关思考:可见光波长范围,吸收曲线,最大吸收波长(λmax);为什么用λmax作为测量波长。 2.考查亚铁邻二氮菲配合物的稳定性 相关思考:为何考查,如何考查,设想吸光度随时间的变化趋势。 3.确定显色剂的用量 相关思考:如何确定显色剂的用量,设想吸光度随显色剂的用量变化趋势及如何根据曲线确定显色剂的用量。 4.绘制标准工作曲线 相关思考:定量测量的理论依据;选择参比液的原则;空白试剂;可信的标准曲线应满足什么要求。 5.测定未知样的含铁量 相关思考:如果未知样的吸光度值不在标准曲线内,如何解决? 五、数据处理 1.打印吸收曲线,确定λmax。

由吸收曲线,得到亚铁邻二氮菲配合物的最大吸收波长λmax=510.00nm,此时Abs=0.775. 2.打印吸光度-时间曲线,并根据曲线讨论亚铁邻二氮菲配合物的稳定性,确定溶液的显色时间并说明依据。(略) 3.打印吸光度-显色剂用量曲线,并根据曲线确定显色剂用量并说明依据。 在吸光度-显色剂用量曲线中,吸光度随显色剂用量的增加先变大、后保持稳定。由曲线可知,当显色剂用量在3mL附近时,吸光度较大且几乎恒定。因此,显色剂用量应为3mL。 4.打印标准工作曲线,计算未知样铁的含量(mol?L-1)。

六、问题与讨论(略) 七、思考题 1.如果用配制已久的盐酸羟胺溶液,对分析结果有何影响? 配制已久的盐酸羟胺溶液还原性降低,会使二价铁浓度降低,从而使测定的含铁量降低。 2.标准溶液是用分析纯的二价铁盐配制的溶液,为什么显色时还须加盐酸羟胺溶液? 二价铁溶液在空气中容易被氧化,加入盐酸羟胺溶液作为还原剂,可防止二价铁被氧化。 3.醋酸钠溶液的作用是什么? 调节溶液的pH,使pH在2~9范围内,满足生成亚铁邻二氮菲配合物的条件。 4.如何选取不同的量具进行所需溶液的量取? (1)铁标准溶液: ①5.00mL:用5mL移液管或5mL吸量管; ②1.00mL、2.00mL、3.00mL、4.00mL:用5mL吸量管; (2)盐酸羟胺2mL:用可调定量加液器; (3)邻二氮菲溶液0.60mL、1.00mL、2.00mL、3.00mL、4.00mL:用5mL吸量管;(4)NaAc溶液5mL:用可调定量加液器; (5)试样溶液10.00mL:用10mL移液管。

实验一-紫外分光光度法测定苯甲酸

实验一紫外分光光度法测定苯甲酸 一、实验目的 学习、了解紫外分光光度法原理 了解紫外分光光度计的结构和使用方法 二、实验原理 当辐射能(光)通过吸光物质时,物质的分子对辐射能选择性的吸收而得到的光谱称为分子吸收光谱。分子吸收光谱的产生与物质的分子结构、物质所在状态、溶剂和溶液的PH等因素有关。分子吸收光谱的强度与吸光物质的浓度有关。表示物质对光的吸收程度,通常采用“吸光度”这一概念来量度。 根据朗伯-比尔定律,在一定的条件下,吸光物质的吸光度A 与该物质的浓度C和液层厚度成正比。即A= LC 因此,只要选择一定的波长测定溶液的吸光度,即可求出该溶液浓度,这就是紫外-可见分光光度计的基本原理。 在碱性条件下,苯甲酸形成苯甲酸盐,对紫外光有选择性吸收,其吸收光谱的最大吸收波长为225nm。因此,采用紫外分光光度计测定苯甲酸在225nm处的吸收度就能进行定量分析。 三、仪器与主要试剂 TU-1810紫外可见分光光度计1cm石英比色皿 0.1M氢氧化钠溶液 苯甲酸(AR) 四、实验步骤 1、苯甲酸标准溶液的制备 称取苯甲酸(105℃烘干)100mg,用0.1M氢氧化钠溶液100ml溶解后,转入1000ml容量瓶中,用蒸馏水稀释至刻度.此溶液1ml含0.1mg 苯甲酸. 2、制作苯甲酸吸收曲线,选择最大吸收波长 ①移取苯甲酸标准溶液4.00ml于50ml容量瓶中,用0.01M氢氧化钠溶液定容,摇匀,此溶液1ml含苯甲酸8ug. 以氘灯为光源,用0.01M氢氧化钠溶液作为参比,改变测量波长(从210-240nm)测量8ug/ml苯甲酸的吸光度. ②以波长为横坐标,吸光度为纵坐标,绘制苯甲酸的紫外吸收曲线,并找出最大的吸收波长 (是否是225nm). 3﹑样品的测定 ①取10.00ml苯甲酸样品,放入50ml容量瓶中,用0.01M氢氧化钠

