第三章-直杆的基本变形PPT课件

合集下载

机械基础3第三章 直杆的基本变形

机械基础3第三章  直杆的基本变形

2017/10/3
第三章 直杆的基本变形
直杆的基本变形
在机器或结构物体中,存在多种多样的构件。如果构件 的纵向(长度方向)尺寸较横向(垂直于长度方向)尺寸大 得多,这样的构件称为杆件。直杆件是机械中最基本的构件。 外力在直杆件上的作用方式有很多种,直杆件由此产生 的变形形式也不同。归纳起来,直杆件变形的基本形式有四 种:拉伸与压缩、剪切、扭转、弯曲。
图3-11 剪切变形
第二节 剪切与挤压
2.剪切变形的特点 以铆钉(图3-12)为例,分析剪切变形的特点。 (1)受力特点:构件受两组大小相等、方向相反、作用线相距很 近(差一个几何平面)的平行力系作用。 (2)变形特点:构件沿两组平行力系的交界面发生相对错动。 (3)剪切面:构件将发生相互的错动面,如n-n。
(3)构件特点:等截面直杆。
第一节 直杆件轴向拉伸与压缩
三、直杆应力与应变 1.直杆应力
想一想
如图3-5所示,两根材料一样,但横截面面积不同的杆件,它们所 受外力相同,随着外力的增大,哪一根杆件先发生变形?
图3-5 不同横截面杆件受力图
第一节 直杆件轴向拉伸与压缩
工程上常用应力来衡量构件受力的强弱程度。构件在外力作用下, 单位面积上的内力称为应力。某个截面上,与该截面垂直的应力称为 正应力(图3-6),与该截面相切的应力称为切应力。
生破坏。
内力有正负规定: 当内力与截面外法线同向,为正内力(拉力)。 当内力与截面外法线反向,为负内力(压力)。
第一节 直杆件轴向拉伸与压缩
2.直杆变形
想一想
观察图3-2,单层厂房结构中的屋架杆受到了什么变形? 在轴向力的作用下,直杆件产生伸长变形称为直杆轴向拉伸,简 称直杆拉伸。 在轴向力的作用下,直杆件产生缩短变形称为直杆轴向压缩,简 称直杆压缩。

直杆的基本变形

直杆的基本变形

直杆的基本变形
1、 轴向拉伸与压缩
拉伸: 在轴向力大作用下,杠杆产生伸长变形 压缩: 在轴向力大作用下,杠杆产生缩短变形
受力特点:沿杆件轴向作用一对等值、反向的拉力或
压力
变形特点:杆件沿轴向伸长或者缩短。

公式:
Fn 表示横截面轴力 A 表示横截面积
2、 剪切 剪切:杆件受到一定垂直于杆轴方向的大小相等、方
向相反、作用线相距很近大外力作用做引起大变形。

受力特点:截面两侧受一对等值、反向、作用线相近
的横向力
变形特点:截面沿着力的作用方向很对错动。

3、 扭转
扭转:直杆在两端受到作用于杆断面的大小相等方向
想法大力矩(扭矩)作用,则发生扭转。

受力特点:在很截面内作用一对等值、方向的力偶 N F A σ=
变形特点:轴表面的纵线变成螺旋线。

4、弯曲
弯曲:杆件在垂直于其轴线的载荷作用下,使原为直线大轴线变成曲线的变形
受力特点:受垂直于梁轴线的外力或在轴线平面内作用的力偶
变形特点:使梁的轴线由直变弯。

