电信号测量仪的设计与实现
脉搏测量仪

脉搏测量仪一、任务分析与设计1.1任务利用压电陶瓷片通过脉搏跳动来采集信号, 经过放大滤波等电路处理, 最后用数码管显示出心脏跳动次数。
另一方面将脉搏电信号送入电脑中的Labview软件中处理, 便可得到心脏跳动的频率波形。
1.2任务分析脉搏计的核心是在固定的短时间内对低频电脉冲信号计数, 最后以数字形式显示出来。
因此脉搏计是用来测量低频信号的装置, 其基本功能要求是:(1)要把人体的脉搏(振动)信号转换成电信号, 这就需要借助传感器。
(2)对转换后的电信号要进行放大和整形等处理, 以保证其他电路正常工作。
(3)在很短的时间内, 测量出经放大后的电信号频率值。
1.3设计思想:把转换为电信号的脉搏信号, 在单位时间内(一分钟)进行计数, 并用数字显示其计数值, 从而直接得到每分钟的脉搏数。
内容如下:(1) 用压电陶瓷传感器将脉搏信号转换为电信号(2) 经放大整形滤波电路得到符合要求的脉搏电信号(3) 再经记时系统最后在数字显示器上显示出每分钟的脉搏数(4) 将脉搏电信号送入电脑中的Labview软件中处理, 得到心脏跳动的频率波形。
系统设计的框架图如下:二、确定总体设计方案为满足脉搏计的上述功能要求, 可把转换为电信号的脉搏信号, 在单位时间内(一分钟)进行计数, 并用数字显示其计数值, 从而直接得到每分钟的脉搏数。
2.1 传感器的选择为了把脉搏转换成电信号, 采用了压电式传感器。
它有两种基本类型: 石英晶体和压电陶瓷。
前者温度稳定性好、机械强度高、工作温度范围宽、转换精度也高。
压电陶瓷是人工制造的压电材料, 优点是压电系数大灵敏度、价格便宜, 只是温度稳定性和强度不如石英晶体, 所以我们使用了压电陶瓷片来做传感器。
2.2放大电路通常采用运算放大器对微小电脉冲信号进行放大。
它具有输入阻抗高和输出阻抗低以及调节电压放大倍数方便等优点, 但在数字电路系统中也常用与非门来构成线形放大器。
由门电路的转换特性可知, 如果使它工作在线形区, 它就具有电压放大能力。
三种风速测量仪介绍及其原理 测量仪工作原理

三种风速测量仪介绍及其原理测量仪工作原理1、热式风速仪将流速信号变化为电信号的一种测速仪器,也可测量流体温度或密度。
其原理是,将一根通电加热的细金属丝(称热线)置于气流中,热线在气流中的散热量与流速有关,而散热量导致热线温度变化而引起电阻变化,流速信号即变化成电信号。
它有两种工作模式:①恒流式。
通过热线的电流保持不变,温度变化时,热线电阻更改,因而两端电压变化,由此测量流速。
②恒温式。
热线的温度保持不变,如保持150℃,依据所需施加的电流可度量流速。
恒温式比恒流式应用更广泛。
热线长度一般在0.5~2毫米范围,直径在1~10微米范围,材料为铂、钨或铂铑合金等。
若以一片很薄(厚度小于0.1微米)的金属膜代替金属丝,即为热膜风速仪,功能与热丝相像,但多用于测量液体流速。
热线除一般的单线式外,还可以是组合的双线式或三线式,用以测量各个方向的速度重量。
从热线输出的电信号,经放大、补偿和数字化后输入计算机,可提高测量精度,自动完成数据后处理过程,扩大测速功能,相像时完成瞬时值和时均值、合速度和分速度、湍流度和其他湍流参数的测量。
热线风速仪[1]与皮托管相比,具有探头体积小,对流场干扰小;响应快,能测量非定常流速;能测量很低速(如低达0.3米/秒)等优点。
当在湍流中使用热敏式探头时,来自各个方向的气流同时冲击热元件,从而会影响到测量结果的精准性。
在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式探头。
