二重积分的变量交换.
4二重积分的变量交换

D
o
d
2( ) f (r cos , r sin )rdr.
1 ( )
r 2()
A
②二重积分化为二次积分的公式(2)
区域特征如图
,
D
0 r ( ).
f (r cos ,r sin )rdrd o
D
( )
d f (r cos ,r sin )rdr.
0
r ( )
A
常见区域D'的确定
y
(1)D : x2 y 2 2Rx (如图)
r 2 2Rr cos
O R 2R x
D : , 0 r 2R cos
2
2
y
2R
(2)D : x2 y 2 2Ry (如图)
R
r 2 2Rr sin
O
x
D : 0 , 0 r 2Rsin
③二重积分化为二次积分的公式(3)
习惯上:设 x x(u, v), y y(u,v)
(2)求出J (u, v) (x, y) (u, v)
若是设u u(x, y), v v(x, y), 求J有两种办法
(i)先求出x x(u,v), y y(u,v),再求J
(ii)先求出
(u, (x,
v) y)
,
再求J=
1 (u,
v)
D
例 9 求广义积分 ex2dx .
0
2
D2 S
D1
ex2 y2 dxdy ex2 y2 dxdy ex2 y2 dxdy
D1
S
1 (1 ea2 ) (
a ex2 dx)2
D2
1 (1 e2a2 )
4
0
4
(2) 在 上雅可比式 J (u, v) (x, y) 0; (u, v)
21(3)二重积分的极坐标计算方法.

o
x
结束
x k o( ) x4 x1 x(u, v k ) x(u, v) v (u , v) 同理得 y2 y1 y h o( ) u (u , v) y k o( ) y4 y1 v (u , v) 当h, k 充分小时,曲边四边形 M1M2M3M4 近似于平行四 边形, 故其面积近似为 x2 x1 y2 y1 M 1M 2 M 1M 4 x4 x1 y4 y1
2 c
D
1 x2
a
2
y2 2 d xd b
y
D : r 1 , 0 2 ( x, y ) a cos a r sin J abr b sin b r cos ( r , )
V 2 c
D
1 r a b r d r d
(3)在变换下确定u,v的范围
D
;
(4)代入变换替换公式,化为关于u,v的二重积分;
(5)用§2求二重积分化为累次积分的方法求出其值。
题型一:引入变量替换后,化为累次积分; P242习题3
题型二:作适当的变量替换,计算二重积分。
P242习题4
d x d y , 其中D 是 x 轴 y 轴和直线 e y 所围成的闭域. x y 2 解: 令 u y x , v y x , 则 D o x vu vu ( D D ) x ,y v v2 2 2 1 D ( x, y ) 1 1 2 2 u v uv J 1 1 (u , v) 2 2 2 o u
§4 二重积分的变量交换
教学内容: 1.二重积分的换元法; 2.二重积分的极坐标变换; 教学重点: 二重积分的变量变换: 1.线性变换;
《数学分析》第二十一章 二重积分 5

o
f ( r ,θ )dθ .
θ = arccos
r a
练习题
一,填空题: 填空题: 1 , 将 ∫∫ f ( x , y )dxdy , D 为 x 2 + y 2 ≤ 2 x , 表示为极坐
D
标形式的二次积分, 标形式的二次积分,为_____________________. 2 , 将 ∫∫ f ( x , y )dxdy , D 为 0 ≤ y ≤ 1 x , 0 ≤ x ≤ 1, 表
D
= ∫ dθ ∫
α
β
2 (θ )
1 (θ )
f ( r cosθ , r sinθ )rdr .
二重积分化为二次积分的公式( 二重积分化为二次积分的公式(2)
区域特征如图
r = (θ )
α ≤θ ≤ β,
0 ≤ r ≤ (θ ).