杆件的基本变形

杆件的基本变形
弹性体内力的特征: (1)连续分布力系 (2)与外力组成平衡力系
应力:内力在一点的分布集度。即单位面 积上的内力
P1
y
lim DFN
DA0 DA
ΔFQy
DFR 垂直于截面的应力称为“正
ΔFQz
P2
z
ΔA
ΔFN
应力”
x
lim
DA0
DFQ DA
位于截面内的应力称为
“剪应力”或“切应力”
集中力: 若外力作用面积远小于物体表面的尺寸,可 作为作用于一点的集中力。如火车轮对钢轨 的压力等
目录
外力及其分类
按外力与时间的关系分类
静载: 载荷缓慢地由零增加到某一定值后,就保持不变或变动很不显著, 称为静载。
动载: 载荷随时间而变化。
如交变载荷和冲击载荷
交变载荷
冲击载荷
目录
内力:弹性体受力后,由于变形,其内部 各点均会发生相对位移,因而产生 相互作用力。
目录
4、稳定性:
在载荷 作用下,构 件保持原有 平衡状态的 能力。
强度、刚度、稳定性是衡量构件承载能力 的三个方面。
目录
构件的分类:杆件、板壳*、块体* 材料力学主要研究杆件
{ 直杆—— 轴线为直线的杆 曲杆—— 轴线为曲线的杆
{等截面杆——横截面的大小 形状不变的杆 变截面杆 ——横截面的大小 或形状变化的杆 等截面直杆 ——等直杆 目录
目录
三、变形固体的基本假设
3、各向同性假设: 认为在物体内各个不同方向的力学性能相同
(沿不同方向力学性能不同的材料称为各向异性 材料。如木材、胶合板、纤维增强材料等)
4、小变形与线弹性范围
A
如右图,δ远小于构件的最小尺寸,

《材料力学》课件3-5等直圆杆扭转时的变形.刚度条

《材料力学》课件3-5等直圆杆扭转时的变形.刚度条

3
在不同扭矩作用下,杆的变形表现出非线性特征, 这表明我们需要考虑非线性效应对杆刚度的影响。
研究不足与展望
01
虽然我们得到了杆在扭矩作用下的变形公式,但该公式是在一定假设条件下得 到的,可能存在一定的误差。未来可以通过更精确的实验和数值模拟方法来验 证和修正该公式。
02
目前的研究主要集中在等直圆杆的扭转问题上,对于其他形状的杆或复杂结构 的研究尚不够充分。未来可以进一步拓展研究范围,探究不同形状和结构的杆 在扭矩作用下的变形和刚度问题。
刚度条件的数学表达
刚度条件的数学表
达式
根据材料力学和弹性力学的基本 理论,等直圆杆扭转时的刚度条 件可以用数学表达式表示。
刚度常数
在数学表达式中,涉及到一些与 杆件材料、截面尺寸等有关的常 数,这些常数称为刚度常数。
刚度常数的意义
刚度常数是衡量杆件刚度的具体 数值,可以通过试验和计算获得, 是杆件设计和选用的重要依据。
ERA
刚度条件的定义与意义
刚度条件定义
在等直圆杆扭转时,杆件抵抗扭转变 形的能力称为刚度条件。
刚度条件的物理意义
刚度条件的意义
在工程实际中,刚度条件是设计、制 造和选用杆件的重要依据,满足刚度 条件的杆件才能保证结构的稳定性和 安全性。
它反映了杆件在承受扭矩作用时,抵 抗扭转变形的能力,是衡量杆件扭转 变形能力的重要参数。
BIG DATA EMPOWERS TO CREATE A NEW ERA
3-5等直圆杆扭转时的变形
与刚度条件
• 等直圆杆扭转时的基本概念 • 等直圆杆扭转时的变形分析 • 等直圆杆扭转时的刚度条件 • 等直圆杆扭转时的工程应用 • 结论与展望
目录
CONTENTS