分光光度法测定铁

实验1邻二氮菲 一、实验原理 邻二氮菲(phen)和Fe2+ 在pH3~9的溶液中,生成一种稳定的橙红色络合物Fe(phen) 32+ ,其lgK=21.3,κ 508=1.1×104 L·mol-1 ·cm-1 ,铁含量在0.1~6μg·mL-1 范围内遵守比尔定律。其吸收曲线如图1-1所示。显色前需用盐酸羟胺或抗坏血酸将Fe3+ 全部还原为Fe2+ ,然后再加入邻二氮菲,并调节溶液酸度至适宜的显色酸度范围。有关反应如下: 2Fe3+ +2NH 2OH·HC1=2Fe2+ +N 2↑+2H 2O+4H+ +2C1-

图1-1邻二氮菲一铁(Ⅱ)的吸收曲线 用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度(A),以溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。在同样实验条件下,测定待测溶液的吸光度,根据测得吸光度值从标准曲线上查出相应的浓度值,即可计算试样中被测物质的质量浓度。 二、仪器和试剂 1.仪器721或722型分光光度计。 2.试剂 (1)0.1 mg·L-1 铁标准储备液准确称取0.702 0 g NH 4Fe(S0 4) 2·6H 20置于烧杯中,加少量水和20 mL 1:1H 2S0 4溶液,溶解后,定量转移到1L容量瓶中,用水稀释至刻度,摇匀。 (2)10-3 moL-1 铁标准溶液可用铁储备液稀释配制。 (3)100 g·L-1 盐酸羟胺水溶液用时现配。

(4)1.5 g·L-1 邻二氮菲水溶液避光保存,溶液颜色变暗时即不能使用。 (5)1.0 mol·L-1 叫乙酸钠溶液。 (6)0.1 mol·L-1 氢氧化钠溶液。 三、实验步骤 1.显色标准溶液的配制在序号为1~6的6只50 mL容量瓶中,用吸量管分别加入0,0.20,0.40,0.60,0.80,1.0 mL铁标准溶液(含铁0.1 g·L-1 ),分别加入1 mL 100 g·L-1 盐酸羟胺溶液,摇匀后放置2 min,再各加入2 mL 1.5 g·L-1邻二氮菲溶液、5 mL 1.0 mol·L-1 乙酸钠溶液,以水稀释至刻度,摇匀。 2.吸收曲线的绘制在分光光度计上,用1 cm吸收池,以试剂空白溶液(1号)为参比,在440~560 nm之间,每隔10 nm测定一次待测溶液(5号)的吸光度A,以波长为横坐标,吸光度为纵坐标,绘制吸收曲线,从而选择测定铁的最大吸收波长。 3.显色剂用量的确定在7只50 mL容量瓶中,各加2.0 mL 10-3 mol·L-1铁标准溶液和1.0 mL 100 g·L-1 盐酸羟胺溶液,摇匀后放置2 min。分别加入0.2, 0.4,0.6,0.8,1.0,2.0,4.0 mL 1.5 g·L-1 邻二氮菲溶液,再各加5.0 mL 1.0 mol·L-1