β
o
D
α
A
∫∫ f ( r cosθ , r sinθ )rdrdθ
例2
计算 ∫∫ e
D
x2 y2
dxdy ,其中 D 是由中心在
原点, 的圆周所围成的闭区域. 原点,半径为a 的圆周所围成的闭区域
解
在极坐标系下
D: D: 0 ≤ r ≤ a ,0 ≤ θ ≤ 2π .
∫∫ e
D
x2 y2
dxdy = ∫ dθ∫ e
0 0
2π
a
r2
rdr
= π(1 e
a2
D 1
sin( π x 2 + y 2 ) sin( π x 2 + y 2 ) ∫∫ x 2 + y 2 dxdy = 4 ∫∫ x 2 + y 2 dxdy D1 D
二重积分计算技巧总结

二重积分计算技巧总结二重积分是微积分中的一个重要概念,是对二元函数在特定区域上的面积进行求解,也可以理解为一个函数在一个平面区域上的平均值。
在实际计算中,可以通过一些技巧来简化计算过程,提高计算效率。
本文将总结一些常用的二重积分计算技巧,帮助读者更加灵活地应用二重积分。
1.利用对称性在计算二重积分时,如果被积函数具有对称性,可以通过利用对称性简化计算过程。
常见的对称性有x轴对称、y轴对称、原点对称等。
对称性可以减少计算量,提高计算效率。
2.变量替换变量替换是处理二重积分的常用方法。
通过合适的变量替换,可以将原来的二重积分转化为更简单的形式。
常见的变量替换包括极坐标变换、矩形坐标变换等。
极坐标变换是将矩形坐标转化为极坐标的过程,从而转化为极坐标上的二重积分。
极坐标变换的公式如下:x = r*cosθy = r*sinθ其中,r是极径,θ是极角。
矩形坐标变换则是将原来的矩形区域映射为一个更简单的区域,从而简化计算过程。
常见的矩形坐标变换包括矩形到正方形的变换、矩形到单位圆的变换等。
3.积分次序交换对于一些特定的被积函数,可以通过交换积分次序来简化计算过程。
一般来说,交换积分次序需要满足一些条件,比如被积函数在给定的积分区域上连续可微。
需要注意的是,交换积分次序可能会改变积分的范围,因此在交换积分次序时需要注意积分区域的变化。
4.多次积分的简化二重积分常常需要进行多次积分,这时可以使用多次积分的简化方式来提高计算效率。
常见的多次积分简化方式包括积分区域分割、积分区域的对称性利用、积分范围的变量替换等。
通过适当地选择简化方式,可以大大减少计算量,提高计算效率。
5.划分区域的选择在计算二重积分时,划分区域的选择对于计算结果具有一定的影响。
对于一些特定的区域,可以选择合适的划分方式来简化计算过程。
常见的划分区域的选择方式包括将区域分为两个相互重叠的子区域、将区域分为若干个均匀分布的子区域等。
通过合适的划分方式,可以简化计算过程,提高计算效率。
§4 二重积分的变量交换

§4 二重积分的变量交换在二重积分中,变量交换是一种常见的操作方法。
它通过交换自变量和因变量的顺序来改变被积函数的表达式,从而可以使积分更容易进行或更加简洁。
一、变量交换的基本概念在二重积分中,变量交换指的是将积分区域中自变量和因变量的顺序进行交换,同时改变积分区域的形状,即将原来在 $xOy$ 平面上的区域变成在 $yOx$ 平面上的区域,并维持面积不变。
就积分意义而言,变量交换不改变积分的结果。
具体来说,设被积函数为 $f(x,y)$,积分区域为 $D$,其在 $xOy$ 平面上的投影为$\mathcal{D}$。
若令 $u=y,v=x$,则变量交换后的积分区域为 $D'$,在 $uOv$ 平面上的投影为 $\mathcal{D}'$,其面积为原先积分区域面积的倒数。
被积函数也相应地变为$f(v,u)$。