材料力学第三章-PPT

材料力学第三章-PPT

Me3
r / min
Me1 15915 N m
2
3
Me2 Me3 4774.5 N m
Me4 6366 N m
Me1 n Me4
1
4
6366 N·m
+
2)画扭矩图
4774.5 N·m
9549 N·m
【课堂练习】若将
Me2
Me4
从动轮3与4对调如
18
Me1 n Me3
图,试作扭矩图、
2
BC段内:
2,max
T2 Wp 2
π
14103 71.3MPa 100 103 3
3)校核强度
16
2,max >1,max且2,max<[ ] = 80MPa,满足强度条件、
36
§3-5 等直圆杆扭转时得变形·刚度条件
Ⅰ、 扭转时得变形
等直圆杆得扭转变形可用两个横截面得
相对扭转角(相对角位移) j 来度量。
GIP
j Tl 180 GIP
—单位为度 (º)
若圆轴在第i段标距li内Gi、IPi、Ti为常 数,则相对扭转角:
n
j
T i li
—单位为弧度(rad)
i1 Gi I Pi
n
j
T i li 180 —单位为度 (º)
i1 Gi I Pi
39
【例3-4】钢制实心圆轴中,M1=1 592 N·m,M2 = 955 N·m,M3 = 637 N·m,lAB = 300 mm,lAC = 500 mm,d = 70 mm ,切变模量G = 80 Gpa、试求横截面C 相对于
Me
Me
FS左=τ左dydz
FS右=τ右dydz

3.1杆件四种基本变形及组合变形

3.1杆件四种基本变形及组合变形

《杆件的四种基本变形及组合变形、直杆轴向拉、压横截面上的内力》教学设计剪切变形的受力特点是作用在构件上的横向外力大小相等、方向相反、作用线平行且距离很近。

剪切变形的变形特点是介于两横向力之间的各2.剪切【工程实例】如图a所示为一个铆钉连接的简图。

钢板在拉力F的作用下使铆钉的左上侧和右下侧受力(图b),这时,铆钉的上、下两部分将发生水平方向的相互错动(图c)。

当拉力很大时,铆钉将沿水平截面被剪断,这种破坏形式称为剪切破坏。

3. 扭转用改锥拧螺钉时,在改锥柄上手指的作用力构成了一个力偶,螺钉的阻力在改锥的刀口上构成了一个方向相反的力偶,这两个力偶都作用在垂直于杆轴的平面内,就使改锥产生了扭转变形,如图a所示。

例如汽车的转向轴(图b)。

当驾驶员转动方向盘时,相当于在转向轴A端施加了一个力偶,与此同时,转向轴的B端受到了来自转向器的阻抗力偶。

于是在轴AB的两端受到了一对大小相等、转向相反的力偶作用,使转向轴发生了扭转变形。

弯曲【试一试】两手支撑一把长尺子,中间放一重物,尺子会发生怎样的变形呢?纵向对称面:梁的横截面多为矩形、工字形、等(图),它们都有一根竖向对称轴,这根对称轴与梁轴线所构成的平面称为纵向对称面。

平面弯曲:梁的弯曲平面与外力作用面相重合的3.2直杆轴向拉、压横截面上的内力 内力的概念 轴力的计算 1)轴力为了显示并计算杆件的内力,通常采用截面法。

假设用一个截面m-m (图a )将杆件“切”成左右两部分,取左边部分为研究对象(图b ),要保持这部分与原来杆件一样处于平衡状态,就必须在被切开处加上,这个内力F N 就是右部分对左部分的作用力。

在轴向拉(压)杆中横截面中的内力称为由于直杆整体是平衡的,左部分也是平衡的,对这部分建立平衡方程:=0 0=-N F F若取右部分为研究对象,则可得0='-N F F 可以看出,取任一部分为研究对象,都可以得到相同的结果,其实F N 与F ′N 是一对作用力与反作用力,其数值必然相等。

第三章 直杆的基本变形 复习资料(学生)

第三章  直杆的基本变形  复习资料(学生)

