浅层地震探测技术应用中的分辨率问题

浅层地震探测技术应用中的分辨率问题
浅层地震探测技术应用中的分辨率问题

浅层地震探测技术应用中的分辨率问题

来源:矿产与地质谢忠球时间:2005-11-1

摘要浅层地震探测技术中影响分辨率的因素,除与反射波主频和频带宽度有关外,还主要受信噪比、子波形态、采样率、岩性界面反射系数的影响。浅层地震探测中,通过高分辨率数据处理,能有效地提高资料的信噪比和分辨率。

关键词浅层地震勘探,分辨率,高分辨率处理

RESOLUTION PROBLEMS ABOUT THE APPLICATION OF SHALLOW

SEISMIC PROSPECTING TECHNIQUE

Xie Zhongqiu

(I nstitute of K arst G eology,C AGS,G uilin 541004)

Abstract The factors which influence the resolution of shallow seismic prospecting are affected mainly by SNR (signal-to-noise ratio),Wavelet shape,sampling rate and reflection coefficient of lithological interface in addition to main frequency and frequency band-width of reflecting wave.The SNR and resolution of seismic data can be effectively improved through high resolution processing of seismic data in shallow seismic prospecting.

Key words Shallow seismic prospecting,Resolution,High resolution processing

目前浅层工程物探技术,在解决各种灾害地质、环境地质问题,例如矿井突水、塌陷、滑坡等的预测、治理中的作用,已经逐渐为人们所认识。本文系统、全面地从分辨率的影响因素、高分辨率采集和处理技术等几个方面,探讨了浅层地震勘探中分辨率问题。

1 分辨率及其影响因素

相对于煤田、石油地震勘探,水文、工程、环境等地质问题涉及的对象具有浅而小的特点,浅层地震勘探对分辨率有更高的要求。分辨率通常包括两个方面[1],一是垂向分辨率,二是水平分辨率。本文着重讨论前者,对后者仅作一般性讨论。

定义垂向分辨率一般采用两种方法,一种是采用薄层顶底反射波的时差来定义分辨率,有人称之为严格的分辨率定义。另外一种是用零相位子波来讨论垂向分辨率。它包括Rayleigh准则、Widess准则、Ricker准则等。根据Rayleigh光学分辨率准则可知,在视觉上能够分辨出薄层上下界面反射波的最小层厚是λb/4,λb为主波长。

一般地,反射波测量可以观测到的反射波最小宽度是用菲涅耳带的大小来决定的。菲涅耳带的半径与界面埋深H界面以上地层速度V及地震子波波长λ有关。菲涅耳带半径R f的近似

值:R f=HV/2f,式中f为子波主频。通常以菲涅耳带的直径(2R f)作为水平分辨率。

从上述讨论中,可以看出分辨率与频率的关系,提高反射波主频可以提高分辨率。事实上,要提高地震记录的分辨率,除了提高反射波主频外,必须提高频带宽度,而地震记录的信噪比、子波形态、采样率、岩性界面反射系数等因素的影响也是不可忽视的。

1.1 影响分辨率的主要因素

影响地震记录分辨率的主要因素有:反射波主频和带宽、信噪比、子波形态、采样率、岩性界面反射系数等。

图1表示两种不同频率响应及其对应的脉冲响应关系。从图中的脉冲响应形态,可以看出分辨率与地震子波频带宽度的关系。其实,单频波的分辨率为零,无论单频波频率有多高,这个事实足可以说明分辨率与带宽的关系。所以,要提高分辨率,必须在提高反射波主频的同时,提高频带宽度。

我们知道,在各种子波中,零相位子波具有较强的分辨率。零相位子波的分辨率受三个方面因素控制,即子波主瓣宽度,旁瓣与主瓣比值,尾部振荡的振幅。主瓣宽度越窄,旁瓣与主瓣比值越小,尾部振荡的振幅衰减越快,该子波的分辨能力就越高。

图1 两种不同频率响应和对应的脉冲响应

Fig 1 Two differeat frequency responses and their corresponding pulse

responses

要保证不失真地记录高频反射信号,必须采用高采样率,这样还可以提高叠加精

度。但如果频带很窄,高截频也较低,那么高采样率则是一种浪费。对于空间采样

率,Δx应小于第一菲涅耳带的半径,同时必须满足Δx≤1/2R H,此处R H为最大波数。

岩性界面反射系数的大小决定了反射波的强弱,也就影响了分辨率。而在信噪比

很低的情况下,即使反射波主频再高,频带再宽,也无法分辨地下地质构造。

1.2 仪器因素的影响

在前面的讨论中,已经论述了分辨率与频率及频带的关系。要提高地震资料的分

辨率,必须获取“宽高频”的地震信号,即频带要宽,频带的高截止频要高。要提高分

辨率必须实行“双向扩展频率”[3]。它包含两方面的含义,一是要保留常规地震信号

的低频成分,二是要使反射波的主频及频带向高频方向扩展,即所谓高频信息的可记

录性问题,它与采集系统的动态范围,前置滤波器及检波器因素有关。选取提高分辨率

的最佳仪器因素,是高分辨率地震勘探技术研究的重要内容之一。从现在国内众多仪

器来看,绝大多数仪器具备了解决高分辨率地震勘探中高频信息可记录性的基本条

件。

2 关于提高横波勘探分辨率的讨论

提高地震勘探的分辨率,研究纵波勘探的较多,而采用横波勘探是否可以提高分辨率,目前尚有不同看法。

根据弹性介质理论,纵波和横波的速度比Vp/Vs≈1.5~10,由于横波波速小于纵波波速,因而,对于同一频率的纵、横波来说,横波波长小,其分辨率要高。实际资料表明,在同样的条件下,横波的频率往往比纵波低,高频衰减快 ,低频起了主要作用,频散现象明显,从而导致波形变宽和多相位,降低了分辨率。虽然横波速度低,对于提高分辨率是有利的,但很明显,有利与不利影响不能抵消[4]。如果无法对横波勘探资料作某些特殊处理,可能横波勘探的垂向分辨率比纵波还要低。因此认为横波勘探一定能够提高地震勘探分辨率的提法是不够全面的。

3 高分辨率采集中的技术问题

在实际工作中,可以经常见到这样一种现象,对于同一场地,在同样的仪器设备因素条件下,不同技术人员作业,最后得到的资料和解释成果有较大差别,甚至完全不同。主要原因是由于在复杂条件下,人们对于各种信息的认识不同,从而设计的采集系统参数不同,因而采集到的信息也不同。浅层地震探测目标小而浅,具有不同于煤田、石油地震勘探的特点。因此,其高分辨率采集系统及有关参数的设计也具有不同的特点。浅层地震探测对高分辨率采集技术,提出了更高的要求。

目前,“最佳时窗”技术和“最佳偏移距”技术比较常用。对于这两种技术,许多人认为很简单,其实并不然,选择不好,可能完全得不到应有的效果。最佳时窗技术,关键在于接收排列的两个端点,近炮点一端受地滚波的限制,远炮点一端受反射波振幅及相位控制,选择不合适,则可能受地滚波干扰严重,也可能使反射波相位发生畸变。对于最佳偏移距技术,时窗的确定至关重要,根本的一点就在于目的层(体)反射信号的识别。此外,工作中的信噪调查也是非常重要的一环。