则可得变量交换后的二重积分为:$$\iint\limits_Df(x,y)dxdy=\iint\limits_{D'}f(v,u)dudv$$二、变量交换的条件和方法变量交换不是所有情况下都可以进行的,需要满足特定的条件才能进行。
根据积分区域的类型和被积函数的性质,有以下几种情况。
1. 镜面对称性若被积函数 $f(x,y)$ 关于某条直线 $L$ 对称,且积分区域 $D$ 也关于同一直线$L$ 对称,则可以采用镜面对称的方法进行变量交换。
具体来说,可以在积分区域$D$ 上作镜面对称的区域 $D'$,使得 $D$ 和 $D'$ 的交集恰好为 $L$,且在 $D'$ 中的积分限与 $D$ 相同。
则可得变量交换的式子:2. 极坐标变换若积分区域 $D$ 在极坐标下是简单区域,且被积函数 $f(x,y)$ 在极坐标下具有简单的表达式,则可以采用极坐标变换的方法进行变量交换。
具体来说,可以设极坐标变换为 $x=r\cos\theta,y=r\sin\theta$,则有:3. 三角函数变换其中,$\frac{\partial(x,y)}{\partial(u,v)}$ 是雅可比矩阵的行列式,并满足:$$\frac{\partial(x,y)}{\partial(u,v)}=\begin{vmatrix}\frac{\partialx}{\partial u} &\frac{\partial x}{\partial v}\\ \frac{\partial y}{\partial u} &\frac{\partial y}{\partial v}\end{vmatrix}$$4. 其他变换对于一些较为特殊的积分区域和被积函数,也可以采用其他的变换方式进行变量交换。
二重积分交换积分次序的条件

二重积分交换积分次序的条件
双重积分交换积分次序,是非常重要的数学知识。
它不仅用于解决许多变量积分的问题,而且还用于解决其他积分的问题。
那么,双重积分交换积分次序的条件是什么呢?
首先,我们需要考虑双重积分的函数,也就是被积函数。
它是一个双变量函数,可以用
f(x,y)表示,其中x和y分别表示变量。
其次,双重积分可以表示为:
∫∫f(x,y)dxdy or ∫∫f(x,y)dydx
我们可以根据双重积分的函数判断它的积分次序,即是以x为积分还是以y为积分。
根据Leibniz法则,只要函数满足一定的条件,就可以交换积分次序。
双重积分交换积分次序的具体条件有以下几点:
1.双重积分中的函数要满足二阶偏导系数continuous;
2.双重积分被积面积不能有边界上的突变;
3.双重积分积分区域不能为一个半闭合区域。
以上是双重积分交换积分次序的条件,理解这些条件非常重要,可以帮助我们解决许多双重积分的问题。
所以,我们在使用双重积分的时候,应该充分了解双重积分交换积分次序的条件,以便解决许多双重积分的问题。
交换二重积分的计算方法

交换二重积分的计算方法二重积分是微积分中的重要概念之一,它是对二元函数在一个有限区域内的积分。
在实际问题中,我们经常需要对二元函数在一个区域内进行积分,以求得其面积、质心、重心、转动惯量等物理量。
而交换二重积分则是计算二重积分时的一个重要方法,本文将详细介绍交换二重积分的计算方法。
一、二重积分的定义在平面直角坐标系上,设有一个由有限个矩形区域组成的封闭区域D,其中第i个矩形的左下角坐标为(xi-1,yi-1),右上角坐标为(xi,yi),矩形面积为ΔSi,则称D为一个简单区域。
若有一个连续函数f(x,y),则在D上的二重积分定义为:Df(x,y)dxdy=limΔS→0∑i=1nΔSif(xi*,yi*)其中,ΔS表示区域D中第i个矩形的面积,(xi*,yi*)表示该矩形的任意一点。