第三章直杆的基本变形复习资料机械和工程结构中的零部件在载荷的作用下,其形状和尺寸发生变化,为了了保证机械零部件正常安全工作,必须具有足够的、和。

零件抵抗破坏的能力,称为。

零件抵抗破坏的能力,称为。

受压的细长杆和薄壁构件,当所受载荷增加时,可能失去平衡状态,这种现象称为丧失稳定。

是零件保持原有平衡状态的能力。

基本的受力和变形有、、,以及由两种或两种以上基本变形形式叠加而成的组合变形。

一、轴向拉伸与压缩(一)拉伸与压缩1、在轴向力作用下,杆件产生伸长变形称为轴向拉伸,简称,在轴向力作用下,杆件产生缩短变形称为轴向压缩,简称.2、轴向拉伸和压缩变形具有以下特点:(1)受力特点——。

(2)变形特点——。

(二)内力与应力1、杆件所受其他物体的作用力都称为外力,包括和。

2、在外力作用下,构件产生变形,杆件材料内部产生变形的抗力,这种抗力称为。

3、外力越大,构件的变形越大,所产生的内力也越大。

内力是由于外力的作用而引起的,内力随外力。

当内力超过一定限度时,杆件就会被破坏。

4、轴向拉、压变形时的内力称为,用F N表示。

剪切变形时的内力称为,用F Q表示。

扭转变形时的内力称为,用M T表示。

弯曲变形时的内力称为(M)与F Q)5、内力的计算——截面法将受外力作用的杆件假想地切开,用以显示内力的大小,用以显示内力的大小,并以平衡条件确定其合力的方法,称为截面法。

F N=F6、应力1)同样的内力,作用在材料相同、横截面不同的构件上,会产生不同的效果。

2)构件在外力作用下,单位面积上的内力称为。

轴向拉伸和压缩时应力垂直于截面,称为,记作σ。

3)轴向拉伸和压缩时横截面上的应力是均匀分布的,其计算公式为A F N =σ,其中σ为横截面上的正应力,MPa ;F N 为横截面上的内力,N ;A 为横截面面积,mm 2。

4)正应力的正负号规定为:拉伸压力为 ,压缩应力为 。

7、强度计算1)、材料丧失正常工作能力的应力,称为 。

塑性材料的极限应力是其 应力σs ,脆性材料的极限应力是其 应力σb 。

第三章材料力学的基本概念第六节杆件变形的基本形式分析

第三章材料力学的基本概念第六节杆件变形的基本形式分析

第三章材料力学的基本概念第六节杆件变形的基本形式有下列说法,________是错误的。

A.杆件的几何特征是长度远大于横截面的尺寸B.杆件的轴线是各横截面形心的连线C.杆件的轴线必是直线D.A+B+C下列说法________是正确的。

A.与杆件轴线相正交的截面称为横截面B.对于同一杆件,各横截面的形状必定相同C.对于同一杆件,各横截面的尺寸必定相同D.对于同一杆件,各横截面必相互平行下列说法________是正确的。

A.与杆件轴线相平行的截面称为横截面B.对于同一杆件,各横截面的形状必定相同C.对于同一杆件,各横截面的尺寸不一定相同D.对同一杆件,各横截面必相互平行不管构件变形怎样复杂,它们常常是由________种基本变形形式所组成。