紫外分光光度计实验报告

UV-2550紫外分光光度计的使用和分光光度法测定对苯二酚姓名:XXX 专业:有机化学学号:312070303004 时间:2012.10.21 1.目的 (1)了解UV-2550紫外光谱仪的基本使用方法。 (2)了解测定对苯二酚的紫外光谱实验方法。 2. 试剂和仪器 2.1试剂: 标准溶液0.10m g/mL,准确称取0.25g对苯二酚溶于250ml容量瓶中,用水稀释至刻度,从中取出10ml于100ml容量瓶中,用水稀释至刻度,摇匀;pH=4.1的乙酸-乙酸钠缓冲溶液。 2.2 仪器: UV-2550型分光光度计。 3. 实验步骤 3.1 测量波长的选择 用吸量管吸取5.0ml对苯二酚标准溶液于25ml容量瓶中,加入0.5ml pH=4.1的乙酸-乙酸钠缓冲溶液,用二次蒸馏水定容,振荡混匀。15分钟后用1cm比色皿,275-330nm波长范围, 进行扫描。从吸收曲线上读出对苯二酚的最大吸收波长λmax。 3.2 对苯二酚含量的测定 (1)标准曲线的制作 在6个25ml容量瓶中,用吸量管分别加入0,1.0, 2.0, 3.0,4.0,5.0ml 对苯二酚标准溶液,加入0.5ml pH=4.1的乙酸-乙酸钠缓冲溶液,用二次蒸馏水定容,振荡混匀。用1cm比色皿,以试剂空白为参比溶液,在最大吸收波长处,用光度模块作标准曲线。 (2)试样中对苯二酚含量的测定 准确吸取一定体积的样品于40ml容量瓶中,加入0.5ml pH=4.1乙酸-乙酸钠,用水稀释至刻度,摇匀。在光度模块中直接读出试样中对苯二酚含量。 4. 实验结果 4.1 测量波长的选择 从吸收曲线上读出对苯二酚的最大吸收波长λmax=288.80。 见图1 吸收曲线 4.2 对苯二酚含量的测定 (1)标准曲线的制作 见图2 标准曲线 (2)试样中对苯二酚含量的测定 对苯二酚含量0.354 相对误差为11.5%

水质 铁的测定 邻菲啰啉分光光度法

水质铁的测定邻菲啰啉分光光度法 (量程:0.12~5mg/L) 1 适用范围 本标准适用于地表水、地下水及废水中铁的测定。方法最低检出浓度为0.03mg/L,测定下限为0.12mg/L,测定上限为 5.00mg/L。对铁离子大于 5.00mg/L 的水样,可适当稀释后再按本方法进行测定。 2 原理 亚铁离子在pH3~9 之间的溶液中与邻菲啰啉生成稳定的橙红色络合物,其反应式为: 此络合物在避光时可稳定保存半年。测量波长为510nm,其摩尔吸光系数为 1.1×10 4 L·mol-1·cm-1。若用还原剂(如盐酸羟胺)将高铁离子还原,则本法可测高铁离子及总铁含量。 3 试剂 本标准所用试剂除另有注明外,均为符合国家标准的分析纯化学试剂;实验用水为新制备的去离子水。 3.1 盐酸(HCl):ρ20=1.18g/mL,优级纯。 3.2 (1+3)盐酸。 3.3 10%(m/V)盐酸羟胺溶液。 3.4 缓冲溶液:40g 乙酸铵加50mL 冰乙酸用水稀释至100mL。 3.5 0.5%(m/V)邻菲啰啉(1,10-phenanthroline)水溶液,加数滴盐酸帮助溶解。 3.6 铁标准贮备液: 准确称取0.7020g 硫酸亚铁铵((NH 4 ) 2 Fe(SO 4 ) 2 ·6H 2 O),溶于(1+1)硫酸50mL 中,转移至1000mL容量瓶(A 级)中,加水至标线,摇匀。此溶液每毫升含100μg 铁。 3.7 铁标准使用液: 准确移取铁标准贮备液(3.6)25.00mL 置100mL 容量瓶(A 级)中,加水至标线,摇匀。此溶液每毫升含25.0μg 铁。