二、二重积分的计算方法对于简单区域D上的连续函数f(x,y),我们可以采用以下两种方法来计算其二重积分:1.累次积分法累次积分法是将二重积分转化为两个单变量函数的积分,即先对y进行积分,再对x进行积分。
具体而言,设D的边界为y=g1(x)和y=g2(x),则有:Df(x,y)dxdy=∫ab(∫g1(x)g2(x)f(x,y)dy)dx其中,a和b分别为D在x轴上的投影区间的端点。
2.极坐标变换法极坐标变换法是将二重积分转化为极坐标系下的积分,即先将x和y用极坐标表示,再对极角和极径进行积分。
具体而言,设D 在极坐标系下的极角范围为θ1到θ2,极径范围为r1到r2,则有:Df(x,y)dxdy=∫θ1θ2(∫r1r2f(rcosθ,rsinθ)rdr)dθ其中,r=√(x^2+y^2),θ=tan^(-1)(y/x)。
三、交换二重积分的计算方法在实际问题中,我们有时需要对简单区域D上的函数进行二重积分,但是由于函数表达式较为复杂或积分区域较难处理,使得计算二重积分变得十分困难。
此时,我们可以通过交换二重积分的顺序来简化计算过程。
二重积分的积分方法和积分公式

二重积分的积分方法和积分公式二重积分是高等数学中一个重要的概念,主要用于求解平面区域上的积分问题。
在实际应用中,二重积分常常伴随着一些积分方法和积分公式,有助于简化计算过程,提高计算效率。
本文将详细介绍二重积分的积分方法和积分公式。
一、二重积分的基本概念首先,我们需要了解二重积分的基本概念。
对于一个平面区域D,如果对于每一个区域内的点(x,y),都有一个实数f(x,y)与之对应,那么我们称f(x,y)是D上的一个二元函数。
此时,通过对区域D进行分割,我们可以得到很多个小区域,用矩形来近似表达每个小区域,使得这些小矩形的面积的和趋近于区域D的面积,这个和就可以作为表示f(x,y)在区域D上的对应二重积分。
其数学表达式为:∬Df(x,y)dxdy其中f(x,y)是被积函数,D是被积区域,dxdy表示在x轴和y 轴上的微小增量。
二、二重积分的积分方法1. 变量代换法变量代换法常用于解决被积函数较为复杂的情况。
通过建立一个新的变量,将原式中的变量替换为新的变量,并计算出新的变量的微分值,从而得到新的被积函数和被积区域。
例如,对于二重积分∬Dx^2y dxdy,如果我们令u=xy,v=y,那么在新的变量下,原式可化为∬D(u/v)dvdu。
此时,我们需要通过计算出u和v的微分值,将原被积函数与被积区域进行转化,从而得到简洁的结果。
2. 极坐标法极坐标法常用于解决被积区域的对称性问题。
通过将二维平面上的坐标系转化为极坐标系,可以轻松地描述出各种对称图形的被积区域,并简化计算过程。
例如,对于二重积分∬Dxy dxdy,如果我们将被积区域D转化为极坐标系下的区域,可以得到简化后的被积函数为∫0^πdθ∫0^Rρ^3sinθcosθdρ。
此时,我们只需要进行简单的积分运算,就可以得到最终的结果。
3. 分部积分法分部积分法常用于解决被积函数中的乘积项问题。
通过将乘积项拆分成不同的部分,并对每一部分进行不同的求导和积分操作,可以简化被积函数的形式,并且可以将原式化简为更易于计算的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
2
( )
d f (r cos ,r sin )rdr.
0
0
r ( ) A
极坐标系下区域的面积 rdrd . D
常见区域D'的确定
(3)D : x 2 y 2 R 2 r2 R2
(如图)
D : 0 2 , 0 r R
y R
OR x
题型一:引入极坐标变量替换后,化为累次积分
则有 f (x, y)dxdy f [x(u, v), y(u, v)] J (u, v) dudv.