A.3B.4C.5D.6不管构件变形怎样复杂,它们常常是轴向拉压、________、扭转和弯曲等基本变形形式所组成。

A.位移B.错位C.膨胀D.剪切不管构件变形怎样复杂,它们常常是轴向拉压、剪切、________和________等基本变形形式所组成。

A.错位/膨胀B.膨胀/弯曲C.弯曲/扭转D.扭转/位移在一对大小相等、方向相反的沿杆件轴线的外力作用下使杆件产生伸长变化的变形,称为________。

A.弯曲变形B.扭转变形C.轴向拉伸变形D.剪切变形在一对大小相等、方向相反的沿杆件轴线的外力作用下使杆件产生缩短变化的变形,称为________。

A.弯曲变形B.扭转变形C.轴向压缩变形D.剪切变形受拉压变形的杆件,各截面上的内力为________。

A.剪力B.扭矩C.弯矩D.轴力轴力的单位是________。

A.牛顿B.牛顿/米C.牛顿·米D.牛顿/米2关于轴力,下列说法中________是正确的。

①轴力是轴向拉压杆横截面上唯一的内力;②轴力必垂直于杆件的横截面;③非轴向拉压的杆件,横截面上不可能有轴向力;④轴力作用线不一定通过杆件横截面的形心。

A.①②B.③④C.①③D.②④受拉压变形的杆件,各截面上的应力为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
§3-2 拉伸和压缩时材料的力学性质
颈缩阶段:载荷达到最高值后,可以看到在试件的某一局部 范围内的横截面迅速收缩变细,形成颈缩现象。应力应变曲 线图中的ef段称为颈缩阶段。
强化阶段:过了屈服阶段,材料又b恢复400了M抵Pa抗变形的能力, 要使试件继续变形必须再增加载荷,这种现象称为材料的强
化,故 - 曲线图中的 ce 段称为强化阶段,最高点 e 点所对
由于杆的轴力为常数,但中间一段因开槽而使 杆的最大正应力为:
截面面积减小,故杆的危险截面应在开槽段,即 最大正应力发生在该段,将槽对杆的横截面面积 削弱量近似看作矩形,开槽段的横截面面积为
m axF A N6805 6m 10m 3N 2 70.1M 5Pa
§3-2 拉伸和压缩时材料的力学性质
实验条件:常温(20℃),静载(均匀缓慢地加载)。 力学性能(机械性能):指材料在外力作用下,在变形和强度方 面所表现出来的特性。 标准试件:国家标准《金属拉伸试验方法》(如GB 228—87)
d
压缩试件:h(1.53)d 拉伸试件:
对圆形截面的试样规定: l 10d 或 l 5d
对于横截面积为A的矩形截面试样,则规定: l 11.3 A l 5.65 A6
h
§3-2 拉伸和压缩时材料的力学性质
实验设备:万能材料试验机。
塑性材料:断裂前产生 较大塑性变形的材料, 如低碳钢等。
脆性材料:断裂前塑性 变形很小的材料,如铸 铁、石料。 低碳钢:指含碳量0.3% 以下的碳素钢。
11
§3-2 拉伸和压缩时材料的力学性质
在屈服阶段,如果试样表面光滑,试样表面将出现与 轴线约成45°的斜线 ,称为滑移线。这是因为在45°斜面 上存在最大切应力,材料内部晶粒沿该截面相互滑移造成 的。
工程上一般不允许构件发生塑性变形,并把塑性变形作 为塑性材料失效的标志,所以屈服极限s是衡量材料强度的 重要指标。
应的应力称为材料的拉伸强度极限或抗拉强度,以“b”表示。
它是材料所能承受的最大应力,所以b是衡量材料强度的另
一个重要指标。 Q235的强度极限