以上现象可以在管道测量过程中察看到。
依据管理管道紊流的不同设计,甚至在低速时也会显现。
因此,风速仪测量过程应在管道的直线部分进行。
直线部分的起点应至少在测量点前10D(D=管道直径,单位为CM)外;尽头至少在测量点后4D处。
流体截面不得有任何遮挡(棱角,重悬,物等)。
2、叶轮风速仪风速计的叶轮式探头的工作原理是基于把转动转换成电信号,先经过一个靠近感应开头,对叶轮的转动进行“计数” 并产生一个脉冲系列,再经检测仪转换处理,即可得到转速值。
压力变送器的组成和测量原理图

压力变送器的组成和测量原理图作为一个转换为电信号的测量仪表,图1-2-1是压力变送器有一个基本的工作框图:压力传感器检测到压力后,输出一个电信号,这个信号可以是电压,也可以是频率或脉冲。
信号处理电路会把这个信号放大或者整形,若是智能变送器会把这个信号转换为数字量,进行非线性及温度的补偿,然后再转换为模拟量,送给变送输出部分,变成4~20mA电流信号。
若是非智能变送器,则直接把模拟的电信号送变送输出。
一般的变送器均为2线制仪表,即供电和测量信号的输出使用相同的2根导线。
图1-2-1压力变送器基本工作框图2.3压力传感器压力传感器的作用是将压力的物理信号转换为电信号。
通常使用的压力传感器主要有3类。
2.3.1陶瓷电容传感器以三氧化二铝陶瓷构成,当传感器感受压力后,两导电极板间距离发生变化,引起电容量发生变化。
通过振荡电路可以将这个电容变化转换为电压信号,就可以测量出电容量也就是压力大小。
陶瓷电容压力传感器的特点是热稳定性好,抗过载能力可达量程的百倍以上,没有液体传递压力,无任何填充液,不会产生工艺污染,因此在食品、医药等行业有着广泛的应用,加之是干式陶瓷膜片,也没有安装位置影响。
有的陶瓷压力传感器带有专用调理电路,可直接输出0.5~4.5V的电压信号。
虽然压力传感器的量程范围不同,但是输出信号的幅值都相同。
即0.5V对应传感器测量的最小压力,4.5V对应最大压力,其余中间各点与测量压力成线性关系。
例如,-0.1~1MPa的压力传感器,在压力为0时的理论输出为0.86V。
2.3.2金属电容差压传感器图1-2-2金属电容差压传感器罗斯蒙特公司使用金属电容传感器制成了1151差压变送器,现在国内很多厂家的差压变送器都是参考1151制造的。
金属电容差压传感器的原理是:被测介质的两种压力通入高、低两压力室,作用在敏感元件的两侧隔离膜片上,通过隔离片和元件内的填充的硅油传送到测量膜片两侧。
由测量膜片与两侧绝缘片上的电极各组成一个电容器。
自动测量仪的原理

自动测量仪的原理自动测量仪是一种能够自动进行测量、数据采集和数据处理的仪器。
它通过内置的传感器和控制系统,可以实现自动测量各种物理量、化学指标或电子参数,并将测量结果以数字形式进行显示和记录。
自动测量仪的原理主要包括传感器技术、信号处理技术、自动控制技术等几个方面。
首先,自动测量仪的核心部件是传感器,它是将被测量量转化为电信号的装置。
传感器可以根据被测物理量的不同选择不同的工作原理,如变压器传感器、电容传感器、电感传感器、压电传感器等。
传感器通过量化被测量并将其产生的物理量转化为电信号,从而实现对被测量量的测量。
其次,自动测量仪利用信号处理技术将传感器产生的电信号进行增强、滤波、调理和数字化处理,使其达到适合后续处理的要求。
信号处理技术包括模拟信号处理和数字信号处理两种方式。
模拟信号处理主要用于对模拟信号进行滤波、放大和整形处理,以提高信噪比和抑制干扰。