在石油地震探测技术上,国内高分辨率技术攻关研究,开始就将着眼点主要放在野外数据采集的技术上。怎样获取丰富的有效信息是高分辨率地震探测技术的关键因素之一。人们提出了“三小三高二绝招”等工作方法,即小道距、小组距、小药量,高采样,高频检波器,较高覆盖次数,两绝招是深埋检波器和可控震源非线性扫描。反射波主频提高了近一倍,从而分辨薄层的能力提高了一倍[3]。浅层地震探测具有特殊性,经过长期实践和探索,我们将石油地震勘探中技术加以消化,形成了一套比较完善的技术方法。

组合检波是常用的一种压制规则干扰的一种方法。组合检波时,组合方式和组合基距的选择要试验确定,这是我们大家都熟悉的。一般的组合方式采用线性组合。实践发现,小面积组合检波是压制环境与高频背景的有效方法。由于组合检波对于分辨细小目标不利,所以,要据具体情况选用。一般情况下,采用的最大炮检距应约等于目的物深度。偏移距的选择标准是尽可能小,但是,太小对于应用多次水平叠加压制多次波不利。使用高频检波器,可以较好地压制低频干扰,拓展记录宽高频,从而提高分辨率。有人认为,采集中的覆盖次数越高越好,其实不然。因为水平叠加对非水平层是CMP 动校后的叠加,多次叠加是一段界面平均的结果。在地层倾角较大或界面起伏较大时,如果选择不合适,效果可能会适得其反,降低分辨率。有关理论研究和实际资料表明,使用较高的低截止滤波,不仅可以有效地压制面波干扰,还可以补偿地层对地震信号的选频衰减。较高的低截频滤波是提升高频简便而有效的办法。增益大小的选择,除

了依据反射波强弱外,还必须考虑仪器动态范围的影响,宜采用较低值。

综上所述,在高分辨率浅层地震探测技术中,有关技术参数选择的传统认识必须

改变,选择时必须依具体条件试验确定。

4 高分辨率数据处理技术及其应用效果

在高分辨地震勘探中,数据处理是提高分辨率和信噪比、最大限度地利用原始资

料的关键一环。近年来,人们对于地震资料的高分辨、高信噪比、高保真度处理技术

作了一些有益的探索和研究,取得了较好的效果。在实际工作中,我们建立了比较完善的高分辨率处理系统。除了常规处理外,视具体条件,还要有针对性的作一些特殊处理。作者的实践经验认为,下面的处理技术,往往可以取得很好的效果。

(1)精细的动静校正。

(2)多次反褶积加带通滤波。

(3)小波变换处理。

对于静校正,人们往往只注意地表起伏的影响,而忽略了地表表层速度横向变化,

这时,尽管没有地形起伏的静校正,但表层静校正量的横向变化依然存在,如果不校

正,则会引起假异常,从而导致解释失误。

在实践中,我们发现反褶积技术的应用,在一定程度上提高了资料的分辨率,但又

降低了信噪比。作者经过实践发现,在反褶积的同时,应用有关滤波技术,则可以取得

的好效果。通常情况下,反褶积处理的同时,加τ-P变换,小波变换等去噪技术,可以

保证信噪比和分辨率都有较大提高[5,6]。

由于道间均衡,混波等修饰性处理,往往改变了波的动力学特征,这对于高分辨率

地震探测是不利的。作者认为,在地表一致性条件好的情况下,不必作修饰性处理,特

殊情况下也要慎用。

图2是广西玉林某厂岩溶塌陷调查EZ7线的原始记录剖面和经高分辨率处理后的剖面。

图2 广西玉林某厂岩溶塌陷EZ7线浅层地震勘探剖面

Fig 2 Shallow seismic prospecting section along line EZ7 in a karst collape

in one factory of Yulin,Guangxi

(a)EZ7线等偏移原始记录剖面(b)EZ7线等偏移高分辨率处理后剖面

从图(a)我们可以看出,原始记录剖面地震资料低频成分丰富,分辨率较低。图(b)为经高分辨率处理后的剖面。除常规处理外,我们进行了高精度静校正,并注意到了地

表不均匀性影响,进行了二次反褶积和带通滤波。在反褶积过程中,在尽可能不降低信噪比的同时,选用小时窗、小滤波长度。可见,经过一系列处理后,图(b)与图(a)相比,剖面的信噪比和分辨都明显提高,异常特征十分明显。

5 结论

通过以上分析和实际资料处理,可以得到以下几点认识。

(1)分辨率除和反射波主频及频带有关外,还主要受信噪比、子波形态、采样率、岩性界面反射系数影响。要提高分辨率,必须从采集到处理,在保证有较高信噪比的条件下,“双向拓宽”信号频率,使地震信号接近于尖脉冲。

(2)高性能的数据采集系统是高分辨率地震勘探的基础,而合理的采集技术则是获取“宽高频”地震信号的保证。

(3)高分辨率数据处理技术,在一定程度上展开了反射波的主频带,可以使资料的信噪比和分辨率同时得到提高。

提高地震资料分辨率的方法探讨

提高地震资料分辨率的方法探讨 摘要:随着油气资源的消耗,地震勘探油气资源越来越复杂,勘探难度也与日俱增,对勘探精度的要求也越来越高。为了满足精确勘探开发的要求,各种提高地震资料分辨率的方法技术也随之诞生。本文针对反Q滤波、广义S变换这两种方提高分辨率方法进行了研究。研究结果表明,它们在一定程度上都能提高地震资料的分辨率,但是各有优缺点。在实际使用时,要根据原始地震资料具体情况具体分析,选取合适的提高分辨率方法。 关键词:地震勘探;数据处理;提高分辨率 地震数据处理的主要任务之一是通过提高地震分辨率来获取反射系数。高分辨率地震技术是在深度和复杂地带进行地震详查确定小幅度构造、小断层和表层构造的有效手段。提高地震分辨率对于我国目前油田勘探有重要意义,一是由于我国的地质构造复杂,二是东部油田资源开发也已进入了深挖的勘探阶段,提高地震勘探的分辨率处理已成为油田勘探和开发的主要目标。本文就工作中使用到的几种提高地震资料分辨率的方法进行了探讨。 一、反Q滤波 (1)反Q滤波原理 反Q滤波技术能补偿大地吸收衰减效应,它不但可以补偿频率损失和振幅衰减,还可以优化记录的相位特性,以达到改善提高弱反射波的能量、同相轴的连续性和地震资料的信噪比及分辨率的目的。 广义S变换把地震信号从一维时间域转换到了二维时频域,通过广义S变换对地震数据进行高分辨率重建,极大的提高了地震资料的分辨能力。图3是利用广义S变换重构重构高分辨率的地震剖面,该剖面视分辨率比小波分频重构方法得到的分辨率更高、同相轴更清晰和连续。频谱分析的主频范围为30~40Hz,原剖面主频为15~30Hz。利用S变换提高分辨率处理之后,分辨率随着主频的提升也得到了较大的提高(图4)。 三、结论 本文将反Q滤波和广义S变换方法在提高地震资料分辨率方面都取得了比较理想的效果。研究表明,由于各方法参数选取、技术原理等方面的差异,分辨率的提高效果也不一样。在实际使用时,需具体问题具体分析,选取合适的处理参数和适当的处理方法。如果提高分辨率的目的是用来进行地质构造解释的,那么拓展高频、压制低频的方式是合适的;但如果提高分辨率的目的需要用来进行储层预测、属性分析的,则宜使用能保留原地震数据频谱结构的方法。总之,提高叠后地震资料分辨率要根据不同的需要来选取合适的方法。