13
§3-2 拉伸和压缩时材料的力学性质
材料的两个塑性指标
试件拉断后,弹性变形消失,只剩下残余变形,残余变
形标志着材料的塑性。工程中常用延伸率 和断面收缩率 作
冷作硬化:在常温下 将钢材拉伸超过屈服 阶段,卸载后短期内 又继续加载,材料的 比例极限提高而塑性 变形降低的现象。
15
§3-2 拉伸和压缩时材料的力学性质
二.铸铁拉伸实验(观看动画)
铸铁是典型的脆性材料,其拉
伸 - 曲线如图所示,图中无明显
的直线部分,但应力较小时接近于 直线,可近似认为服从胡克定律。 工程上有时以曲线的某一割线斜率 作为弹性模量。铸铁拉伸时无屈服 现象和颈缩现象,断裂是突然发生
低碳钢Q235的拉伸时的应力–应变曲线图(- 曲线 )
10
§3-2 拉伸和压缩时材料的力学性质
低碳钢的应力–应变曲线可分成四个阶段:
弹性阶段:由直线段oa 和微弯段ab 组成。oa 段称为比 例阶段或线弹性阶段。在此阶段内,材料服从胡克定律,
即§ =3E-2适拉用,伸a点和所压对缩应时的应材力料值的称为力材学料性的比质例极限,
1
§3-1 直杆轴向拉伸与压缩时的变形与应力分析
一、轴向拉伸与压缩时的变形特点
实验:
F
ac
a
c
F
b
d
bd
2
§3-1 直杆轴向拉伸与压缩时的变形与应力分析
1.变形现象 横向线ab和cd仍为直线,且仍然垂直于轴线; 结论:各纤维的伸长相同,所以它们所受的力也相同。
2.平面假设 变形前原为平面的横截面,在变形后仍保持为平面,且仍垂直
公式的使用条件:轴向拉压杆。
4
§3-1 直杆轴向拉伸与压缩时的变形与应力分析
例3-1 如图所示圆截面杆,直径 d40,m 拉m 力 试求杆横截面上的最大正应力。
F60kN
解(1)作轴力图
FNF60kN
(2)计算杆的最大正应力
A d2 dd
4
4
402 mm2 56mm2
7
§3-2 拉伸和压缩时材料的力学性质
一.低碳钢拉伸时的力学性能(观看动画)
F
F
l
F
O
l
l
低碳钢Q235的拉伸图(F—△l 曲线 )
8
§3-2 拉伸和压缩时材料的力学性质
F
A
e
d
f
b
bc a
s e p
O d g
f h l
l
低碳钢Q235的拉伸时的应力–应变曲线图(- 曲线 )
9
§3-2 拉伸和压缩时材料的力学性质 §3-2 拉伸和压缩时材料的力学性质
并以“p ”表示。
曲线ab段称为非线弹性阶段,只要应力不超过b点, 材料的变形仍是弹性变形,所以b点对应的应力称为弹性
极限,以“e ”表示。
屈服阶段:bc段近似水平,应力几乎不再增加,而变 形却增加很快,表明材料暂时失去了抵抗变形的能力。 这种现象称为屈服现象或流动现象。bc段最低点对应的 应力称为屈服极限或屈服点,以“s ”表示。Q235的屈 服点s=235MPa。
为材料的两个塑性指标。分别为
l1 -l l
×10000
AAA1 10000
一般把 >5% 的材料称为塑性材料,把 <5%的材料称为 脆性材料。低碳钢的延伸率 =20%~30%,是典型的塑
性材料。
截面收缩率 也是衡量材料塑性的重要指标,低碳钢的截
面收缩率 约为60%左右。
14
§3-2 拉伸和压缩时材料的力学性质
第三章 直杆基本的变形
直杆在外载作用下会发生变形常见的基本变形有拉 伸和压缩、剪切与挤压、弯曲变形、扭转和组合变形。 在外载荷作用下,杆件将发生变形,产生应力。外载荷 越大,产生的内应力也越大。
以抗拉强度来作为构件所能承受的最大拉应力,简 称强度极限。塑性材料以屈服阶段的极限应力作为计算 的依据。
零件抵抗破坏的能力,称为强度。 零件抵抗变形的能力,称为刚度。 学习基本变形、应力、强度是为了保证材料具有足 够的使用寿命。
于轴线。
二、内力与应力
1.内力的分布
均匀分布
F
FN
3
§3-1 直杆轴向拉伸与压缩时的变形与应力分析
2.应力的计算公式:
拉压杆横截面上各点处只产生正应力,且正应力在截面上均匀分布 。
FN
F
FN
A
——轴向拉压杆横截面上正应力的计算公式。
式中:
为横截面上的正应力; FN为横截面上的轴力; A为横截面面积。 正应力 的正负号规定为:拉应力为正,压应力为负。
相关文档
最新文档