数字信号处理则将模拟信号经过模数转换器转换为数字信号后,利用数字滤波器、数字滤波算法、数字调理算法等进行处理。
然后,自动测量仪利用自动控制技术实现对传感器和信号处理系统的自动控制。
自动控制系统可以根据预设的测量参数进行控制,包括采集触发,信号放大和校正,数据记录以及控制输出等功能。
自动控制技术主要包括反馈控制、前馈控制和模糊控制等方式。
通过自动控制技术,自动测量仪可以实现对测量过程的可靠控制,提高测量的准确性和可重复性。
除了以上几个核心原理,自动测量仪还可以应用其他辅助技术来提高测量精度和可靠性。
例如,校准技术可以通过与标准设备相比,对测量仪表进行校准,以修正测量误差。
自适应技术可以根据测量环境和被测参数的变化自动调整测量仪的工作参数,提高测量的适应性。
实时监测技术可以实时监测传感器和信号处理系统的状态,以及测量结果的准确性和稳定性,从而提前判断并处理故障。
总之,自动测量仪的原理主要包括传感器技术、信号处理技术和自动控制技术。
通过传感器将被测物理量转化为电信号,然后通过信号处理技术对电信号进行增强、滤波、调理和数字化处理,最后通过自动控制技术对传感器和信号处理系统进行自动控制,实现自动测量和数据处理。
光电仪器设计

光电仪器设计光电仪器是一种利用光电效应进行测量的设备,广泛应用于科学研究、工业生产、医疗诊断等领域。
随着科技的不断发展,光电仪器的设计和制造技术也在不断进步。
本文将对光电仪器设计原理与实践进行探讨,以期为光电仪器设计和应用提供有益的参考。
一、光电仪器设计原理概述光电仪器设计原理主要包括光电效应、光学系统、电子系统和数据处理等方面。
光电效应是指光照射到半导体材料上时,会产生电子-空穴对,从而产生电流。
光学系统主要包括光源、光学传感器、光学镜头等,用于将光信号转换为电信号。
电子系统主要包括放大器、滤波器、模数转换器等,用于对电信号进行处理和放大。
数据处理主要包括数据采集、信号处理、数据分析等,用于提取有用的信息。
二、光电仪器设计实践探讨1. 光源选择:光源是光电仪器设计的关键因素之一。
根据不同的应用需求,可以选择合适的光源,如激光、LED、荧光灯等。
光源的选择应考虑其稳定性、亮度、波长等因素。
2. 光学传感器设计:光学传感器是光电仪器中的核心部件,用于将光信号转换为电信号。
光学传感器设计应考虑其灵敏度、分辨率、响应速度等因素。
3. 光学镜头设计:光学镜头用于将光信号聚焦到光学传感器上,其设计应考虑其焦距、光圈、像差等因素。
4. 电子系统设计:电子系统是光电仪器中的关键部分,用于对电信号进行处理和放大。
电子系统设计应考虑其噪声、漂移、线性度等因素。
5. 数据处理设计:数据处理是光电仪器中的关键环节,用于提取有用的信息。
数据处理设计应考虑其算法、速度、精度等因素。
三、光电仪器设计在实际应用中的探讨1. 提高测量精度:通过优化光电仪器设计,可以提高测量精度,满足高精度测量的需求。
2. 扩展测量范围:通过合理设计光学系统和电子系统,可以扩展光电仪器的测量范围,满足不同应用场景的需求。
3. 提高测量速度:通过优化数据处理算法,可以提高光电仪器的测量速度,满足实时测量的需求。
4. 降低成本:通过采用先进的设计理念和制造技术,可以降低光电仪器的成本,提高市场竞争力。
基于单片机简易频率计设计

基于单片机简易频率计设计一、前言频率计是一种测量电信号频率的仪器,其应用广泛。
本文将介绍如何基于单片机设计一个简易的频率计。
二、设计思路本次设计采用单片机作为核心控制芯片,通过捕获输入信号的上升沿和下降沿来计算出信号的周期,从而得到信号的频率。