高分辨率地震勘探在地热资源勘查中的应用

高分辨率地震勘探 在地热资源勘查中的应用 孙党生*  雷 炜 李洪涛*  杨立春 (中国地质调查局水文方法研究所 河北·保定 071051) 提要 该文以山东博兴某工程为例,简介在地热勘查中,高分辨率地震勘探的激发方式,野外观测系统,数据采集、处理参数设置及资料分析解释等方面的方法技术,勘查结果表明,应用该技术进行地热资源勘查不仅可能而且效果良好。关键词 地震勘探 反射波 标准层 地热资源勘查 APPLICATION OF HIGH RESOLUTION SEISMIC EXPLORATION METHOD TO THE PR OSPECTING OF GEOTHERMAL R ESOURC ES Sun Dangshen Lei Wei et al (Institute of Hydrogeology and Engineering Geology ,CGS ) Abstract Taking the project in B oxin ,Shandong province as an example ,the method and technique of the excitation types ,field observation s ystem ,data acquisition ,the setting of processing parameters and data in -terpretation ,etc of high resolution seismic exploration in geothermal prospecting are briefly introduced .The result shows that not only to prospect the geothermal resources by high resolution seismic exploration is poss i -ble ,but als o the effectiveness is satisfactory . Keywords seismic exploration ;reflected wave ;standard layer ;geothermal resource prospecting 第一作者简介:孙党生,男,38岁,高级工程师,从事工程物探研究与开发工作。*现在职攻读中国地质大学(武汉)地质工程专业硕士学位。 1 前言 地震方法是目前用于水文、工程、环境、地质调查的主要物探方法,它通过研究人工激发的地震波的运动学和动力学特征来 解决地质问题。工作时采用人工爆破产生地震波,震波入射到地下弹性介质中遇到地层的界面时,便产生波的反射和折射返回到地面,被不同位置的检波器所接收,通过仪器将地震波记录存储,经室内资料处理来完成勘探地下目标地质体的任务。 过去十年中,高分辨率地震勘探已逐渐成为地质勘探的重要工具,在探测第四系厚 度和基岩起伏、含水层和古河道,断层、裂隙带等地下构造,滑坡及落水洞,以及地表沉降等方面已经取得了丰富的经验。由于地 热资源一般蕴藏在地下数千米,以往常规浅层地震勘探很难达到这一深度,而利用传统的石油地震勘探不仅设备庞大,而且工作周期长,人力、物力和财力都耗费巨大,使地热勘探成为一种高投入、高成本、高风险的活动,投资者往往望而却步。近年来我们应用高分辨率地震勘探技术进行了深层地热资源勘查的尝试,先后在山东的德州、博兴、庆云、平阴、武城、茌平及云南宣威、广东南海等地开展了该项工作,取得了良好的效果。本文结合作者在山东博兴某工程的实例说明应用浅层地震进行地热资源勘查的实际效果。

地震分辨率

地震分辨率 1分辨率的定义 分辨能力是指区分两个靠近物体的能力。度量分辨能力的强弱通常有两种方式:一是距离表示,分辨的垂向距离或横向范围越小,则分辨力越强;二是时间表示,在地震时间剖面上,相邻地层时间间隔Δt 越小,则分辨能力越强。为了利于理解,采用时间间隔Δt 的倒数为分辨率(resolution ),采用相对值表示。 地震勘探的分辨率,要使两个地震波完全分开,必须两个子波脉冲的包络完全分开,如果两个子波的包络连在一起,必然互相干涉,两个波的振幅、频率必然含糊不清。 2地震分辨率的分类 地震分辨率包括垂直分辨率、水平分辨率和广义空间分辨率。 2.1垂直分辨率 垂直分辨率是指地震记录或地震剖面上能分辨的最小地层厚度。 2.1.1波形分辨率 Knapp 认为,相邻两个子波波形或波形包络在时间域可以完全区分,称为波形分辨率(厚层分辨率)。 分辨率与层厚度、频率的关系: 子波延续时间:t nT n V λ?== 顶底反射波时差:2h V τ?=? 上式n 为子波延续时间的周期数,λ为子波波长,V 为子波在地层中的速度,h ?为层厚度。 (1) 若t τ??,则可分辨。 欲分辨该地层,则需t τ?>?,即2h V n V λ?>,则:2h n λ?>。 可以看出垂向分辨率主要取决于子波的波长(频率)和延续时间的周期数。 子波分类: (1) 分类(能量特征、Z 变换多项式的根) 最小相位子波:能量集中前部、根位于单位圆外 混合相位子波:能量集中中部、根位于单位圆内与圆外 最大相位子波:能量集中尾部、根位于单位圆内

(2) 零相位子波 (a ) 相位等于零的子波 (b ) 关于t=0时刻对称的,物理不可实现的 (c ) 典型的零相位子波:雷克子波(Ricker wavelet ) 时间域:()()()2 2 12 t f m w t m t f e ππ- ??=-??? ? 频率域:( )2 2 f w f f m m f e f - ?? ?= ??? ???? 相位:()0f ?= 2.1.2时间分辨率 利用复合反射波的振幅和波形变化特征指出,两个子波的波形可以部分重叠。 (1)Rayleigh (瑞雷)准则:两个子波的旅行时差大于或等于子波的半个视周期,则这两个子波是可分辨的,否则是不可分辨的。 )22T V τλ?== 244h V V T τλ?=?== 通常认为,垂直分辨率的极限是4λ。 图2. 1 时间差达到Rayleigh 极限 (2)Ricker (雷克)准则:两个子波的旅行时差大于或等于子波主极值两侧的最大陡度点的间距时,这两个子波是可分辨的,否则是不可分辨的。 子波一阶导数两个异号极值点的间距,约为 2.3T 。 2.3 4.6 4.6h V V T τλ?=?= =

浅层地震勘探

本科生实验报告 实验课程浅层地震勘探 学院名称地球物理学院 专业名称勘查技术与工程 学生 学生学号 指导教师 实验地点 实验成绩 二〇一五年三月二〇一五年四月

目录 第一章序言 第二章工作目的和任务及工作完成情况第三章工区地理情况和经济地理情况第四章工作方法技术及质量评价 第五章数据处理 5.1反射波数据处理 5.1.1 原始记录 5.1.2 道均衡 5.1.3 一维滤波 5.1.4 二维滤波 5.1.5 抽道集 5.1.6 速度分析 5.1.7 动校正 5.1.8 水平叠加 5.1.9 混波 5.1.10 时深转换 5.1.11 数据输出 5.2 折射波数据处理 第六章解释推断 第七章结论与建议