4 仪器 分光光度计,10mm 比色皿。2 5 干扰的消除 强氧化剂、氰化物、亚硝酸盐、焦磷酸盐、偏聚磷酸盐及某些重金属离子会干扰测定。经过加酸煮沸可将氰化物及亚硝酸盐除去,并使焦磷酸、偏聚磷酸盐转化为正磷酸盐以减轻干扰。加入盐酸羟胺则可消除强氧化剂的影响。 邻菲啰啉能与某些金属离子形成有色络合物而干扰测定。但在乙酸-乙酸铵的缓冲溶液中,不大于铁浓度10 倍的铜、锌、钴、铬及小于2mg/L 的镍,不干扰测定,当浓度再高时,可加入过量显色剂予以消除。汞、镉、银等能与邻菲啰啉形成沉淀,若浓度低时,可加过量邻菲啰啉来消除;浓度高时,可将沉淀过滤除去。水样有底色,可用不加邻菲啰啉的试液作参比,对水样的底色进行校正。 6 步骤 6.1 校准曲线的绘制 依次移取铁标准使用液(3.7)0、2.00、4.00、6.00、8.00、10.0mL 置150mL 锥形瓶中,加入蒸馏水至50.0mL,再加(1+3)盐酸(3.2)1mL,10%盐酸羟胺1mL,玻璃珠1~2 粒。加热煮沸至溶液剩15mL 左右,冷却至室温,定量转移至50mL 具塞比色管中。加一小片刚果红试纸,滴加饱和乙酸钠溶液至试纸刚刚变红,加入5mL 缓冲溶液(3.4)、0.5%邻菲啰啉溶液(3.5)2mL,加水至标线,摇匀。显色15min 后,用10mm 比色皿(若水样含铁量较高,可适当稀释;浓度低时可换用30mm 或50mm 的比色皿),以水为参比,在510nm 处测量吸光度,由经过空白校正的吸光度对铁的微克数作图。各批试剂的铁含量如不同,每新配一次试液,都需重新绘制校准曲线。 6.2 总铁的测定 采样后立即将样品用盐酸(3.1)酸化至pH<1(含CN -或S 2 -离子的水样酸化时,必须小心进行,因为会产生有毒气体),分析时取50.0mL 混匀水样于150mL 锥形瓶中,加(1+3)盐酸(3.2)1mL,盐酸羟胺溶液(3.3)1mL,加热煮沸至体积减少到15mL 左右,以保证全部铁的溶解和还原。若仍有沉淀应过滤除去。以下按绘制校准曲线同样操作,测量吸光度并作空白校正。 6.3 亚铁的测定 采样时将2mL 盐酸(3.1)放在一个100mL 具塞的水样瓶内,直接将水样注满样品瓶,塞好瓶塞以防氧化,一直保存到进行显色和测量(最好现场测定或现场显色)。分析时只需取适量水样,直接加入缓冲溶液(3.4)与邻菲啰啉溶液(3.5),显色5~10min,在510nm 处以水为参比测量吸光度,并作空白校正。 6.4 可过滤铁的测定 在采样现场,用0.45μm 滤膜过滤水样,并立即用盐酸酸化过滤水至pH<1,准确吸取样品50mL置于150mL 锥形瓶中,以下操作与步骤6.1 相同。 7 结果的计算 铁的含量按下式计算:

荧光分光光度计实验

实验2 荧光分光光度计实验 一、实验目的 1、了解发光材料的激发和发射过程; 2、掌握用荧光分光光度计测量发光材料激发光谱和发射光谱的测量方法。 二、仪器用具 F-4600荧光分光光度计,发光材料 三、实验原理 光吸收和辐射与发光材料中的能级结构密切相关。紫外光激发荧光粉发光是研究发光材料发生性能和发光中心在基质晶格中能级结构的重要手段。本实验采用F-4600荧光分光光度计来研究发光材料的激发光谱和发射光谱。 F-4600荧光分光光度计的光学系统从功能上划分为两大部分,即激光光路和发射检测光路。激发光路将光源发出的光分解为单色光输出,照射到发光材料上激发荧光粉发光。发光材料发出的光进入发射光检测光路,被分解为单色光照射到光电倍增管上,光电倍增管输出信号的强度与照射到其上面的光强度呈正比。 由氙弧灯发出的光变色单色光后,即为荧光物质的激发光。被测的荧光物质在激发光照射下所发出的荧光,经过单色器变成单色荧光粉后照射于测样品用的光电倍增管上,由其所发生的光电流经过放大器放大输到记录仪,将激发光单色器的光栅,固定在最适当的激发光波长处,而让荧光单色器凸轮转动,将各波长的荧光强度讯号输出至记录仪上,所记录的光谱即发射光谱,简称荧光光谱。 当测绘荧光激发光谱时,将激发光单色器的光栅固定在最适当的荧光波长处,而让激发光单色口的凸轮转动,将各波长的激发光讯号输出至记录仪上,所记录的光谱即激发光谱。 四、实验内容 按实验要求,连接好计算机后开始实验。首先测试发射光谱,设置激发波长460nm,得到该样品的发射光谱,即