具体实现过程如下:1. 选择合适的单片机选择一款适合本次设计要求的单片机,需要考虑其性能、价格、易用性等因素。
常见的单片机有STC89C52、AT89C51等。
2. 硬件电路设计硬件电路主要包括输入端口、捕获定时器模块、显示模块等。
其中输入端口需要接收待测信号,捕获定时器模块用于捕获信号上升沿和下降沿的时间,显示模块则用于显示测得的频率值。
3. 软件程序设计软件程序主要包括初始化程序、捕获中断服务函数和主函数等。
其中初始化程序用于设置捕获定时器模块和显示模块参数,捕获中断服务函数则是实现对输入信号上升沿和下降沿时间的捕获与计算,主函数则用于控制程序流程和显示结果。
三、硬件设计1. 输入端口设计输入端口需要接收待测信号,一般采用BNC接头。
由于输入信号可能存在较高的电压和噪声,因此需要加入滤波电路以保证输入信号的稳定性。
2. 捕获定时器模块设计捕获定时器模块是本次设计的核心部分,其主要功能是捕获输入信号的上升沿和下降沿时间,并通过计算得到信号周期和频率值。
常见的捕获定时器模块有16位定时器/计数器、32位定时器/计数器等。
在本次设计中,我们选择了16位定时器/计数器。
3. 显示模块设计显示模块主要用于显示测得的频率值。
常见的显示模块有LED数码管、LCD液晶屏等。
在本次设计中,我们选择了LCD液晶屏。
四、软件程序设计1. 初始化程序初始化程序主要包括设置捕获定时器模块参数、设置LCD液晶屏参数等。
2. 捕获中断服务函数捕获中断服务函数是实现对输入信号上升沿和下降沿时间的捕获与计算,其具体实现过程如下:(1)当捕获定时器模块捕获到输入信号上升沿时,记录当前时间值。
示波器的射频测量和分析技巧

示波器的射频测量和分析技巧射频测量和分析技术是现代通信、无线电和电子领域中的关键技术之一。
示波器作为一种重要的测量仪器,被广泛用于射频电路的测试和分析。
本文将介绍示波器在射频测量和分析中的常用技巧和方法,以帮助读者更好地理解和应用这一技术。
一、示波器的基本原理简介示波器是一种用于测量电信号波形的仪器。
它通过将待测信号连接到水平和垂直偏转系统,可以显示出信号的波形和特征。
示波器主要由示波管、扫描电路、触发电路和垂直放大器等组成。
二、射频信号的测量技巧1. 垂直放大器的设置在射频测量中,正确设置垂直放大器是非常关键的。
首先,选择适当的垂直增益,使得待测信号能够充分展示在示波器的屏幕上;其次,根据信号的幅度范围选择合适的垂直灵敏度,确保信号能够在示波器的垂直方向上合理分布。
2. 水平扫描的设置对于射频信号的测量,正确设置水平扫描参数也非常重要。
首先,通过调整扫描速率和时间基准,使得待测信号的周期和特征能够在示波器屏幕上得以清晰显示;其次,选择合适的水平灵敏度,确保信号能够在示波器的水平方向上合理分布。
3. 触发电路的应用射频信号的触发对于测量和分析来说是至关重要的。
通过调整触发电路的阈值和触发方式,可以实现对特定信号的检测和显示。
在射频测量中,通常选择边沿触发方式,并根据信号波形的特点调整触发电平和触发延迟,以确保触发的准确性和稳定性。
三、射频信号的分析技巧1. 频率测量示波器可以通过测量信号的周期或脉宽,计算出信号的频率。
在射频测量中,通常选择自动或单次测量模式,并利用示波器上的软件工具实现频率的测量和分析。
2. 波形分析示波器通过显示信号的波形和特征,可以对射频信号进行进一步的分析。
通过观察波形的振幅、频率、相位和时序等参数,可以判断信号的稳定性、失真情况和干扰程度,从而指导后续的电路设计和优化。
3. 频谱分析频谱分析是射频信号分析中常用的方法之一。