第八章报告附图 第一章序言 地震勘探是地球物理勘探方法中的一中重要方法,其原理是利用地层与岩石的弹性差异来探测地下地质构造,寻找有用矿产资源的一种极重要的地球物理勘测方法。在勘查精度、分辨地质体的能力以及勘探围(浅、中、深)等方面都有其突出的优越性。它的基本原理是利用岩石、矿物(地层)之间的弹性差异而引起弹性波场变化产生弹性异常(速度不同),用地震仪测量其异常值(时间变化)并根据异常变化情况反演地下地质构造情况的一种地球物理勘探方法。而浅震是工程物探中的一种常见勘探方法,此次实习,采用了折射波勘探和反射波勘探,此实习报告完成了从野外数据采集到室资料处理和解释的全部过程,并详细叙述了各过程所使用的方法原理等。由于浅震能量不需要很大,所以震源采用的是人工锤击的方法。数据处理使用VISTA。对折射波勘探而言,使用的相遇时距曲线的解释,方法由于数据处理相对反射波较简单,所以,采用手工为主,计算机为辅的方式,完成数据处理。

浅层地震勘探(完整资料).doc

【最新整理,下载后即可编辑】 本科生实验报告 实验课程浅层地震勘探 学院名称地球物理学院 专业名称勘查技术与工程 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇一五年三月二〇一五年四月

目录 第一章序言 第二章工作目的和任务及工作完成情况 第三章工区地理情况和经济地理情况 第四章工作方法技术及质量评价 第五章数据处理 5.1反射波数据处理 5.1.1 原始记录 5.1.2 道均衡 5.1.3 一维滤波 5.1.4 二维滤波 5.1.5 抽道集 5.1.6 速度分析 5.1.7 动校正 5.1.8 水平叠加 5.1.9 混波 5.1.10 时深转换 5.1.11 数据输出 5.2 折射波数据处理 第六章解释推断 第七章结论与建议 第八章报告附图 第一章序言 地震勘探是地球物理勘探方法中的一中重要方法,其原理是利用地层与岩石的弹性差异来探测地下地质构造,寻找有用矿产资源的一种极重要的地球物理勘测方法。在勘查精度、分辨地质体的能力以及勘探范围(浅、中、深)等方面都有其突出的优越性。它的基本原理是利用岩石、矿物(地层)之间的弹性差异而引起弹性波场变化产生弹性异常(速度不同),用地震仪测量其异常值(时间变化)并根据异常变化情况反演地下地质构造情况的一种地球物理勘探方法。而浅震是工程物探中的一种常见勘探方法,此次实习,采用了折射波勘探和反射波勘探,此实习报告完

成了从野外数据采集到室内资料处理和解释的全部过程,并详细叙述了各过程所使用的方法原理等。由于浅震能量不需要很大,所以震源采用的是人工锤击的方法。数据处理使用VISTA。对折射波勘探而言,使用的相遇时距曲线的解释,方法由于数据处理相对反射波较简单,所以,采用手工为主,计算机为辅的方式,完成数据处理。

三维地震勘探技术

三维地震勘探技术及其应用 [摘要] 本文应用三维地震勘探技术对某矿南三采区进行探测,探测区内解释断层71条,其中可靠断层61条,较可靠断层10条,31个无煤带。为煤矿安全生产提供了科学依据,节约了生产成本的投入。 [关键词] 三维地震采区 [abstract] this paper introduces the application of three dimensional seismic exploration method on the south third mining area of a certain coal mine. 71 faults were showed in this exploration area, in which there are 61 reliable faults, 10 relatively reliable faults and 31 areas without any coal. those information provides scientific foundation for the production safty of the coal mine and saves the cost. [key words] three dimensional seismic mining area 0.引言 随着煤炭地震勘探技术的提高,尤其是九十年代以来三维地震勘探在煤炭系统的应用与推广,三维地震勘探技术在煤矿采区进行小构造勘探成为现实,给煤矿建设和生产带来了巨大的效益。 近年来,随着我国煤炭资源勘查理论和技术的不断发展,已形成了中国煤炭地质综合勘查理论与技术新体系,其中三维地震勘探技术是五大关键技术之一。[1]

陆上高分辨率多分量地面地震勘探的潜力和策略

陆上高分辨率多分量地面地震勘探的潜力和策略 张山 江苏南京卫岗21号,210014 摘要本文从理论分析、物理模型试验、VSP记录和地面地震记录四个方面分析了陆上高分辨率多波多分量地震勘探的潜力;分析了现行生产中影响多波多分量地震勘探分辨率的几个关键因素;提出了提高陆上多波多分量地震勘探分辨率的基本策略。认为通过努力可以把陆上多波多分量地震勘探的分辨率提高到现有纵波高分辨率地震勘探的水平。 一、引言 相对于常规的纵波勘探而言,多分量地震勘探增加了有关横波的独特信息,这些信息的增加意味着岩性/油气预测和储层描述的可靠性和精度将成倍增加;同时对某些P波不能很好成像的特殊层位也可能得到较好的成像。概括起来,多分量地震勘探可以解决或有潜力解决以下几个方面的问题: (1)综合利用多分量地震资料提供的纵波速度Vp、横波速度Vs以及由此导出的泊松比、速度比、速度积等,可直接预测岩性和油气,估算砂泥比、孔隙率、地层压力等参数,评估流体性质; (2)改进盐岩、玄武岩下成像,改进气藏及弱P波波阻抗差界面成像; (3)提高储层描述和横向预测的可靠性; (4)研究地层的横向各向异性,描述裂隙性储层的发育特征。 近年来,随着海底接收技术的发展,海上4C地震勘探技术取得了长足的进展,对上述问题大都取得了令人满意的结果。但作为多分量地震勘探起始点的陆上多分量地震勘探,虽经多年努力,在解决上述问题上却没能取得多少令人满意的结果。究其原因就是因为分辨率太低,所得结果对岩性/油气预测或储层描述意义不大。在现实生产中需要采用多分量信息的地区都是非构造控制油气的隐蔽型圈闭,解决这些地区的油气/岩性预测或储层描述问题,必须采用高分辨率的资料才能得出有意义的结果。因此,提高多分量地震资料的分辨率,尤其是横波分量的分辨率,是多分量地震勘探能否在陆上非构造控制油气区推广应用的前提,也是在这类地区能否可靠预测油气、精确描述储层的重要方面。陆上多分量地面地震勘探的出路在高分辨率。 目前,我国绝大部分构造控制油气区都已得到了较充分的勘探开发,油气勘探开发的重点正在转向非构造控制油气区。因此,开展陆上高分辨率多分量地震勘探具有非常现实的意义,也具有相当的紧迫感。 我们知道,地震系统的分辨率主要取决于地震子波的有效频带宽度;在现实