峰值波长出现在540nm左右。 加入1个310nm长波通型滤波片, 在测试激发光谱,输入检测波长540nm,得到激发光谱: 利用检测波长波长460nm,得到发射光谱:

分光光度法测定铁的含量

分光光度法测定铁的含量 荠菜中铁元素的含量及分布研究 摘要:采用邻二氮菲分光光度法直接对荠菜、菠菜、油菜、香菜等几种蔬菜不同部位中铁的含量进行测定.分析结果表明:荠菜中以茎、叶含铁量较高.菠菜中则根部含铁量高,为指导人们合理食用蔬菜进行补铁及开发蔬菜产品提供理论依据. 关键词:分光光度法;邻二氮菲;盐酸羟胺;铁;蔬菜 [实验目的] 1.通过分光光度法测定铁的含量。 2.掌握邻二氮菲光度法测定铁的原理和方法。 3.学习721型分光光度计的构造和使用。 [实验原理] 在PH2~9范围的溶液中,二价铁离子能与邻二氮菲形成稳定的橙红色络合物,在510nm有最大吸收.其吸光度与铁的含量成正比,故可以用比色法测定。样品液中的三价铁离子,用盐酸羟胺还原成二价铁离子。 4fe+2NaOH.HCL======4Fe+4H+NO+H+2CL 三价铁离子与邻二氮菲也能生成3:1的淡蓝色配合物,其㏒K=14.1。因此,在显色之前预先用盐酸羟胺将三价铁离子还原成二价铁离子。 测定时控制溶液的酸度在PH=5左右较为适宜。 本测定方法不仅灵敏度高,稳定性好。选择性高, [实验仪器及试剂] 移液管容量瓶高温炉水浴锅 10%的盐酸羟胺溶液 0.12%的邻二氮菲溶液 10%的醋酸钠溶液 1mol/L盐酸溶液铁标准溶液 (1)[实验步骤]采集新鲜荠菜.菠菜、油菜、香菜的根.叶子.茎.少许,洗干净,削碎,烘干,制成粉末各称取2克,分别放入瓷坩埚于电炉上炭化后加入2毫升1:1盐酸在水浴上蒸干再加入5毫升蒸馏水加热煮沸后移入50毫升的容量瓶中反复冲洗坩埚2...3次入瓶作为待定液 (2)标准区线绘制 吸取10ug/mL铁标准液0.0 2.0 4.0 6.0 8.0 10.0毫升依次加入25毫升的比色

分光光度法实验

分光光度法实验 邻二氮菲分光光度法测定铁(条件实验) 光度法测定试样中铁含量 一、要求目的 1.掌握分光光度计和吸量管的使用方法。 2.学习如何选择分光光度分析的实验条件。 3.掌握分光光度法测定铁的原理及方法。 4.通过本次实验,应掌握初步设计分光光度分析方法的步骤。 二、实验原理 在pH为2-9的溶液中,Fe2+与邻二氮菲(phen)生成稳定的橘红色络合物Fe(Phen)32+: 其lgβ3=21.3,摩尔吸光系数ε508=1.1×104L.mol-1cm-1。当铁为+3价时,可用盐酸羟还原:2Fe3++2NH2OH?HCl=2Fe2++N2↑+4H++2H2O+2Cl- Cu2+,Co2+,Ni2+,Cd2+,Hg2+,Mn2+,Zn2+等离子也能与Phen生成稳定络合物,在少量情况下,不影响Fe2+的测定,量大时可用EDTA掩蔽或预先分离。 吸光光度法的实验条件,如测量波长,溶液酸度,显色剂用量、显色时间、温度、溶剂以及共存离子干扰及其消除等,都是通过实验来确定的。本实验在测定试样中铁含量之前,先做部分条件试验,以便初学者掌握确定实验条件的方法。 条件试验的简单方法是:变动某实验条件,固定其余条件,测得一系列吸光度值,绘制吸光度-某实验条件的曲线,根据曲线确定某实验条件的适宜值或适宜范围。 三、注意事项 1.使用721B或722型分光光度计,提前布置学生预习P147~154,在每台仪器前附上一张 “使用方法”,要求学生看后才操作。另外,还要预习P128~131中吸量管的使用方法。 2.一般两位学生共用一台仪器,合作做实验,但实验报告各自写,提前通知学生自备坐标 纸。两个实验作完后一起交报告。暂不统一评分标准,由各组自行综合考虑,原则上条件试验应与预期基本相符,相对误差5%以内为合格。 3.用高级卫生纸作代用品擦干比色皿。要求学生实验完毕洗净比色皿,并将比色皿浸泡在 HNO溶液的烧杯中。 盛有15%的 3 4.实验分为两个步骤:用两个单元时间完成 a)分光光度法测定铁的条件实验 b)邻二氮菲分光光度法测定微量铁