示波器可以通过傅里叶变换将时域信号转换为频域信号,并显示出信号的频谱分布。
自制简易数字照度计

自制简易数字照度计苏黎明;刘爱华【摘要】利用硅光电池将接收到的光信号转换成电信号,然后利用A/D转换器ICL7107将输入的模拟电压信号转化成数字信号,再通过LED共阳极数码管将该输出值直接显示,由此构成数字照度计.该照度计制作简单,读数方便,费用少.【期刊名称】《实验技术与管理》【年(卷),期】2010(027)003【总页数】4页(P57-60)【关键词】照度计;硅光电池;共阳极数码管【作者】苏黎明;刘爱华【作者单位】山东师范大学物理与电子科学学院,山东,250014;山东师范大学物理与电子科学学院,山东,250014【正文语种】中文【中图分类】TB96随着数字技术的发展以及模拟技术缺陷的日益明显,数字仪器取代模拟仪器已成为电子仪器的发展趋势[1-2]。
在工农业生产中,光照度是衡量生产环境的一个重要指标。
例如,在农业生产上,使用照度计测量太阳辐射的光照度,可以直接反映作物生长与光照度的关系,准确把握光照强度和光照时间是保障作物增产增收的关键。
但是市场上常用的照度计,动辄几千元,对于非高精度要求的用户而言费用的确过高。
本文设计的简易照度计,仅利用硅光电池、ICL7107和 LED共阳极数码管等少量元器件,花费不过十几元,但读数迅速、方便,制作简单,原理易懂。
1 设计照度是受光照平面上接受的光通量的面密度。
数字照度计是用于测量被照面上的光照度的仪器,是光学测量中用得最多的仪器之一[3-7]。
本设计的照度计由光度头和读数显示器两部分组成。
1.1 光度头的设计光度头又称光探头,主要是接受光信号,然后通过硅光电池把它转化成电信号,再通过分压电路转化成A/D转化器可接受的信号。
光度头由硅光电池、电阻和滑动变阻器组成,如图1所示。
其中 R1、R2,R3、R4为换档及反馈电阻,R5为可调电阻,OP 为运算放大器。
可调电阻R5外接数字电压表。
1.2 显示器的设计显示器把模拟信号转化成数字信号,并通过数码管显示出相应的照度值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本测量原理
1、 频率、周期测量 频率的测量按照频率的定义进行:在某个已知的标准时间 间隔 T(如 1s)内,测出被测信号重复的次数 N,f=N/T 就 是信号频率。基本原理框图如图 1 所示
被测信号
放大整形
时间闸门
计数器
译码显示
门控信号 晶振
分频信号
Page 3
图中晶振提供测量的时间基准,经分频后产生准确地时间间隔 T,作为门控 信号去开启与关闭 时间闸门。闸门开启时,被测信号经过放大整形后,进入计数器进行计数, 闸门关闭时,停 止计数。若在时间间隔 T 内,计数值为 N,则被测信号的频率 f=N/T。 由于单片机具有程序运算功能,且频率为周期的倒数,测的频率值,即可 通过运算得到周
Page 7
3.
Vpp 测量电路
电路原理图如下:
Page 8
由采样保持集成电路 LF398 和电压比较器 LM393、场 管等组成峰值电压采样保持电路,其原理是:输入的电压 进入采样集成,对电容充电,电压达到最大值(峰值)之 后,输出的电压和输入的电压作比较,电压达到最大后, 由于输出电压大于圆锥形入电压,比较器的输出使采样集 成禁止电压的输入而保持峰值不变。运放 OP07 用于对信 号进行两倍的电压放大,满足 A/D 转换器ADC0832 的最 大电压分辩条件。ADC0832 是一个 8 位串行 A/D 转换器, 用于采集正弦信号的 Vpp 值。
4.