地震资料处理001

第一章概述 1.地震勘探包括:采集处理解释 2.地震处理包括:反褶积叠加偏移成像 3.地震处理包括:预处理,常规处理,特殊处理 4.三高:高分辨率,高保真度,高信噪比 第二章数字滤波 1.滤波器:任何一种对输入信号的改造作用都可以看成滤波,实现这种滤波的系统成为滤波器 2.模拟滤波器:通过不同结构的电网络实现滤波 3.数字滤波器:用数学运算通过数字计算机技术实现滤波 4.数字滤波与模拟滤波器的异同点:(1)模拟滤波是对连续信号进行滤波,输出的是连续信号,输入和输出信号都可以用一连续的图形表示出来,而数字滤波器是对离散化之后的信号进行滤波,输入和输出都是离散数据;(2)电滤波是用不同的点网络实现滤波的,数字滤波是用数学运算的方式通过数字计算机技术实现滤波的 5.滤波器的物理性质:(1)滤波器是实参数的,(2)滤波器是物理可是实现,充要条件h(n)=0,n<0,(3)稳定性,(4)能量是有限输出的(5)最小相位性质,最小相位信号对相同振幅的物理可实现信号,分辨率是最高的。 6.最小相位信号:具有相同振幅的物理可实现信号中最小的信号、 7.最小相位滤波器:具有相同振幅相应的一切可能的滤波器中能量延迟最小的滤波器 8.纯振幅滤波器:也成为零相位滤波器,信号通过这个滤波器之后,只有振幅的变化,没有相位的变化,又称为理想滤波器 19.理想滤波器:低通理想滤波器,带通理想滤波器,带陷理想滤波器,高通理想滤波器 10.频率域滤波的实现步骤: 首先对地震记录x(t)作傅里叶变换,得到其频谱X(ω),进行频谱分析。根据有效波的频带范围,设计合适的滤波器H(ω),在频率域进行滤波,然后对输出Y(ω)做傅

浅层地震勘探

本科生实验报告实验课程浅层地震勘探 学院名称地球物理学院 专业名称勘查技术与工程 学生姓名 学生学号 指导教师 实验地点 实验成绩 二〇一五年三月二〇一五年四月 目录 第一章序言 第二章工作目的与任务及工作完成情况 第三章工区地理情况与经济地理情况 第四章工作方法技术及质量评价 第五章数据处理 5、1反射波数据处理 5、1、1 原始记录 5、1、2 道均衡 5、1、3 一维滤波 5、1、4 二维滤波 5、1、5 抽道集

5、1、6 速度分析 5、1、7 动校正 5、1、8 水平叠加 5、1、9 混波 5、1、10 时深转换 5、1、11 数据输出 5、2 折射波数据处理 第六章解释推断 第七章结论与建议 第八章报告附图 第一章序言 地震勘探就是地球物理勘探方法中的一中重要方法,其原理就是利用地层与岩石的弹性差异来探测地下地质构造,寻找有用矿产资源的一种极重要的地球物理勘测方法。在勘查精度、分辨地质体的能力以及勘探范围(浅、中、深)等方面都有其突出的优越性。它的基本原理就是利用岩石、矿物(地层)之间的弹性差异而引起弹性波场变化产生弹性异常(速度不同),用地震仪测量其异常值(时间变化)并根据异常变化情况反演地下地质构造情况的一种地球物理勘探方法。而浅震就是工程物探中的一种常见勘探方法,此次实习,采用了折射波勘探与反射波勘探,此实习报告完成了从野外数据采集到室内资料处理与解释的全部过程,并详细叙述了各过程所使用的方法原理等。由于浅震能量不需要很大,所以震源采用的就是人工锤击的方法。数据处理使用VISTA。对折射波勘探而言,使用的相遇时距曲线的解释,方

法由于数据处理相对反射波较简单,所以,采用手工为主,计算机为辅的方式,完成数据处理。 第二章:工作的目的与任务及工作的完成情况 2、1 实习的目的及要求 1、学习使用与维护地震仪器装备,以小组为单位,完成工区一部分物理点的测量工作。 2、学习与掌握多种地震分支方法的野外基本工作方法与技术,并能处理野外出现的一般故障问题。 3、结合实际工区的资料,初步了解地震工作设计的原则与方法。 4、学习并掌握地震野外资料的一般整理、处理与反演、图示方法。 5、根据工区实际地质条件与实测的物探资料,编写实习报告,初步掌握物探资料的解释方法。 2、2 工作完成情况 工作共两周时间,第一周就是野外数据采集,第一天观察并掌握地震仪器的使用,接着天在银杏反射波工区,后天再南苑折射波工区施工。第二周进行数据处理并解释。野外数据采集反射波完成4条测线、 第三章工区的自然地理与经济地理情况 3、1 银杏工区 反射波勘探工区就是在银杏篮球场道路之间的一个草坪区域,上覆疏松粘土层,下伏泥岩。由于地震波在疏松地层传播时能量损失

现代地震勘探技术作业

中国地质大学(北京) 地震属性综述 报告名称: 地震属性综述 学生姓名:王丹 学号:2010120052 所在院(系):地球物理与信息技术学院

地震属性分类及其地质意义 地震勘探是在地表激发人工震源,由震源所引起的震动以地震波的形式向地下传播,并在一定的条件下向上反射传回地表,然后由地表的仪器(检波器)记录反射回来的地震波,从而得到地震记录(也叫地震资料);之后对地震资料进行相关的处理与解释便可以间接地反映和得到地下相关信息。由于地下介质是地震波传播的载体,所以地下介质的物理性质,如岩性、孔隙度、密度以及流体性质等都会对传播中的地震波产生影响,如地震波的能量、波形、振幅、频率、相位等将在传播过程中发生变化。而这种影响和变化又将在地震记录中保留相应的信息。所以,通过对地震记录(地震资料)的“深加工”或者特殊处理,将会从地震资料中获取更多的有用信息以为地质服务。在早期的油气资源勘探中,地震勘探的目标主要是寻找地下有利的大尺度的构造圈闭,所以只需利用有限的地震资料信息便可达到目的。但是,随着油气勘探与开发难度的加大,人们迫切地需要更多地了解地下地层的岩性、流体性质等信息。这就促使人们运用新的技术和思想去从地震资料中发掘出更多的有用信息。从而,也就推动了地震属性技术的出现与发展。地震属性技术延伸了人类的视觉,从而有助于人们发现更多的隐藏于地震资料中的信息,也有助于人们从多角度去获取和分析地下地质信息,从而实现对地下地质的充分与准确认识。 1地震属性的发展与分类 随着油气勘探、开发工作的深入,也为了充分、有效地利用获取不易的地震资料,现今的地震解释人员需要从地震数据中提取越来越多的信息,然后利用这些信息综合解释地下构造、地层和岩性特征以及流体性质,最终定义精确的油藏模型,用于钻井决策、估计地质储量和可采储量。由于生成地震属性是获取所需信急的一条重要捷径,因此,长期以来地震属性技术一直是地震特殊处理和解释的主要研究内容。 地震属性是叠前或者叠后地震数据,经数学变换而导出的有关地震波的几何形态、运动学特征、动力学特征和统计学特征。长期以来以来地震数据的使用仅仅局限于对地震波同相轴的拾取,以实现面对油气储集体的几何形态、构造特征的描述。但是地震数据中隐藏着更加丰富的有关岩性、物性及流体成分等相关信