紫外可见分光光度法实验

1.1 了解紫外可见分光光度计的食用方法及基本结构 1.2 掌握用紫外可见分光光光度法进行定性分析和定量分析的方法 2.实验原理 2.1 定性分析 不同物质的分子结构不同,因此各种物质各有其特征的紫外可见光吸收光谱。以波长为横坐标,吸光度为纵坐标作图,得到的曲线称为吸收光谱曲线,他能清楚的描述该物质对不同波长光的吸收情况。光吸收程度最大处叫做最大吸收波长,用λmax表示。浓度不同时,光吸收曲线的形状相同,最大吸收波长不变,只是相应的吸光度大小不同。说明吸收曲线的形状只与物质的本性有关,而与物质的浓度无关。因此,我们可以利用吸收曲线对物质进行定性分析。 2.2 定量分析 根据朗伯-比尔定律:A=εbc,式中A—吸光度,ε—摩尔吸光系数,b—液层厚度cm,c—浓度,mol/L 当液层厚度b固定时,吸光度正比于浓度,因此可采用标准曲线法对物质进行定量分析。通常选择最大吸收波长进行定量分析,以提高分析灵敏度和消除干扰影响。 3.仪器及试剂 3.1 仪器及配件 UV1800PC型紫外可见分光光度计,1cm石英比色池 3.2 试剂 3.2.1 虾青素标准溶液 3.2.1.1 标准储备液(浓度为1.0mg/mL) 称取10mg 虾青素标准品溶于二甲基亚砜(DMSO),定容至10mL,摇匀,避光-20℃保存。 3.2.1.2 标准系列溶液的配制 用移液管分别量取0.5,1.0,2.0,3.0mL标准储备液,分别用50mL容量瓶定容,稀释溶剂为无水乙醇,定容之后摇匀,避光放置。 3.2.2 未知浓度的虾青素样品溶液。 4.实验内容 4.1 不同浓度的虾青素溶液吸收曲线的比较。 4.2 标准曲线的制作。 4.3 样品溶液的测定。 5.仪器操作步骤 5.1 开机,自检,预热20分钟 5.2 放置样品 将配好的样品转入比色池,比色池要用蒸馏水和待测溶液润洗,溶液装至比色池的1/2~2/3左右。装好后用纸巾吸干比色池表面的液体,将比色池放入样品槽中,注意比色池透光面要对住样品槽有孔的一边。 5.3 全波长扫描 将不同浓度的标准品依次转入比色池中进行全波长扫描,比较其吸收曲线和最大吸收峰