D
x,y的范围
u,ቤተ መጻሕፍቲ ባይዱ的范围
要加绝对值
3.利用一般变量替换求二重积分 步骤:⑴根据题目的特点(区域及被积函数)确定变换;
习惯上:设 x x(u, v), y y(u, v)
(2)求出J (u, v) (x, y) (u, v)
例4:P242习题1(2)
D : 0 , 0 r sin
2
D : 0 r 1, arcsinr
2
y 1
O
x
练习:P242习题1(1)
例 5 写出积分 f ( x, y)dxdy的极坐标二次积分
D
形式,其中积分区域
D {( x, y) | 1 x y 1 x2 , 0 x 1}.
r 2()
A
②二重积分化为二次积分的公式(2)
区域特征如图
,
D
0 r ( ).
f (r cos ,r sin )rdrd o
D
( )
d f (r cos ,r sin )rdr.
0
r ( )
A
常见区域D'的确定
y
(1)D : x2 y 2 2Rx (如图)
r 2 2Rr cos
§4 二重积分的变量交换
教学内容:1.二重积分的变量替换公式 2.二重积分的一般变量变换 3.二重积分的极坐标变换
教学重点:二重积分的变量变换(主要为线性变换, (广义)极坐标变换)
教学难点:变量变换后积分限的确定
一、二重积分的变量交换公式
1.引理:
2.二重积分的变量替换公式:
定理21.13 设 f (x, y) 在 xoy 平面上的有界闭区域
题型二:作适当的变量替换,计算二重积分 例1
y
1 x y 1
D
o
1x
v v 1
u v u v
o
u
例2
y
O
x
二、用极坐标计算二重积分
1.变换
y r .P(x,y)
变换T : x r cos , y r sin
O
x
其中r为极径,为OP与x轴正向的夹角
0 r ,0 2 此时J (r, ) r
D
D
————二重积分化为二次积分的公式
3.D'的确定 把极坐标代入边界得出D'的边界
①二重积分化为二次积分的公式(1)
区域特征如图
,
r 1()
1( ) r 2( ).
D
f (r cos ,r sin )rdrd
D
o
d
2( ) f (r cos , r sin )rdr.
1 ( )
x2 y2 1
x y1
例6
I
d
2
1
d
r
dr
D 1 x2 y2 0
0 1 r2
例7
V 4 R2 x2 y2 d
D
R cos
4 2 d
R 2 r 2 rdr
0
0
D : 0 ,
2
0 r R cos
O R 2R x
D : , 0 r 2R cos
2
2
y
2R
(2)D : x2 y 2 2Ry (如图)
R
r 2 2Rr sin
O
x
D : 0 , 0 r 2Rsin
③二重积分化为二次积分的公式(3)
区域特征如图
D
0 2, 0 r ( ).
o
f (r cos ,r sin )rdrd
2.适用范围 (1)D为圆域或圆域的一部分;
(2)被积函数含 x2 y2形式。
3.变换公式
i
1 2
(
ri
ri
)2
i
1 2
ri
2
i
1 2
(2ri
ri
)ri
i
r ri ri r ri
i i
ri
(ri 2
ri
)
ri
i
ri ri i ,
o
i
D
i
A
f (x, y)dxdy f (r cos, r sin ) r drd.
若是设u u(x, y), v v(x, y), 求J有两种办法
(i)先求出x x(u,v), y y(u,v),再求J
(ii)先求出
(u, (x,
v) y)
,
再求J=
1 (u,
v)
(x, y)
(3)在变换下确定u,v的范围△;
把变换代入D的边界曲线中,求出的边界曲线
作图 (4)代入变换替换公式,化为关于u,v的二重积分; (5)用§2求二重积分的方法求出其值。 题型一:引入变量替换后,化为累次积分
D 上可积,变换T : x x(u, v), y y(u, v)将 uov
平面上由按段光滑封闭曲线所围成的闭区域 一一
地映成 xoy 平面上的闭区域D,且满足
(1) x(u, v), y(u, v) 在 上具有一阶连续偏导数;
(2) 在 上雅可比式 J (u, v) (x, y) 0; (u, v)