地震勘探技术的发展与应用

地球探测与信息技术 读书报告 课题名称:地震勘探的发展与应用 班级:064091 姓名:吴浩 学号:20091004040 指导老师:胡祥云

地震勘探的发展与应用 吴浩 (地球物理与空间信息学院,地球科学与技术专业) 摘要地震勘探是地球物理勘探中发展最快的一项技术,近年来,高分辨率地震勘探仪器装备、处理软件升级换代速度明显加快,地震资料采集、处理与解释出现了一体化的趋势。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,应用于石油、煤炭、采空区调查、地热普查等重要领域,由陆地不断向海洋发展。本文着重针对地震勘探过程和技术的发展几个重要阶段及应用进行展开。 关键字地震勘探三维地震石油勘探煤矿发展与应用 1 引言 地震勘探是利用岩石的弹性性质研究地下矿床和解决工程地质,环境地质问题的一种地球物理方法。地震勘探应用领域广泛,与其他物探方法相比,具有精度高、分层详细和探测深度大等优点,近年来,随着电子技术、计算机技术的高速发展,地震勘探的仪器装备、处理软件升级换代的速度明显加快,地震资料采集、处理与解释的一体化趋势得到加强。从常规的地震勘探发展到二维地震、三维地震、高精度地震勘探等先进技术,通常用人工激发地震波,地震波通过不同路径传播后,被布置在井中或地面的地震检波器及专门仪器记录下来,这些地震拨携带有所经过地层的丰富地质信息,计算机对这些地震记录进行处理分析,并用计算机进行解释,便可知道地下不同地层的空间分布,构造形态,岩性特征,直至地层中是否有石油、天然气、煤等,并可解决大坝基础,港口,路,桥的地基,地下潜在的危险区等工程地质问题,以及环境保护,考古等问题。 2 地震勘探过程及发展 地震勘探过程由地震数据采集、数据处理和地震资料解释3个阶段组成。 1.地震数据采集 在野外观测作业中,一般是沿地震测线等间距布置多个检波器来接收地震波信号。常规的观测是沿直线测线进行,所得数据反映测线下方二维平面内的地震信息。一般地讲,地震野外数据采集成本占勘探成本的80%左右,因此世界各国为了降低勘探成本、提高勘探效果,

浅层地震勘查技术规范

中华人民共和国地质矿产行业标准 浅层地震勘查技术规范Dz/T 01 7 0—1 9 97 1、范围 本标准规定了浅层地震勘查的设计、施工、记录质量评价和资料处理解释以及成果报告的编写、审查与评价等要求。 本标准适用于各种目的任务探测深度在几米至数百米范围的浅层地震勘查工作。在工作中除应符合本规程的要求外,还应符台国家现行有关标准的规定。 2、引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB 12950-9l地震勘探爆炸安全规程 Dz/T 0076-93石油、天然气和煤田地震勘探图式、图例及用色标准 Dz/T0153-95 物化探工程测量规范 3总则 3.1应用领域 3 1 1工程、水文、环境地质调查。 a)测定覆盖层厚度及基岩界面起伏形态; b)测定基岩岩岩性及风化层厚度的变化; c)测定隐伏断层、裂隙破碎带的位置、宽度及展布方向; d)测定砾石层中潜水面深度和地下含水层分布; e)探测岩溶及地下洞穴, f)划分松散沉积地层层序; g)滑坡及塌陷等灾害地质调查; h)地质填图; i)地质基础检测和岩士弹性力学参数测定等。 3.1.2区域和场地稳定性调查段评价。 a)进行岩体及场地土分类; b)计算场地卓越周期; c)判定砂土液化势; d)场地土地震效应分析和反应谱计算; e)地震烈度小区划工作中局部构造的调查等。 3 1 3能源、矿产地质调查及其他。 a)浅层油气和煤田的勘查和开发, b)铀矿床勘查; c)地热资源勘查; d)金属及非金属矿床勘查; e)建筑材料资源勘查; f)油气地震勘探中的低速带和降速带测定; g)古代遗存及地下埋设物探测等。 3 2应用方法及探测能力 3 2 1进行浅层地震勘查工作设汁时,应根据各方法的探测能力,地球物理前提和使用条件.合理选用适用的折射波法、反射波法、直达波法和瑞雷波法。 各种方法在层状和似层状介质条件下应用,可得到较好效果。在地质构造复杂、弹性波激发接收条件差、振

高分辨率地震资料解释_季佑仙

2002年12月石油地球物理勘探第37卷 第6期?综述? 高分辨率地震资料解释 季佑仙X (中海石油研究中心) 摘 要 季佑仙.高分辨率地震资料解释.石油地球物理勘探,2002,37(6):653~657 高分辨率地震资料精细地反映了地下地质情况,但由于同相轴多且密集,从而给地震资料解释带来较大困 难。因此,高分辨率地震资料解释须做到:解释前检查资料的频率成分,以保证地震剖面的波组特征;充分利用 计算机的显示功能,使高分辨率资料的解释更方便;有三维地震资料时,应用差异数据体、波阻抗数据体以及可 视化等先进技术,使高分辨率地震资料更真实地反映地下地质情况。 关键词 高分辨率 地震资料 解释 ABSTRAC T Ji Youxian.Interpretation of high-resolution seismic data.OGP,2002,37(6):653~657 T he hig h-r esolution seism ic data carefally reflects subsurface geolo gic feature.T he inter-pretatio n of high-resolution seismic data is very difficult because of multi and tight events. T herefo re,it must check up the frequency com ponents of data befor e interpretation in orde to guarantee the w ave gr oup char acter of seismic section;fully using the display functio n of co m-puter can make the interpr etatio n o f high-reso lution seism ic data m ore convenient;the ad-vanced techniques such as difference of data volum e,wav e impedance data bo dy and visualiza-tio n can be used for inter pretation if there is3-D seismic data,making hig h-r esolutio n sem sm ic data m ore truthfully reflect the subsurface g eo logy. Key words:hig h-r esolution,seismic data,interpretation 海上高分辨率地震资料同相轴多且密集,反映的地质现象复杂,这给解释(特别是二维资料解释)带来很大的困难,特别是在利用波组特征对比进行层序界面解释时尤为突出。但是,海上高分辨率地震资料具有频带宽、分辨率高的特点,而且随着地震数据采集、处理水平的提高,信噪比和保真度也得以提高。因此对海上高分辨率地震资料的应用亦越来越多。认真总结高分辨率地震资料解释经验,可以更好地为油气勘探、开发服务。 质量分析与适当处理 高分辨率地震资料不仅要求有较高的信噪比,而且要求有较宽的频谱,特别要求有足够的低频成分。但在进行资料处理时,为了得到较高的分辨率,往往只提高资料的高频成分,而忽略了低频成分。 在高分辨率地震资料解释中,最常见的问题是同相轴特别多,剖面没有波组特征。针对这种情况,首先应检查资料质量。造成剖面波组特征不好的最大可能性是地震资料缺乏低频成分,因此,可做频谱分析或频率扫描来检查剖面是否缺乏低频成分。按-6dB(即50%)计,如低截止频率达不到约10Hz,可要求处理人员重新处理,把低频成分补齐。图1是高分辨率地震偏移剖面,同相轴特别多,波组特征很差。经频谱分析可知,该剖面具有丰富的高频成分,高截止频率达到100Hz,但从浅至深都缺乏20Hz以 X J i Youx ian,Res earch Center,CNOOC,Beijing,100027,Chin a 本文于2002年7月17日收到。