综合实验报告邻二氮菲分光光度法测定微量铁

邻二氮菲分光光度法测定微量铁 一、实验目的 ⒈学习确定实验条件的方法,掌握邻二氮菲分光光度法测定微量铁的方法原理; ⒉掌握721型分光光度计的使用方法,并了解此仪器的主要构造。 二、实验原理 ⒈确定适宜的条件的原因:在可见光分光光度法的测定中,通常是将被测物与显色剂反应,使之生成有色物质,然后测其吸光度,进而求得被测物质的含量。因此,显色条件的完全程度和吸光度的测量条件都会影响到测量结果的准确性。为了使测定有较高的灵敏度和准确性,必须选择适宜的显色反应条件和仪器测量条件。通常所研究的显色反应条件有显色温度和时间,显色剂用量,显色液酸度,干扰物质的影响因素及消除等,但主要是测量波长和参比溶液的选择。对显色剂用量和测量波长的选择是该实验的内容。 ⒉如何确定适宜的条件:条件试验的一般步骤为改变其中一个因素,暂时固定其他因素,显色后测量相应溶液吸光度,通过吸光度与变化因素的曲线来确定适宜的条件。 ⒊本试验测定工业盐酸中铁含量的原理:根据朗伯-比耳定律:A=εbc。当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。只要绘出以吸光度A为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即工业盐酸中铁的含量。 ⒋邻二氮菲法的优点:用分光光度法测定试样中的微量铁,目前一般采用邻二氮菲法,该法具有高灵敏度、高选择性,且稳定性好,干扰易消除等优点。 ⒌邻二氮菲法简介:邻二氮菲为显色剂,选择测定微量铁的适宜条件和测量条件,并用于工业盐酸中铁的测定。 ⒍邻二氮菲可测定试样中铁的总量的条件和依据:邻二氮菲亦称邻菲咯啉(简写phen),是光度法测定铁的优良试剂。在pH=2~9的范围内,邻二氮菲与二价铁生成稳定的桔红色配合物((Fe(phen)3)2+)。 = 21.3,摩尔吸光系数ε510 = 1.1×104 L·mol-1·cm-1,而Fe3+能与邻二氮菲生此配合物的lgK 稳 成3∶1配合物,呈淡蓝色,lgK 稳=14.1。所以在加入显色剂之前,应用盐酸羟胺(NH2OH·HCl)将Fe3+还原为Fe2+,其反应式如下:

分光光度法测定铁含量(精)

姓名:封德军指导老师:陶明 学号:1004010026 班级:2010级化学专业 一、实验目的: 1、初步熟悉 722型分光光度计的使用方法。 2、熟悉测绘吸收光谱的一般方法。 3、学习如何选择分光光度分析的实验条件 二、实验原理 : 1、在 pH =2~9 的溶液中, 邻二氮菲 (phen 与 Fe 2+生成稳定的红色配合物 , 反应方程式为:2Fe 3++2NH2OH.HCl → 2Fe 2++N2+H2O+4H++2Cl+, 其最大吸收峰在 515nm 处。根据朗伯比尔定律: A=Kbc,溶液中浓度与其吸光度之间具有直线关系, 可用标准曲线法测定。 三、实验步骤: 1、用吸量管吸取 0.0ml 和 5ml 铁标准使用液分别注入两个 50ml 容量瓶中,加入 1ml 盐酸羟胺溶液, 摇匀。再加入 2ml 领二氮菲水溶液, 5ml 醋酸钠水溶液,用水稀释至刻度,摇匀,放置 10min 。 2、取两支 1cm 比色皿, 先用蒸馏水清洗 2-3次再用试液润洗 3-4次, 分别将配好的铁标准使用液注入比色皿, 并用镜头纸拭去光洁面的试液。以试剂空白(即 0.0ml 铁标准溶液为参比溶液,调节分光光度计使其在参比溶液中透光率为 100%。在 440-570nm 之间,每隔 10nm 测一次吸光度,最后测的在510nm 附近吸光度最大。在最大吸收峰附近, 每隔 5nm 测量一次吸光度, 即在 505nm 与 515nm 处分别测量一次吸光度。 3、显色剂用量的确定:在 7 只 50 ml 容量瓶中,各加 10ml 铁标准溶液和 20ml 盐酸羟胺溶液, 摇匀。分别加入 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0 ml 邻二氮菲溶液,再各加 5.0 ml 乙酸钠溶液, 以水稀释至刻度,摇匀。放置 10min, 以水为参比,在选定波长下测量各溶液的吸光度。以显色剂邻二氮菲的体积为横坐标、相应的吸光度为纵坐标,绘制吸光度-显色剂用量曲线,确定显色剂的用量。 4、铁标准曲线的测定:

相关文档
最新文档