系统控制电路
此部分是系统的主要控制部分,要完成信号的选通和 计数脉冲的分频,及显示数值功能,两个模拟电子开关 集成 CD4052 作为信号的选通开关,8253 作为计数脉 冲的分频,LCD1602 作为系统的显示器件。
Page 9
二、软件部分设计
⑴系统程序流程
开始 N 初始化
否则检测信号输入 信号指示 是否为方波
是则测量脉宽、占空比
否则测量相位差、峰峰值
显示
Page 10
四、 系统指标测测
1、指标测测
⑴ 频率、周期测测: 用函数信号发生器产生频率范围为 1Hz~10KHz 的 方波信号(TTL 电平,占空比 50%,,用标准频率计测的标准频率,再用设 计的测量仪测出频率,求出误差。 ⑵脉宽测测:用函数信号发生器产生频率范围为 1Hz~10KHz 的方波信号, 用标准周期测量仪 测出周期,再除以 2,得到标准脉宽,再用设计的测量仪测出脉宽,求出误差。 ⑶占空比测测:用函数信号发生器产生频率范围为 1Hz~10KHz 的方波信 号,用标准周期测量仪测出周期,用标准数字频率计测出脉宽,两者相除,得 到标准占空比,再用设计的测量仪测出占空比,求出误差。 ⑷峰值测量:用用函数信号发生器产生频率范围为 1Hz~10KHz 的正弦波信 号,用标准交流毫 伏表测出有效值,通过运算得到标准峰值,再用设计的测量仪测出占空比,求 出误差。
4、 相位测量 相位指两个同频率正弦信号间的相位角之差。
Page 5
三、 系统设计 ㈠ 硬件部分设计 1. 电源部分由于被测信号易受干扰而发生失真,使
测量精 确度下降,故自制稳压电源供电电路图如下:
Page 6
双 12V 的交流电经四个二极管整流、电容滤波后经两个 三端稳压管稳压得到 ± 8V 后给系统的运放等供电,再经 7805 稳压管为单片机提供工作电压+5V。 2. 信号整形电路 单片机很难直接对正弦信号进行频率的测量,当正弦波和 方波在同一输入端时就更难直接测量,两正弦波的相差也 无法直接测量,因而使用整形电路把正弦波变成占空比为 50%,频率丌变的方波,便于进行频率和相差的测量。图 中,正弦信号用电压比较器 LM393 和 0.1V 的电压作比较, 便可得到同频的方波,用于测量其频率。和负 0.1V 比较 可得负半波对应的负脉冲,进入单片机后可识别是否是正 弦波,原信号和相移后的信号经过零比较后可得到同频的 两路方波信号。稳压管用于电平的转换。
2、 脉宽测量 测量电路在检测到脉冲的上升沿时打开计数器,在下降沿时关闭计数器, 所测脉冲宽度为 TW = N / fs ,其中 N 为计数值,fs 为计数器的工作频率。 3、 峰值测量 测量正弦信号 VPP 的原理框图如下图所示
被测信号
峰值电压保持
滤波
显示
Page 4
峰值电压采样保持电路由一片采样保持器芯片 和一块电压比较器构成。 采样保持器的输出电压 和输入电压通过电压比较器进行比较,当 Vi>V0 时,电压比较器输出高电平,送到采样保持器的 逻辑控制端 8 脚,使之处于采样状态;当 Vi 达到 峰值而下降时,Vi<V0,电压比较器输出低电平, 采样保持器的逻辑控制端置低电平,使之处于峰 值保持状态。
电信号测量仪的设计不实现
指导老师:王庆春 报告人:孙新
选题的意义
本系统以单片机为核心设计了一种用于测量频率、周期、脉宽、占空 比、峰峰值的简易信号测
量仪,其中还可分辩正弦波不方波,利用单片机的数学运算和控制功 能,结合部分中规模数字电路,实现测量中的功能自动切换。各项实测 表明,设计原理正确合理,指标符合设计要求。 但目前市场上各式各样的LCD数字电子钟大多数用全硬件电路实现,电 路结构复杂,功率损耗大等缺点。因此有必要对数字电子钟进行改进。
Page 11
对本次设计研究的期待
希望通过本次的研究能够使更多的人了解并 认识到多功能电子钟的重要性。 更希望的是通过本次研究能够使更多的人投 身都多功能电子钟的研究中去,能够使我们 的生活更加的简单、快捷、方便。
Page 12
Page 13