海洋技术▏浅表层天然气水合物高分辨率地震勘探方法与应用

海洋技术▏浅表层天然气水合物高分辨率地震勘探方法与应用 随着天然气水合物勘探开发的逐渐深入,浅表层天然气水合物的资源潜力日益引起国内外的关注,尤其是日本海东部浅表层天然气水合物调查获得了突破性进展。浅表层天然气水合物赋存于近海底沉积物中,埋深一般小于海底以下60m,具有厚度大、纯度高等特点。浅表层天然气水合物资源勘探对天然气水合物资源勘探、深水地质灾害预测和评价、气候变化等科学问题具有重要的指导意义。浅表层天然气水合物与海底冷泉系统密切相关,冷泉系统为甲烷流体运移至水合物稳定带提供了有利通道,同时浅表层天然气水合物的分解也是冷泉系统甲烷的重要来源。 地震勘探是目前天然气水合物勘探的重要手段,但由于浅表层天然气水合物赋存位置较浅,对地震浅层分辨率具有较高的要求。 常规地震勘探方法拖缆间隔大、排列长,气枪震源能量大、频率低、激发间隔大,对于海底以下千米级深度的目的层具有较好的探测效果,但无法满足以高频信号为主的海底浅表层天然气水合物勘探的需要。对于常规天然气水合物而言,似海底反射(BSR)是最重要的识别标志,而浅表层渗漏型天然气水合物位于近海底的沉积物中,在常规的地震数据中没有明显的振幅异常,因此,仅仅依靠BSR难以在多道地震资料中准确的识别浅表层天然气水合物。海底

气体渗漏相关的地貌特征、气体运移通道、速度异常和振幅异常等特征是浅表层泥火山型天然气水合物该重要识别标志。 自2011年以来,青岛海洋地质研究所针对海域浅表层天然气 水合物的特点,逐步形成了一套浅表层天然气水合物高精度地震勘探技术体系,利用海洋小道距高分辨率二维、三维多道地震,结合参量阵高频浅地层剖面,提高了浅部地层的分辨率,为浅表层天然气水合物资源勘查提供了高品质的数据基础。 一、海洋小道距高分辨率地震勘探方法 ⒈海洋小道距高分辨率二维多道地震 勘探技术 震源是提高地震资料探测精度最重要的因素之一。海底以下50~1000m深度地层是海域地震勘探一个非常重要的范围,天然气水合物的勘查、海底滑坡等地质灾害的调查与预防、浅部断层的类型及活动性等都与该深度地层有着紧密的联系。传统气枪震源具有能量大、频率低、激发间隔大等特点,而浅层主要以高频信号为主,因此使用气枪震源的常规地震勘探方法不能适应海底浅层高精度地震勘探的要求。 为了克服常规地震勘探方法浅层分辨率低的问题,本文采用了一种海洋小道距高分辨率二维多道地震探测技术,该技术接收道数少(一般24~48道)、道间距小(3.125~6.25m),工作段缆长一般

浅层地震探测技术应用中的分辨率问题

浅层地震探测技术应用中的分辨率问题 来源:矿产与地质谢忠球时间:2005-11-1 摘要浅层地震探测技术中影响分辨率的因素,除与反射波主频和频带宽度有关外,还主要受信噪比、子波形态、采样率、岩性界面反射系数的影响。浅层地震探测中,通过高分辨率数据处理,能有效地提高资料的信噪比和分辨率。 关键词浅层地震勘探,分辨率,高分辨率处理 RESOLUTION PROBLEMS ABOUT THE APPLICATION OF SHALLOW SEISMIC PROSPECTING TECHNIQUE Xie Zhongqiu (I nstitute of K arst G eology,C AGS,G uilin 541004) Abstract The factors which influence the resolution of shallow seismic prospecting are affected mainly by SNR (signal-to-noise ratio),Wavelet shape,sampling rate and reflection coefficient of lithological interface in addition to main frequency and frequency band-width of reflecting wave.The SNR and resolution of seismic data can be effectively improved through high resolution processing of seismic data in shallow seismic prospecting. Key words Shallow seismic prospecting,Resolution,High resolution processing 目前浅层工程物探技术,在解决各种灾害地质、环境地质问题,例如矿井突水、塌陷、滑坡等的预测、治理中的作用,已经逐渐为人们所认识。本文系统、全面地从分辨率的影响因素、高分辨率采集和处理技术等几个方面,探讨了浅层地震勘探中分辨率问题。 1 分辨率及其影响因素 相对于煤田、石油地震勘探,水文、工程、环境等地质问题涉及的对象具有浅而小的特点,浅层地震勘探对分辨率有更高的要求。分辨率通常包括两个方面[1],一是垂向分辨率,二是水平分辨率。本文着重讨论前者,对后者仅作一般性讨论。 定义垂向分辨率一般采用两种方法,一种是采用薄层顶底反射波的时差来定义分辨率,有人称之为严格的分辨率定义。另外一种是用零相位子波来讨论垂向分辨率。它包括Rayleigh准则、Widess准则、Ricker准则等。根据Rayleigh光学分辨率准则可知,在视觉上能够分辨出薄层上下界面反射波的最小层厚是λb/4,λb为主波长。 一般地,反射波测量可以观测到的反射波最小宽度是用菲涅耳带的大小来决定的。菲涅耳带的半径与界面埋深H界面以上地层速度V及地震子波波长λ有关。菲涅耳带半径R f的近似 值:R f=HV/2f,式中f为子波主频。通常以菲涅耳带的直径(2R f)作为水平分辨率。 从上述讨论中,可以看出分辨率与频率的关系,提高反射波主频可以提高分辨率。事实上,要提高地震记录的分辨率,除了提高反射波主频外,必须提高频带宽度,而地震记录的信噪比、子波形态、采样率、岩性界面反射系数等因素的影响也是不可忽视的。

浅层地震勘探实验报告修订稿

浅层地震勘探实验报告 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

XXXXXXX学校实验报告

一、实验目的 通过教学实验实习,目的是使同学对浅层地震勘探技术掌握,了解浅层地震仪器的使用和仪器工作参数的选择;了解浅层地震勘探激发条件的选择,检波器的安置条件;地震反射波法野外资料的采集技术及方法,并进行资料的整理与解释;了解地震勘探野外工作施工的过程。 二、实验内容 1、使用浅层物探设备对xx场地进行实验,掌握浅层地震物探技术方法 2、使用Geogiga软件对所采集数据的资料处理(反射波法) 三、实验原理 地球物理条件 地下介质内部存在波的阻抗差,波阻抗是介质的速度和密度的乘积。具有一定厚度的地层与相邻地层存在有波阻抗差异时,才具有开展浅层地震勘探的前提。只要波遇到弹性性质不同的分界面,就会有反射界面。表中分别列出了岩土介质中的波速、平均密度以及波阻抗的变化范围。 表几种岩石的波阻抗

第四系覆盖层与基岩、砂与粘土、砾石层与粘土、砂层之间有明显的波阻抗差异和波速差异,各层具有一定的厚度时,均可形成反射界面;有断层、破碎带等地质构造情况时,在断层面上会产生断面波、弯曲界面上会产生回旋波、在断点和尖灭点上会产生绕射波等,所以来自断层面或特殊地质构造面上的反射波会有明显异常;当疏松的覆盖层或风化带饱含地下水时,其波速将会明显地增大,对与P波来说,潜水面就是一个明显的波阻抗界面;一般基岩各风化层间从上到下通常具有速度和密度递增的趋势,多数情况下基岩风化层存在3~4个速度或波阻抗界面,这些界面常与全风化、强风化、中风化、弱风化和微风化界面相一致或相接近;以上地质条件均为地震勘查提供了物理条件。 浅层地震反射波法 浅层地震反射波法是地震勘探方法中的一种。在地表向下激发地震波,当地震波向下传播遇到弹性不同的分界面时,就会发生反射,地震勘探仪器记录这些反射地震波。由于反射波在介质中传播时,其传播路径、振动强度和波形将随着通过介质的结构和弹性性质的不同而变化,根据接收到的反射波旅行时间和速度资料,就能推断解释地层结构和地质构造的形态,而根据反射波的振幅、频率、速度等参数,则可以推断地层或岩石的性质,从而达到地震勘探的目的。(图反射波法工作原理示意图)

浅层区地震勘探资料采集方法

浅层区地震勘探资料采集方法 为了满足我国地质工作的要求,做好地震勘探采集工作是必要的,这需要针对不同的工作状况展开分析,落实好地震勘探采集工作的相关策略。受到地形特征、地震勘探技术、施工地表特殊性的影响,浅层地震勘探采集工作面临着一系列的问题,为了解决这些问题,需要进行适合设备的采用,保证资料采集设计方案的优化,从而满足当下地震勘探工作的要求,保证资料采集体系的健全,提升其资料采集的准确性。 标签:复杂地区;浅层地震勘探;采集方法;浅层地表层性质;地层介质传播 1 采集仪器准备工作及观测系统应用工作 (1)在物理勘探过程中,地震勘探模式是一种重要的模式,这种模式需要进行弹性波的激发,在传播过程中,弹性波穿过地层介质,从而发生一系列的折射、反射及投射状况,再进行专业仪器的使用,记录好这些振动,通过对这些信息的分析及研究,得到地质界面、地质形态等构造的相关信息,通过对这种方法的应用,可以进行岩石或者矿床等性质的分析。这种地震勘探方法比较流行于非金属矿产、沉淀型能源矿产等的采集,文章以复杂地区的煤田地震勘探为例子,进行浅层地震勘探采集方法的深入分析。 在实践过程中,地震勘探工作需要选用好适当的仪器,在地震勘探过程中,需要针对不同勘探目标,进行相关采集仪器的使用,确保這些仪器设备的良好性能性。在浅层地震勘探过程中,需要进行中小型采集仪器系统的使用,要保证系统的良好性能。在浅层地震勘探采集过程中,系统采集模式主要分为两个部分,分别是分布式采集数字传输模式及集中式模拟传输模式,这两种模式具备不同的工作侧重点,其性能参数指标也存在差异。 目前来说,我国的煤田地震勘探体系依旧是不健全,缺乏地震勘探的核心技术应用,缺乏国产的先进仪器。在实践过程中,多使用国外的先进仪器,这些仪器普遍是大中型仪器,比如428XL系统。在实践过程中,国产的轻便分布式采集系统也能得到应用,这种分布式采集系统具备以下特点,其采集信号保真度比较高,系统输入的噪声比较小,具备良好的采样率,具备良好的施工环境适用性。 (2)为了满足地质勘探工作的要求,需要做好浅层区的地震勘探采集工作,需要实现观测系统的强化,做好二位地震观测的相关工作。在二位地震观测应用中,比较常见的是多覆盖观测系统,这种观测系统的选择,需要根据不同的施工条件进行应用。在工程实践中,如果勘探深度比较大,具备较多的仪器道数,就需要进行端点放炮的使用,如果勘探深度比较浅,为了有效提升浅层的覆盖率,必须进行中间放炮的模式开展。在实践过程中,要保证中间放炮观测系统不同工作模式的协调,需要针对地下地层的相关工作环境,进行该系统的具备选择及应用。

浅层地震勘探试题集

浅层地震勘探题库 一名词解释: 1.扬氏模量垂直分辨率延迟时间振动图正常时差 2.视速度振动图时距曲线隐伏层有效波粘弹性体3.速度谱频谱分析回声时间名向同性介质横向分辨率4.转换波检波器组合盲区共反射点道集斯奈尔定理 5.双相介质连续介质回折波尖脉冲反褶积瑞雷面波 6.绕射波覆盖次数动校正拉伸畸变滤波器常时微动 7.偏移归位频散扇形滤波低速带回声时间 8.临界距离各向异性介质波前扩散垂直叠加剪切模量 9.半波损失多次反射均方根速度假频剩余静校正 10.动态范围多次覆盖临界距离泊松比初至波 11. 波前波后波剖面波前扩散吸收系数品质因素 12. 瑞雷面波斯奈尔定理半波损失转换波 二填空 1.折射波的形成条件为_____________反射波的形成条件为___________________ 。 2.地震速度信息的采集有___________________________________和________________ 两种方法。 3. 在进行地震波的接收时,提高资料的信噪比的两种基本手段为

___________________________ 和________________________。4. 地勘探的发展是以记录仪器的发展为标志,可分为_______________,_____________,_______________三个阶段。5. 横波的特点是________________________________而横波是__________________________。 6. 同一介质中纵波、横波、瑞雷面波的波速,___________波最快,____________波次之,_____________波最慢。 7. 折射波形成的条件是____________________,而接收条件是______________,反射波的形成条件是________________。 8. 地震道的工作原理是____________________________________。 9. 进行波的对比的目的是______________________________,而进行静校正的目的是_________________________________。 10. 绕射波的时距曲线的形状是______________________它与平界面的_________________________时距曲线类同。 11. _____________________________叫做初至折射波法,它的优点是________________________________________。 12. ___________________________叫做射线平面,当地及倾角Ф=0?条件下,进行定量反赏演解释时,之所以要进行空间归位是因为________________________。 13. ______________________________________________叫做盲区。 14. _____________________________________________叫有效波。 15. 纵波的特点是________________________________________。

相关文档
最新文档